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Noise

Stuff that gets in the way of of
measuring what we want to measure

Noise is defined by each study’s goals
One study’'s noise can be another study’s signal



fMRI Signal Change

Elements of the fMRI signal

Original “neuronal”time series

=10 Wiy [ITRUSA Model-based fMRI

Noise that isn’t time-
locked to a task is
annoying.

Connectivity-based fMRI
Common noise across
regions can contaminate
results

Seconds



Steps for dealing with noise

* Decide how to define signal and noise for a study

* Reduce noise during acquisition (last lecture)

» Attempt to remove noise from data

* Avoid analyses that are sensitive to biased noise



Philosophies of noise reduction methods

1. What we think data should look like
Limited by our assumptions

2. Based on external measures of noise
Limited by how accurately those measures relate to fMRI noise

3. Based on physical properties of the data
Limited by what those physical properties do or don’t separate

In actual processing/denoising pipelines, these philosophies mix



Removing what we think is noise

Slow signal drift

Kopel, Sladky et al, Neurolmage 2019




Is slow signal drift always noise?

Multi-echo: Denoised
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Removing what we think is noise
Global Signal Regression Case Study

The human brain is intrinsically organized into
dynamic, anticorrelated functional networks

Fox et al, PNAS 102, 2005



Removing what we thought was is noise

Correlations to the Posterior Cingulate
Correlation with PCC ROl - With Global Signal Regression

Murphy et al Neuroimage 2009
Removing the global signal was supposed to remove non-neural

fluctuations, but it also induces anti-correlations
Removing uncharacterized signals can cause
uncharacterized population differences



The global signal includes neural information
Altered global brain signal in schizophrenia

Genevieve J. Yang®?<1, John D. Murray®, Grega Repovs®, Michael W. Colef, Aleksandar Savic®“9, Matthew F. Glasser",
Christopher Pittengera'_b_"", John H. Krystal®“, Xiao-Jing Wang®¥, Godfrey D. Pearlson®"™, David C. Glahn®™,
and Alan Anticevic®? "2

Neural basis of global resting-state fMRI activity

Marieke L. Scholvinck®®, Alexander Maier?, Frank Q. Ye¢, Jeff H. Duyn®, and David A. Leopold®<’

The perils of global signal regression for group
comparisons: a case study of Autism Spectrum Disorders

Stephen J. Gotts'*, Ziad S. Saad?, Hang Joon Jo?, Gregory L. Wallace', Robert W. Cox? and
Alex Martin'

Anti-correlated networks, global signal regression, and the effects of caffeine in
resting-state functional MRI

Chi Wah Wong *"* Valur Olafsson *°, Omer Tal #"¢, Thomas T. Liu *>¢ *



Global Slgnal Regressmn as a normalization tool

Prediction of Fluid Intelligence using Whole Brain FC
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Similar observation: Li et al
www.biorxiv.org/content/
10.1101/548644v1

Noise removal interacts with analysis method choices




Global Signal Regression Case Study Summary

* Removing part of the data without examining what is or isn't
being removed can have unanticipated consequences

* The original goal of GSR was to remove global noise sources to make
it easier to examine specific correlation changes between brain regions

 GSR makes it nearly impossible to neuroscientificially interpret
precisely this type of change

* If GSR is used as a global normalization tool where one cares
about relations between a system of brain areas rather than
individual connections, may be more benign

* More work is needed to see if it's the best way normalize connectivity
patterns across a population



Removing what we think is noise: ICA
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5 brain networks using ICA

Dorsal “What” Pathway

M. De Luca et al., Neurolmage 2006

Network names are based on
knowledge from past research



ICA denoising framework

fMRI dataset (after basic preprocessing)

) ICA algorithm

ICs (time series + spatial maps)

2) ICA classification
(manual, semi-automated,

automated)

Signal ICs t Noise ICs
3a) non-aggressive 3b) aggressive
cleaning 4 cleaning

Denoised fMRI| dataset

Image from: Ludovica Griffanti’s OHBM 2017 Talk on “How-to use ICA for denoising”
“Advanced Methods for Cleaning up fMRI Time-Series” https://www.pathlms.com/ohbm/courses/5158/sections/7788

|CA-based de-noising



Sample ICA Components
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Sample ICA Components

melodic_IC [component 46)

Griffanti et al Neurolmage 2017



Sample ICA Components
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Griffanti et al Neurolmage 2017



Automated ICA Noise Removal

SOCK multiple k-means clustering, 5
[Bhaganagarapu et |, ~ sources of 4 combinations of NO
2013] noise conditions
FIX multiple Hierarchical fusion
[Salimi-Khorshidi et~ sources of >80 (kNN, decision tree, YES
al., 2014] noise SVM)
multiple -
Sochat et al., 2014 sources of 246 Sparse LO,gIStIC YES
, Regression
noise
Noise if exceeds at
AROMA Motion 4 o NO
[Pruim et al., 2015] least one of 3 criteria
Temporal ICA

[Glasser et al 2018] Different type of ICA & used in conjunction with FIX

Image from: Ludovica Griffanti’s OHBM 2017 Talk on “How-to use ICA for denoising”
“Advanced Methods for Cleaning up fMRI Time-Series” https://www.pathlms.com/ohbm/courses/5158/sections/7788



Removing what we think is noise

+ Possible with almost any fMRI data

+ Repeatedly shown to be useful & can be
automated

- If you don’t know what you're removing:

* You don't know if you're removing something
different across individuals or populations in
important ways

* You risk losing neural interpretability of results



Noise reduction based on
external measures of noise sources

Nuisance Regressors
* Respiration (rate, depth, and end tidal CO,)
* Heart Pulsation
 Head motion (Regression & Censoring)

* These measures can either be from purely external devices or validated as
being from the data

e Sagittal Sinus time series, Cerebrospinal fluid, white matter, ANATICOR
* Machine Learning Methods
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Image from: César Caballero Gaudes OHBM 2017 Talk on “Overview of noise and denoising methods in BOLD fMRI”
“Advanced Methods for Cleaning up fMRI Time-Series” https://www.pathlms.com/ohbm/courses/5158/sections/7788



MR images

Pulse Oximeter signal (or ECG signal)

time (s
Image from: César Caballero Gaudes OHBM 2017 Talk on “Overview of noise and denoising(m)ethods in BOLD fMRI”

“Advanced Methods for Cleaning up fMRI Time-Series” https://www.pathlms.com/ohbm/courses/5158/sections/7788



MR images Figures courtesy of Rasmus Birn (University of Wisconsin-Madison)
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Image from: César Caballero Gaudes OHBM 2017 Talk on “Overview of noise and denoising methods in BOLD fMRI
“Advanced Methods for Cleaning up fMRI Time-Series” https://www.pathlms.com/ohbm/courses/5158/sections/7788



Respiration*Volume/Time (RVT)
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Image from: César Caballero Gaudes OHBM 2017 Talk on “Overview of noise and denoising methods in BOLD fMRI”
“Advanced Methods for Cleaning up fMRI Time-Series” https://www.pathlms.com/ohbm/courses/5158/sections/7788



At best respiration and cardiac pulsation adds
noise to regional connections. At worst it
obscures neural connections.

Respiration changes using RVT Correlation (of PCC) at Rest

12|

Group (n=10)

RVT = measuring and tracing (Respiration Volume)/time and
removing it from the time series

Slide from Rasmus Birn



Average signal over
WNMe voxels inside 20
mm radius

Voxel-dependent
nuisance regressors
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LOCALIZED HARDWARE INSTABILITIES

Jo et al. Neurolmage 2010

Image from: César Caballero Gaudes OHBM 2017 Talk on “Overview of noise and denoising methods in BOLD fMRI”
“Advanced Methods for Cleaning up fMRI Time-Series” https://www.pathlms.com/ohbm/courses/5158/sections/7788



Nuisance Regression Approaches

+ Can be based on known external sources of noise
+ They clearly remove much of this noise

- Only as good as the models linking these external measures to fMRI
fluctuations

- Where they fit in a preprocessing pipeline can be tricky

Bright et al “Potential pitfalls when denoising resting state fMRI data using nuisance
regression” Neurolmage 2017

Good general review of the many approaches:
Caballero Gaudes et al “Methods for cleaning the BOLD fMRI signal” Neurolmage 2017
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Based on the physical properties of the data

e Distortion correction through field mapping (Not covering)
e Calibration scans (Mentioned in the last lecture)
* Multi-echo fMRI approaches



Using multi-echo fMRI to increase
confidence that responses are BOLD

Average across active voxels in a figure tapping task at 3T
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ME-ICA Denoising
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ME-ICA Denoising
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ME-ICA Denoising
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a p vs. ICA rank
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ME-ICA is just one method for using
multi-echo fMRI for denoising

+ It has been shown to empirically remove multiple noise sources
+ Potentially can retain difficult non-noise signals, like slow neural changes

- As an ICA method it is still dependent on what is or isn’t in each ICA
component

- Some noise signals, like respiration, are BOLD weighted
- Optimal algorithm is still being developed
- Still rests on making models of what is or isn’t likely to be BOLD

Other approaches are in use or under development



Avoid analyses that are sensitive to

biased noise
* \When comparing populations with a clear head motion
differences, use caution with methods that are really
sensitive to head motion
 Global functional connectivity measures?

* \When comparing populations with a neurovascular
coupling differences, use caution with methods that

are really sensitive to neurovascular coupling

» Over-reliance on the response peak magnitudes or response
shape of a single region



Avoid analyses that are sensitive
to biased noise

Training Set

Model
Estimation
Model
Parameters

NPAIRS Data Analysis Framework
Strother et al Neurolmage 2002

Review: Churchill et al Neurolmage 2017

Nipype:
Neuroimaging in Python
Pipelines and Interfaces

| [0

Predicted “Design” Matrix

Prediction Error Estimate




Avoid analyses that are sensitive
to biased noise

Human Connectome Project Dunedin Study
1.007 1.00 1
ICC Range
Excellent (>0.75)
Good (0.6-0.75)
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Poor test re-test reliability measures
Elliott et al https://www.biorxiv.org/content/10.1101/681700v1

Pre-print focuses on problems, but it could also be a basis for a framework for testing what data/analysis factors matter



More Resources

e OHBM Education Course 2017
“Advanced Methods for Cleaning up fMRI Time-Series”
https://www.pathlms.com/ohbm/courses/5158/sections/7788

* Neurolmage Special Issue. Volume 154, July 2017
Cleaning up the fMRI time series: Mitigating noise with advanced
acquisition and correction strategies
https://www.sciencedirect.com/journal/neuroimage/vol/154



