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Noise

Stuff that gets in the way of of 
measuring what we want to measure

Noise is defined by each study’s goals
One study’s noise can be another study’s signal



Elements of the fMRI signal

Model-based fMRI
Noise that isn’t ,me-

locked to a task is 
annoying. 

Connec1vity-based fMRI
Common noise across 

regions can contaminate 
results



Steps for dealing with noise
• Decide how to define signal and noise for a study

• Reduce noise during acquisition (last lecture)

• Attempt to remove noise from data

• Avoid analyses that are sensitive to biased noise



Philosophies of noise reduction methods
1. What we think data should look like

Limited by our assumptions

2. Based on external measures of noise
Limited by how accurately those measures relate to fMRI noise

3. Based on physical properties of the data
Limited by what those physical properties do or don’t separate

In actual processing/denoising pipelines, these philosophies mix



Removing what we think is noise
Slow signal drift

Kopel, Sladky et al, NeuroImage 2019



Is slow signal drift always noise?

The non-denoised response to a 
flashing checkerboard with a slowly 

decreasing contrast

“Multi-echo” Denoised

Multi-echo: The removed noise

Mul1-echo: Denoised

Evans, Kundu et al NeuroImage 2015 



Removing what we think is noise
The human brain is intrinsically organized  into 
dynamic, anticorrelated functional networks

Fox et al, PNAS 102, 2005

Global Signal Regression Case Study



Removing what we thought was is noise
Correlations to the Posterior Cingulate

Removing the global signal was supposed to remove non-neural 
fluctua,ons, but it also induces an,-correla,ons

Murphy et al Neuroimage 2009

Removing uncharacterized signals can cause 
uncharacterized population differences



The global signal includes neural information



Global Signal Regression as a normalization tool
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Topolski, Finn, et al 
OHBM Meeting 2018

Noise removal interacts with analysis method choicesSimilar observation: Li et al 
www.biorxiv.org/content/
10.1101/548644v1



Global Signal Regression Case Study Summary 

• Removing part of the data without examining what is or isn’t 
being removed can have unanticipated consequences

• The original goal of GSR was to remove global noise sources to make 
it easier to examine specific correlation changes between brain regions

• GSR makes it nearly impossible to neuroscientificially interpret 
precisely this type of change

• If GSR is used as a global normalization tool where one cares 
about relations between a system of brain areas rather than 
individual connections, may be more benign

• More work is needed to see if it’s the best way normalize connectivity 
patterns across a population



Removing what we think is noise: ICA

Data  is decomposed 
into a set of spatially 

independent maps and 
a set of time courses

There are multiple 
methods for identifying 

relevant components
Also multiple ways to 

model groups of 
volunteers

Li et al Computerized Medical Imaging and Graphics March 2009



5 brain networks using ICA

M. De Luca et al., NeuroImage 2006

Visual

Visuospa,al & Execu,ve

Sensory & Auditory

Dorsal “What” Pathway

Ventral “Where” Pathway

Network names are based on 
knowledge from past research



fMRI dataset (after basic preprocessing) 

How to use ICA to clean fMRI?

2) ICA classification
(manual, semi-automated,
automated)

Signal ICs Noise ICs
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Denoised fMRI dataset

3a) non-aggressive
cleaning

3b) aggressive
cleaning

ICs (time series + spatial maps)

1) ICA algorithm

ICA denoising framework

Image from: Ludovica Griffanti’s OHBM 2017 Talk on “How-to use ICA for denoising”
“Advanced Methods for Cleaning up fMRI Time-Series” https://www.pathlms.com/ohbm/courses/5158/sections/7788



Sample ICA Components

Griffan, et al NeuroImage 2017



Sample ICA Components

Griffanti et al NeuroImage 2017



Sample ICA Components

Griffan, et al NeuroImage 2017



Automated ICA Noise Removal
Approach Purpose #features Classifier type Training 

required?
SOCK 

[Bhaganagarapu et l., 
2013]

multiple 
sources of 

noise
4

k-means clustering, 5 
combinations of 

conditions
NO

FIX
[Salimi-Khorshidi et 

al., 2014]

multiple 
sources of 

noise
>180

Hierarchical fusion 
(kNN, decision tree, 

SVM)
YES

Sochat et al., 2014

multiple 
sources of 

noise
246

Sparse Logistic 
Regression

YES

AROMA
[Pruim et al., 2015]

Motion 4
Noise if exceeds at 

least one of 3 criteria
NO

Freely available tools

Automated approaches

Image from: Ludovica Griffanti’s OHBM 2017 Talk on “How-to use ICA for denoising”
“Advanced Methods for Cleaning up fMRI Time-Series” https://www.pathlms.com/ohbm/courses/5158/sections/7788

Temporal ICA
[Glasser et al 2018] Different type of ICA & used in conjunction with FIX



Removing what we think is noise
+ Possible with almost any fMRI data
+ Repeatedly shown to be useful & can be 
automated
- If you don’t know what you’re removing:

• You don’t know if you’re removing something 
different across individuals or populations in 
important ways

• You risk losing neural interpretability of results



Noise reduction based on 
external measures of noise sources

Nuisance Regressors
• Respira,on (rate, depth, and end ,dal CO2)
• Heart Pulsa,on
• Head mo,on (Regression & Censoring)

• These measures can either be from purely external devices or validated as 
being from the data

• Sagieal Sinus ,me series, Cerebrospinal fluid, white maeer, ANATICOR
• Machine Learning Methods
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Introduction: Task-based fMRI
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Image from: César Caballero Gaudes OHBM 2017 Talk on “Overview of noise and denoising methods in BOLD fMRI”
“Advanced Methods for Cleaning up fMRI Time-Series” heps://www.pathlms.com/ohbm/courses/5158/sec,ons/7788
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Denoising physiological noise with external recordings

0 1 2 3 4 5 6 7 8 9 10 
time (s)

Respiration signal

Pulse Oximeter signal (or ECG signal)

MR images

Image from: César Caballero Gaudes OHBM 2017 Talk on “Overview of noise and denoising methods in BOLD fMRI”
“Advanced Methods for Cleaning up fMRI Time-Series” heps://www.pathlms.com/ohbm/courses/5158/sec,ons/7788
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RETROICOR

Glover et al., (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: 
RETROICOR. Magn Reson Med. 44(1):162-167

Figures courtesy of Rasmus Birn (University of Wisconsin-Madison)
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istics. Cardiac pulsatility is often localized to edges of the
brain such as near sulci or in tissue regions close to vessels
such as the superior sagittal sinus. Some respiration-in-
duced fluctuations result from longer-range effects such as
small bulk movement of the head or magnetic field mod-
ulations from the changing state of the thoracic cavity.
Image noise from this respiration component therefore
tends to span the entire brain. In this case, noise associated
with respiratory function occupies a smaller extent in
k-space than circulatory-induced noise. However, as
shown in Fig. 4, many regions of the brain have localized
motion components tied to the respiratory cycle, perhaps

through brainstem motion. These effects are localized in a
fashion similar to that of cardiac motion and thus occupy
a similarly broad extent in k-space.

Retrospective correction methods that operate in
k-space are limited to those spatial frequencies for which
the SNR is adequate to ensure a good fit of the Fourier
series to the data. This region includes only components
close to the k-space origin, so that correlations in image
space are introduced by the correction. This is not harmful
for global respiration noise because of its low spatial fre-
quency distribution, but can be detrimental for cardiac-
induced noise or localized respiratory noise, since there

FIG. 3. RETROICOR method applied to ROI time-series data acquired at TR ! 250 msec. (a) Raw data (") and y# cardiac fit (*) plotted vs.
phase in cardiac cycle; (b) same data plotted vs. phase of respiratory cycle (") and corresponding respiratory y# fit (*). Only one-fourth of
the 750 data points are plotted for clarity. Spectra of time series (c) without correction; (d) with cardiac correction alone; (e) with respiratory
correction alone; (f) with both corrections. In this case the cardiac and respiratory spectra are resolved with peaks near 0.8 and 0.15 Hz,
respectively.

FIG. 4. Left: Maps of noise distributions for image data acquired at TR ! 250 msec corresponding to Fig. 3, showing (top) cardiac
components and (bottom) respiratory components. The three columns depict maps that are uncorrected, corrected with RETROKCOR, and
corrected with RETROICOR, respectively. In this case the cardiac-related noise is highly localized, whereas the respiratory noise is more
diffuse but shows some focal noise foci medially. Right: Localizer showing slice location, and T*2-weighted image.

166 Glover et al.
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Low frequency fluctuations in respiratory volume (RVT)

Birn et al. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in 
fMRI. Neuroimage 31(4):1536–1548.

• Variations in respiratory rate can be reduced by regressing out changes in 
respiratory volume (RVT) that are assumed to correlate with fluctuations in 
arterial CO2 concentrations.

approximately 0.03 Hz during rest (see Fig. 1A). These variations
were typically more pronounced for resting runs compared to task
runs. Respiration depth during the lexical task varied by 19.1% T
8.6%. When subjects were cued to breathe at a constant rate and
depth, respiration depth varied by 17.9% T 4.2%. These respiration
changes were significantly correlated with fMRI signal changes,

particularly in highly vascular regions, such as gray matter and
large vessels (see Fig. 2). In the posterior cingulate, 76% of resting
and lexical runs (i.e. time series without an explicit modulation of

respiration) were significantly correlated with respiration changes,
while in the inferior occipital cortex, up to 90% of the resting and
lexical runs were significantly correlated. This correlation was

predominantly negative, with fMRI signal increases resulting from
decreases in respiration depth, at an average latency of 5.4 s
(averaged over voxels negatively correlated with the respiration

volume per time with a significance of Z < !5.4, P < 10!7

uncorrected). This latency varied for different voxels across the
brain. In addition, a positive correlation was observed when the

respiration volume per time was shifted on average by !0.9 s
relative to the fMRI signal (averaged over voxels significantly
positively correlated with the respiration volume per time). Each

voxel that was correlated with the respiration volume per time
showed both a positive and a negative correlation at different
latencies, with the positive correlation preceding the negative by an

Fig. 1. Time courses: (A) an example of respirations measured from the respiration belt around the subject’s abdomen. Graphs on the right show the Fourier

transform of the respiration (red) and the respiration volume per time (RVT) (blue) derived from the envelope, or breath-to-breath variability, of the respiration

depth and rate. (B) fMRI signal in a voxel correlated with respiration volume changes. (C) fMRI signal in the same voxel after regressing out respiration

volume per time changes. (D) Respirations and Fourier transforms of respiration and RVT when subject was cued to breathe at a constant depth and rate. (E)

fMRI signal in the same voxel as shown in panels B and C, but during constant respirations.

R.M. Birn et al. / NeuroImage 31 (2006) 1536–1548 1539
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Image from: César Caballero Gaudes OHBM 2017 Talk on “Overview of noise and denoising methods in BOLD fMRI”
“Advanced Methods for Cleaning up fMRI Time-Series” heps://www.pathlms.com/ohbm/courses/5158/sec,ons/7788

Respiration*Volume/Time (RVT)



At best respiration and cardiac pulsation adds 
noise to regional connections. At worst it 
obscures neural connections.
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Respira,on changes using RVT

Slide from Rasmus Birn

RVT = measuring and tracing (Respira,on Volume)/,me and 
removing it from the ,me series



Image from: César Caballero Gaudes OHBM 2017 Talk on “Overview of noise and denoising methods in BOLD fMRI”
“Advanced Methods for Cleaning up fMRI Time-Series” heps://www.pathlms.com/ohbm/courses/5158/sec,ons/7788
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Nuisance Regression Approaches

+ Can be based on known external sources of noise
+ They clearly remove much of this noise
- Only as good as the models linking these external measures to fMRI 

fluctuations
- Where they fit in a preprocessing pipeline can be tricky

Bright et al “Potential pitfalls when denoising resting state fMRI data using nuisance 
regression” NeuroImage 2017

Good general review of the many approaches:
Caballero Gaudes et al “Methods for cleaning the BOLD fMRI signal” NeuroImage 2017



Inter Subject 
Correlation

Assuming any signal 
fluctuations that are 
consistent across 

volunteers are unlikely to 
be noise

Simony, Honey, et al, 
Nature Communications 2016



Based on the physical properties of the data

• Distor,on correc,on through field mapping (Not covering)
• Calibra,on scans (Men,oned in the last lecture)
• Mul,-echo fMRI approaches



Using multi-echo fMRI to increase 
confidence that responses are BOLD

In addition, inflow effects may lead to a high signal
change3–6 so that activation is found in large vessels
which may be located distant from initial neuronal
activity (in the range of several millimeters up to
centimeters, e.g. the sagittal sinus). Due to additional
influences, which can be physiological and anatomical in
nature, functional activation shows a large intra- and an
even larger inter-subject variability. As a consequence, a
simple threshold strategy is not reasonable and additional
information is needed for characterization of the under-
lying source of activation.

Multi-echo experiments can provide a valuable tool to
quantify inflow related effects by calculating T2* and I0-
maps and thus enabling separation of inflow and BOLD
effects.12,13 Fortunately, besides enhanced sensitivity14

multi-echo experiments also provide information about
the signal change !S vs echo time. This signal change can
be specific for a particular vascular environment (e.g.
single big vessel vs vessel network) as suggested by
theoretical models15,16 and confirmed by multi-echo
experiments.2,8,17–22

We have shown already that exploratory data analysis
(EDA) methods such as fuzzy clustering23 (FCA) can
help to differentiate activation based on the amplitude of
functional signal changes as no explicit knowledge about
the amplitude of !S is necessary.18,21 FCA can help to
extract unknown signal changes for validation of vascular
models as, according to the BOLD models mentioned
above, the signal evolution during increasing TE might be

quite complex as it is depending on vessel size and
orientation, blood oxygenation, and intra- and extra-
vascular components. In this study we want to demon-
strate that this is possible without increasing
measurement time using a fast single-shot multi-echo
protocol and by statistical verification of the resulting
separation of activated regions. In addition, the compari-
son with a single-exponential model provides further
information for characterizing the underlying vascular
sources.

!"#$%&"'( ")* !$#+,*(

Data sets of eight healthy subjects were examined in this
study. Images were acquired with a multiple gradient-
echo, single-shot spiral imaging sequence implemented
on a 3 T Medspec S300 scanner (Bruker Medical,
Ettlingen, Germany). Five adjacent axial slices covering
the primary motor cortex were sampled at echo times
ranging from 5 to 180 ms with an echo spacing of 25 ms,
a repetition time (TR) of 3 s and a nominal spatial
resolution of 4 ! 4 ! 4 mm3. One task period for
functional imaging consisted of right-hand self-paced
finger-to-thumb movements performed for 30 s. Three
task periods were each preceded by a resting period
without a task. This block was followed by an additional
resting period at the end resulting in a total of 70 time
instances (see Fig. 1). Further technical details about data
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Average across active voxels in a figure tapping task at 3T

Barth et al NMR Biomed 2001, p484
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maps show that ME-ICA de-noising, without band pass filtering, re-
veals greater functional connectivity to gray matter clusters than
de-noising with standard noise regressors and band pass filtering.
Axial views of R2 maps for insula and hippocampus connectivity
show that the de-noising methods produce similar connectivity pat-
terns proximal to the seed, but ME-ICA de-noising exposes greater
long distance correlation. With ME-ICA de-noising, the insula shows
greater correlation to premotor and cingulate regions, hippocampus
shows greater correlation to premotor and sensory regions, and
brainstem shows greater correlation to frontal and parietal regions.
T-maps show that T-statistics are much higher for correlation with
ME-ICA de-noising than for correlation with standard de-noising
and band pass filtering.

Application to group level correlation maps

Group-level connectivity was evaluated using one-sample T-tests
of the individual-level correlation maps from standard and ME-ICA
based de-noising. Unthresholded group T-maps for hippocampus
and brainstem connectivity are shown in Fig. 8 for ME-ICA and stan-
dard de-noising. The group T-maps based on low κ de-noising
showed much higher T-statistics for connected regions than the
group T-maps based on standard de-noising. This indicated that (Z-
transformed) correlation coefficients based on ME-ICA were more
consistent across subjects than Z-transformed correlation coefficients
based on standard de-noising. Comparing Figs. 7 and 8 shows that for
maps based on ME-ICA de-noising, the regions of higher group T-

Fig. 4. For a representative subject, κ score vs (a) ICA rank (variance explained), and (b) rank by κ (κ spectrum). The κ spectrum, is an L-curve with two distinct regimes: high κ
(κ>20) and low κ (κb20), with low κ components on a linear tail. (c) κ spectra for 8 subjects. (d) First 12 ME-ICA components ranked by κ for a representative subject. Each
panel shows the time course and thresholded ΔR2* map. Components are annotated with κ-score, ρ-score, and ICA component number. All high κ components are clearly functional
networks.
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Fig. 5. For a representative subject, ρ score vs (a) ICA rank (variance explained), and (b) ρ rank (ρ spectrum). The ρ spectrum, like the k-spectrum, is an L-curve with two distinct
regimes: high ρ (appx. ρ>20) and a linear tail with low ρ (appx. ρb20). (c) ρ spectra for 8 subjects. (d) First 8 ME-ICA components ranked by ρ for a representative subject. Each
panel shows the time course and thresholded % ΔS0 map. Components are annotated with κ-score, ρ-score, and ICA component number. All high ρ components are clearly artifacts.

Fig. 6. Components with κ scores near κ thresholds are correlated to low-frequency RVT time courses. Components are annotated with κ score, ρ score, and ICA component number.
TE-dependence maps for ΔR2* and ΔS0 models show high ΔR2* localized to non-gray matter regions.
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ME-ICA is just one method for using 
multi-echo fMRI for denoising

+ It has been shown to empirically remove mul,ple noise sources
+ Poten,ally can retain difficult non-noise signals, like slow neural changes
- As an ICA method it is s,ll dependent on what is or isn’t in each ICA 

component
- Some noise signals, like respira,on, are BOLD weighted
- Op,mal algorithm is s,ll being developed
- S,ll rests on making models of what is or isn’t likely to be BOLD

Other approaches are in use or under development



Avoid analyses that are sensitive to 
biased noise

• When comparing populations with a clear head motion 
differences, use caution with methods that are really 
sensitive to head motion

• Global functional connectivity measures?
• When comparing populations with a neurovascular 
coupling differences, use caution with methods that 
are really sensitive to neurovascular coupling

• Over-reliance on the response peak magnitudes or response 
shape of a single region



Avoid analyses that are sensitive 
to biased noise

NPAIRS Data Analysis Framework
Strother et al NeuroImage 2002

Review: Churchill et al NeuroImage 2017

Also



Avoid analyses that are sensitive 
to biased noise

Poor test re-test reliability measures
Ellioe et al heps://www.biorxiv.org/content/10.1101/681700v1

Pre-print focuses on problems, but it could also be a basis for a framework for tes,ng what data/analysis factors maeer



More Resources
• OHBM Educa,on Course 2017

“Advanced Methods for Cleaning up fMRI Time-Series” 
heps://www.pathlms.com/ohbm/courses/5158/sec,ons/7788

• NeuroImage Special Issue. Volume 154, July 2017
Cleaning up the fMRI ,me series: Mi,ga,ng noise with advanced 
acquisi,on and correc,on strategies
heps://www.sciencedirect.com/journal/neuroimage/vol/154


