# The strategies and challenges of noise reduction or removal

### The least bad ways to remove noise

**Daniel Handwerker** 

NIH Summer Neuroimaging Course June 27, 2019

### Noise

Stuff that gets in the way of of measuring what we want to measure

Noise is defined by each study's goals One study's noise can be another study's signal

### Elements of the fMRI signal

Original "neuronal" time series



Model-based fMRI
Noise that isn't timelocked to a task is
annoying.

Connectivity-based fMRI
Common noise across
regions can contaminate
results

### Steps for dealing with noise

- Decide how to define signal and noise for a study
- Reduce noise during acquisition (last lecture)
- Attempt to remove noise from data

Avoid analyses that are sensitive to biased noise

### Philosophies of noise reduction methods

- 1. What we think data should look like Limited by our assumptions
- Based on external measures of noise Limited by how accurately those measures relate to fMRI noise
- 3. Based on physical properties of the data Limited by what those physical properties do or don't separate

In actual processing/denoising pipelines, these philosophies mix

### Removing what we think is noise

### Slow signal drift



Kopel, Sladky et al, NeuroImage 2019

### Is slow signal drift always noise?





Evans, Kundu et al Neurolmage 2015

### Removing what we think is noise

**Global Signal Regression Case Study** 

The human brain is intrinsically organized into dynamic, anticorrelated functional networks



Fox et al, PNAS 102, 2005

### Removing what we thought was is noise

Correlations to the Posterior Cingulate



Murphy et al Neuroimage 2009

Removing the global signal was supposed to remove non-neural fluctuations, but it also induces anti-correlations

Removing uncharacterized signals can cause uncharacterized population differences

# The global signal includes neural information Altered global brain signal in schizophrenia

Genevieve J. Yang<sup>a,b,c,1</sup>, John D. Murray<sup>d,1</sup>, Grega Repovs<sup>e</sup>, Michael W. Cole<sup>f</sup>, Aleksandar Savic<sup>a,c,g</sup>, Matthew F. Glasser<sup>h</sup>, Christopher Pittenger<sup>a,b,c,i</sup>, John H. Krystal<sup>a,c,j</sup>, Xiao-Jing Wang<sup>d,k</sup>, Godfrey D. Pearlson<sup>a,l,m</sup>, David C. Glahn<sup>a,m</sup>, and Alan Anticevic<sup>a,b,c,i,j,2</sup>

## Neural basis of global resting-state fMRI activity

Marieke L. Schölvinck<sup>a,b</sup>, Alexander Maier<sup>a</sup>, Frank Q. Ye<sup>c</sup>, Jeff H. Duyn<sup>d</sup>, and David A. Leopold<sup>a,c,1</sup>

## The perils of global signal regression for group comparisons: a case study of Autism Spectrum Disorders

Stephen J. Gotts<sup>1</sup>\*, Ziad S. Saad<sup>2</sup>, Hang Joon Jo<sup>2</sup>, Gregory L. Wallace<sup>1</sup>, Robert W. Cox<sup>2</sup> and Alex Martin<sup>1</sup>

Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI

Chi Wah Wong a,b,\*, Valur Olafsson a,b, Omer Tal a,b,c, Thomas T. Liu a,b,c \*

### Global Signal Regression as a normalization tool



10.1101/548644v1

### Global Signal Regression Case Study Summary

- Removing part of the data without examining what is or isn't being removed can have unanticipated consequences
  - The original goal of GSR was to remove global noise sources to make it easier to examine specific correlation changes between brain regions
  - GSR makes it nearly impossible to neuroscientificially interpret precisely this type of change
- If GSR is used as a global normalization tool where one cares about relations between a system of brain areas rather than individual connections, may be more benign
  - More work is needed to see if it's the best way normalize connectivity patterns across a population

### Removing what we think is noise: ICA



Data is decomposed into a set of spatially independent maps and a set of time courses

There are multiple methods for identifying relevant components Also multiple ways to model groups of volunteers

Li et al Computerized Medical Imaging and Graphics March 2009

### 5 brain networks using ICA

Visual



Visuospatial & Executive



**Sensory & Auditory** 



Dorsal "What" Pathway



Ventral "Where" Pathway



M. De Luca et al., NeuroImage 2006

Network names are based on knowledge from past research

### ICA denoising framework



Image from: Ludovica Griffanti's OHBM 2017 Talk on "How-to use ICA for denoising" "Advanced Methods for Cleaning up fMRI Time-Series" https://www.pathlms.com/ohbm/courses/5158/sections/7788

Sample ICA Components



**Sample ICA Components** 



**Sample ICA Components** 



### **Automated ICA Noise Removal**

| Approach                                  | Purpose                         | #features | Classifier type                                  | Training required? |
|-------------------------------------------|---------------------------------|-----------|--------------------------------------------------|--------------------|
| SOCK<br>[Bhaganagarapu et I.,<br>2013]    | multiple<br>sources of<br>noise | 4         | k-means clustering, 5 combinations of conditions | NO                 |
| FIX<br>[Salimi-Khorshidi et<br>al., 2014] | multiple<br>sources of<br>noise | >180      | Hierarchical fusion (kNN, decision tree, SVM)    | YES                |
| Sochat et al., 2014                       | multiple<br>sources of<br>noise | 246       | Sparse Logistic<br>Regression                    | YES                |
| AROMA [Pruim et al., 2015]                | Motion                          | 4         | Noise if exceeds at least one of 3 criteria      | NO                 |

**Temporal ICA** [Glasser et al 2018]

Different type of ICA & used in conjunction with FIX

### Removing what we think is noise

- + Possible with almost any fMRI data
- + Repeatedly shown to be useful & can be automated
- If you don't know what you're removing:
  - You don't know if you're removing something different across individuals or populations in important ways
  - You risk losing neural interpretability of results

## Noise reduction based on external measures of noise sources

#### **Nuisance Regressors**

- Respiration (rate, depth, and end tidal CO<sub>2</sub>)
- Heart Pulsation
- Head motion (Regression & Censoring)
- These measures can either be from purely external devices or validated as being from the data
  - Sagittal Sinus time series, Cerebrospinal fluid, white matter, ANATICOR
  - Machine Learning Methods



Image from: César Caballero Gaudes OHBM 2017 Talk on "Overview of noise and denoising methods in BOLD fMRI" "Advanced Methods for Cleaning up fMRI Time-Series" https://www.pathlms.com/ohbm/courses/5158/sections/7788













time (s)
Image from: César Caballero Gaudes OHBM 2017 Talk on "Overview of noise and denoising methods in BOLD fMRI"
"Advanced Methods for Cleaning up fMRI Time-Series" https://www.pathlms.com/ohbm/courses/5158/sections/7788

RETROICOR (Glover et al MRM2000)

Image from: César Caballero Gaudes OHBM 2017 Talk on "Overview of noise and denoising methods in BOLD fMRÍ" "Advanced Methods for Cleaning up fMRI Time-Series" https://www.pathlms.com/ohbm/courses/5158/sections/7788

 $\sin(2\phi_c)$ 

### Respiration\*Volume/Time (RVT)



Image from: César Caballero Gaudes OHBM 2017 Talk on "Overview of noise and denoising methods in BOLD fMRI" "Advanced Methods for Cleaning up fMRI Time-Series" https://www.pathlms.com/ohbm/courses/5158/sections/7788

At best respiration and cardiac pulsation adds noise to regional connections. At worst it obscures neural connections.



Slide from Rasmus Birn



Image from: César Caballero Gaudes OHBM 2017 Talk on "Overview of noise and denoising methods in BOLD fMRI" "Advanced Methods for Cleaning up fMRI Time-Series" https://www.pathlms.com/ohbm/courses/5158/sections/7788

### **Nuisance Regression Approaches**

- + Can be based on known external sources of noise
- + They clearly remove much of this noise
- Only as good as the models linking these external measures to fMRI fluctuations
- Where they fit in a preprocessing pipeline can be tricky
   Bright et al "Potential pitfalls when denoising resting state fMRI data using nuisance regression" NeuroImage 2017

Good general review of the many approaches: Caballero Gaudes et al "Methods for cleaning the BOLD fMRI signal" NeuroImage 2017

## Inter Subject Correlation

Assuming any signal fluctuations that are consistent across volunteers are unlikely to be noise

Simony, Honey, et al, Nature Communications 2016



### Based on the physical properties of the data

- Distortion correction through field mapping (Not covering)
- Calibration scans (Mentioned in the last lecture)
- Multi-echo fMRI approaches

### Using multi-echo fMRI to increase confidence that responses are BOLD

Average across active voxels in a figure tapping task at 3T



combined time and echo time





#### **TIMESERIES OF INTEREST**

ICA Representative Timeseries



$$\kappa = \sum_{AllVoxels} z_{v}^{2} F_{v,R_{2}^{*}}$$

$$\rho = \sum_{AllVoxels} z_{v}^{2} F_{v,S_{o}}$$

Карра 
$$(\kappa) = 210$$

Rho (
$$\rho$$
) = 10





#### TIMESERIES OF INTEREST

ICA Representative Timeseries



Kappa (
$$\kappa$$
) = 32

Rho (
$$\rho$$
) = 81



d  $\Delta R_2^*$  maps of top  $\kappa$  ranked components for a representative subject





#### d $\Delta S_0$ maps of top $\rho\text{-ranked}$ components for a representative subject



## ME-ICA is just one method for using multi-echo fMRI for denoising

- + It has been shown to empirically remove multiple noise sources
- + Potentially can retain difficult non-noise signals, like slow neural changes
- As an ICA method it is still dependent on what is or isn't in each ICA component
- Some noise signals, like respiration, are BOLD weighted
- Optimal algorithm is still being developed
- Still rests on making models of what is or isn't likely to be BOLD

Other approaches are in use or under development

## Avoid analyses that are sensitive to biased noise

- When comparing populations with a clear head motion differences, use caution with methods that are really sensitive to head motion
  - Global functional connectivity measures?
- When comparing populations with a neurovascular coupling differences, use caution with methods that are really sensitive to neurovascular coupling
  - Over-reliance on the response peak magnitudes or response shape of a single region

## Avoid analyses that are sensitive to biased noise

NPAIRS Data Analysis Framework Strother et al Neurolmage 2002

Review: Churchill et al NeuroImage 2017





## Avoid analyses that are sensitive to biased noise



Poor test re-test reliability measures
Elliott et al https://www.biorxiv.org/content/10.1101/681700v1

Pre-print focuses on problems, but it could also be a basis for a framework for testing what data/analysis factors matter

### **More Resources**

- OHBM Education Course 2017
   "Advanced Methods for Cleaning up fMRI Time-Series"
   https://www.pathlms.com/ohbm/courses/5158/sections/7788
- NeuroImage Special Issue. Volume 154, July 2017
   Cleaning up the fMRI time series: Mitigating noise with advanced acquisition and correction strategies
   https://www.sciencedirect.com/journal/neuroimage/vol/154