# Do We Have to Deal with Multiple Comparisons in Neuroimaging?

# Gang Chen

Scientific and Statistical Computing Core National Institute of Mental Health National Institutes of Health, USA



### Preview

Issues with current correction for multiplicity

### • Two toy examples

- NBA players
- Kidney cancer

### • Application: region-based analysis (RBA)

• Program in AFNI: *RBA* 

# Other applications

- Matrix-based analysis (program in AFNI: MBA)
- $_{\circ}~$  Region-based inter-subject correlation (ISC) analysis
- Gray matter connectivity analysis
- $_{\circ}~$  Others cases involving multiplicity

# Multiplicity in Neuroimaging • 100,000 spatial units

# •100,000 models: MUA

Assumption of spatial independence
Sharing no information

# Corrections

- Multiplicity + spatial relatedness
- $\circ$  Problems
  - Heavy penalty: information waste
  - Other issues

# Null Hypothesis Significance Testing

# • Straw man H<sub>o</sub>: null hypothesis

Witch hunt: Don Quixote's windmills

- **Type I error** =  $P(data | H_o)$  = false positive = *p*-value
  - Surprise or weirdness of data: 0.05
  - No effect until shown with small *p*-value
  - Innocent until proven guilty
- **<u>Type II error</u>** =  $P(\text{accept } H_0 \mid H_1)$  = false negative



```
HoTrueHoFalseReject HoType I Error<br/>(false positive)CorrectFail to Reject HoCorrectType II Error<br/>(false negative)
```

# **Issues: NHST**

# • Arbitrary dichotomy

Binary or discrete: innocent vs guilty

Unrealistic: "activated" vs "not activated"?

# • Vulnerable to misconceptions

- ∘ p (weirdness |  $H_o$ ) ≠ p ( $H_o$  | data)
- Absence of evidence ≠ evidence of absence

# Vulnerable to data manipulations

• Statistical evidence changes: whole brain, gray matter, region

# Inflated effect estimates

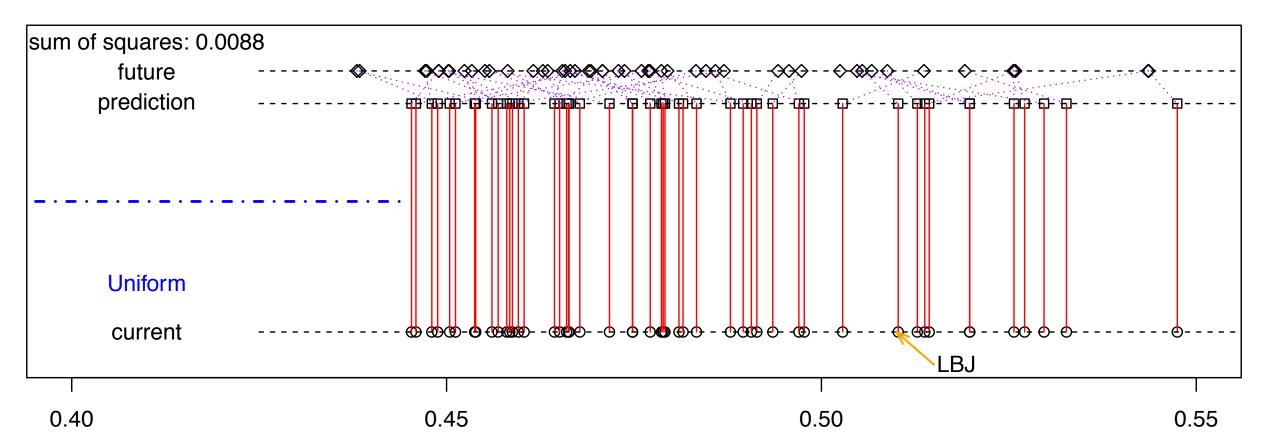
• Type M (magnitude) error: biasedness

### **Issues: NHST**

- Disregarding effect size
- Uncertainty unavailable • No standard deviation at voxel or cluster level
- Lack of spatial specificity • Locating regions per peak voxel
- Penalizing small regions

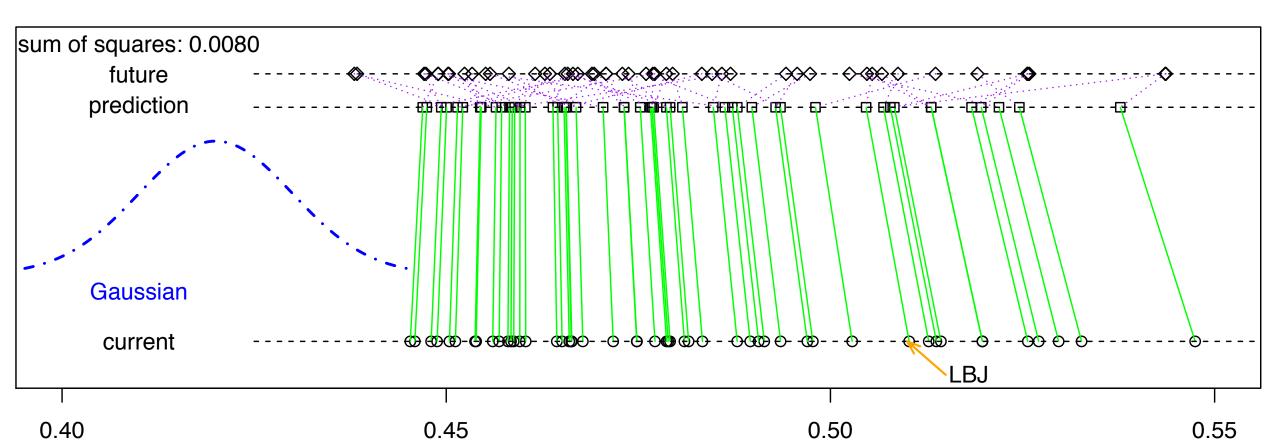
### • NBA players

- $\circ$  LeBron James field goals percentage: 51%
- Prediction: performance during next season?
- One vs. top 50 players: **no pooling** vs complete pooling

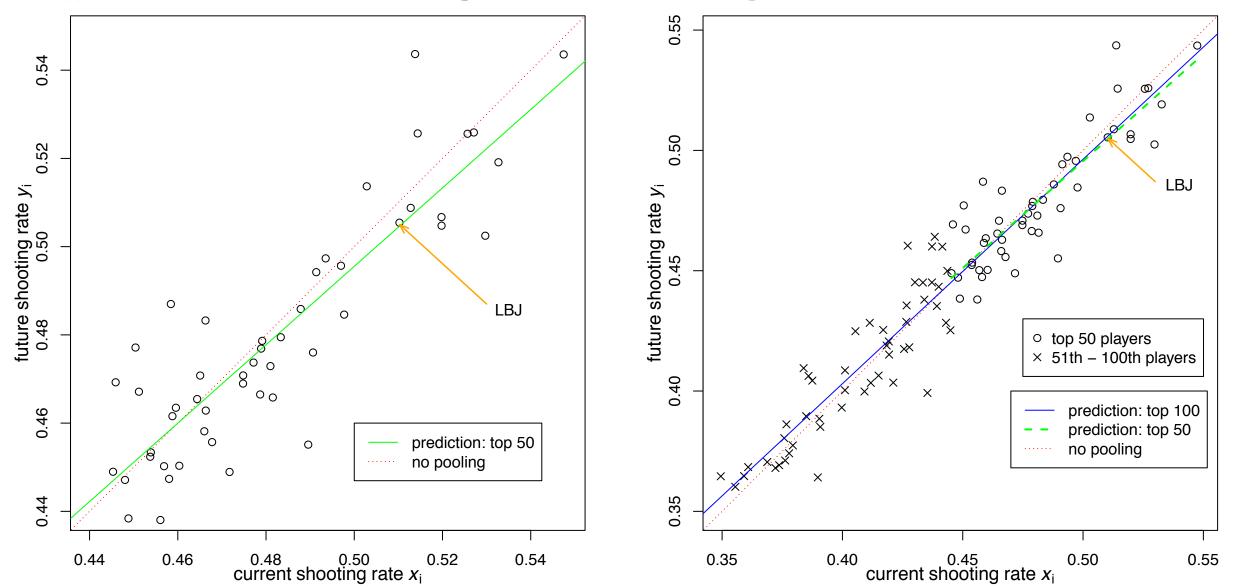


### • NBA players

- $_{\odot}~$  LeBron James field goals percentage during 2019: 51%
- Prediction: performance during 2020?
- One vs. top 50 players: **partial pooling** (regression to the mean)



• Top 50 vs. 100 NBA players: adaptivity



• Kidney cancer distribution among U. S. counties

#### **Highest rate**

lowest rate



# Morals from kidney cancer data

### • Multiplicity problem: > 3000 counties!

- Divide *p*-value by number of counties?
- Borrow idea from neuroimaging: leverage geographical relatedness?

### • What can we learn from the example? Food for thought

- Care about strawman  $H_0$  (zero kidney rate), false positives, *p*-value?
- Trust individual county-wise estimates? Unbiased! BLUE
  - **Incorrect sign errors** (type S): some counties really have higher kidney cancer rate than others?
  - **Incorrect magnitude** (type M): some counties really have higher/lower cancer rate?
- Would correction for multiplicity help at all?
  - Useless in controlling for type S and M errors

#### • How can we do better?

- Information share: across spatial elements
- **Research hypothesis:** *P* ( effect > o | data)

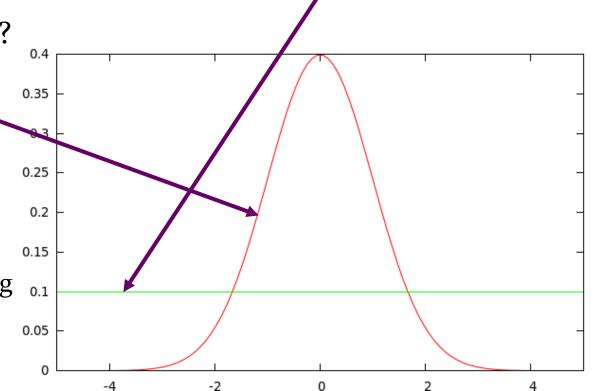
# What do we know about spatial elements?

### • Element-wise modeling

- $_{\circ}~$  Pretend full ignorance: fully trust the data
- Uniform distribution: each element equally likely to have any value in  $(-\infty, +\infty)$
- Similar for variances: variances can be negative in ANOVA

### • One crucial prior for spatial elements

- Reasonable to assume Gaussian distribution?
- Gaussian assumption adopted everywhere!
  - Subjects, residuals across TRs
- How can Gaussian assumption help?
  - Loosely constraining elements
  - No full trust for individual estimates
  - Information sharing: shrinkage or partial pooling
  - Controlling type S and M errors



### Short summary: what we intend to achieve

### • Abandon strawman and *p*-value

• Directly focus on research interest P(effect > 0 | data) vs. P(data | effect = 0)

### • Build one model

- Incorporate all elements into a multilevel or hierarchical structure
- Loosely constrain elements: leverage prior knowledge
- Achieve higher modeling efficiency: **no more multiplicity**!
- $_{\circ}~$  Validate the model by comparing with potential competitors
- Be conservative on effect estimates by controlling type S and M errors: **biased?**
- Always be mindful of uncertainties: strength of evidence (no proof)
- Less vulnerable to data manipulations: whole brain, gray matter, regions, ...

### Avoid dichotomous decisions

- Report full results if possible
- $_{\circ}~$  Highlight instead of hide based on gradient of evidence

# **Application: region-based analysis**

#### • Dataset

- Subjects: *n* = 124 children; resting-state data (Xiao et al., 2019)
- Individual subjects: seed-based correlation for each subject
  - 3D correlation between seed and whole brain ("functional connectivity")
- Explanatory variable (behavior data): Theory of Mind Index  $x_i$

# • Voxel-wise group analysis: GLMs

- Focus: association between *x* and seed-based correlation (*z*-score)
- Pretense: voxels unrelated equal likelihood within  $(-\infty, \infty)$
- Information waste!
- GLMs: mass univariate multiplicity m = 100,000 voxels  $\rightarrow$ 100,000 models

Xiao et al., 2019. <u>Neuroimage</u> 184:707-716

Uniform distribution: total freedom - each parameter on its own

 $\epsilon_1$ 

**E**2

1st voxel:  $\boldsymbol{y}_1 = a_1 + b_1 \boldsymbol{x} + b_1 \boldsymbol{x}_1$ 

2nd voxel:  $\boldsymbol{y}_2 = a_2 + b_2 \boldsymbol{x}$ 

mth voxel:  $\boldsymbol{y}_m = a_m$ 

# **GLMs: dealing with multiplicity!**

#### • Voxel-based analysis: GLMs

- Penalty time for pretense: multiple testing (m = 100,000), magic 0.05
- Show time for various correction methods
  - Voxel-wise *p*, FWE, FDR, spatial smoothness, clusters, ...
  - Simulations, random field theory, permutations, ...
  - How would dataset turn out under GLM? 4 lucky clusters manage to survive

| voxel $p$ | cluster threshold | surviving ROIs | ROIs                          |
|-----------|-------------------|----------------|-------------------------------|
| 0.001     | 28                | 2              | R PCC, PCC/PrC                |
| 0.005     | 66                | 4              | R PCC, PCC/PrC., L IPL, L TPJ |
| 0.01      | 106               | 4              | R PCC, PCC/PrC., L IPL, L TPJ |
| 0.05      | 467               | 4              | R PCC, PCC/PrC., L IPL, L TPJ |

# Switching from voxels to ROIs: still GLMs

#### • Region-wise analysis : GLMs

• Focus: association between and seed-based correlation (*z*-score)

Pretense: ROIs unrelated

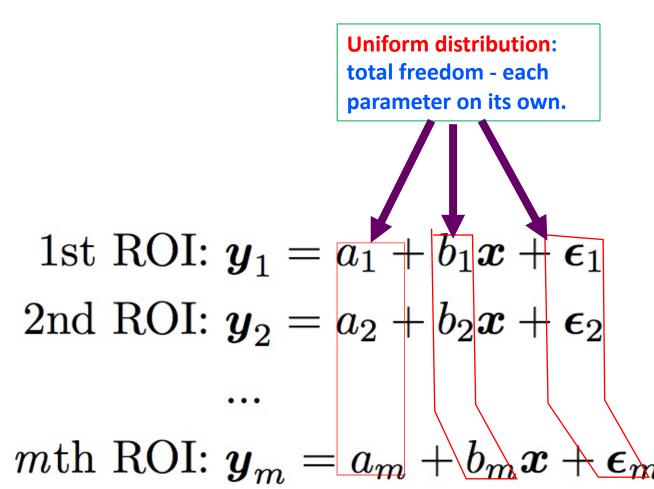
• GLMs: mass univariate

 $m = 21 \text{ ROIs} \rightarrow$ 

21 models

 Penalty time for pretense: multiple testing – what to do?

- Bonferroni? Unbearable
- What else?

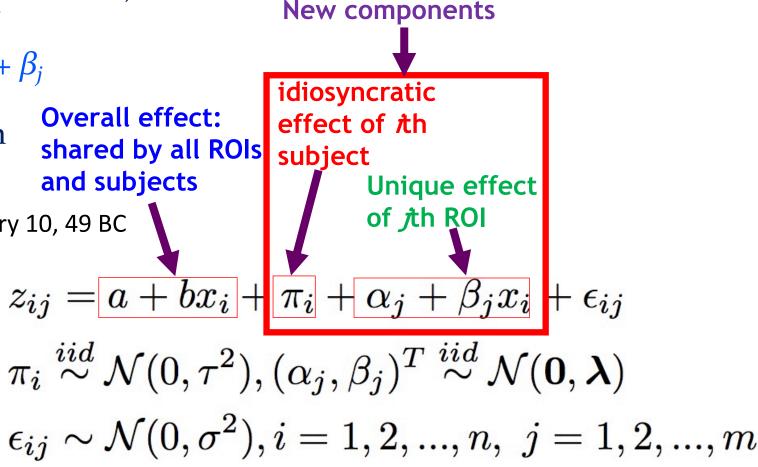


# Switching from GLMs to LME

#### • **Region-wise analysis : Linear Mixed-Effects (LME) model**

- **One** model integrates all regions
- ROIs loosely constrained instead of being unrelated
  - Gaussian distribution: Is it far-fetched or subjective?
  - Similar to cross-subject variability
- Goal: effect of interest-  $a + \alpha_j$ ,  $b + \beta_j$
- Differentiation: fixed vs. random
  - Fixed: **epistemic** uncertainty
  - Random: **aleatoric** uncertainty
  - Julius Caesar: Alea iacta est. January 10, 49 BC
- What can we get out of LME?
  - Conventional framework
  - Estimates for fixed effects
  - Variances for random effects

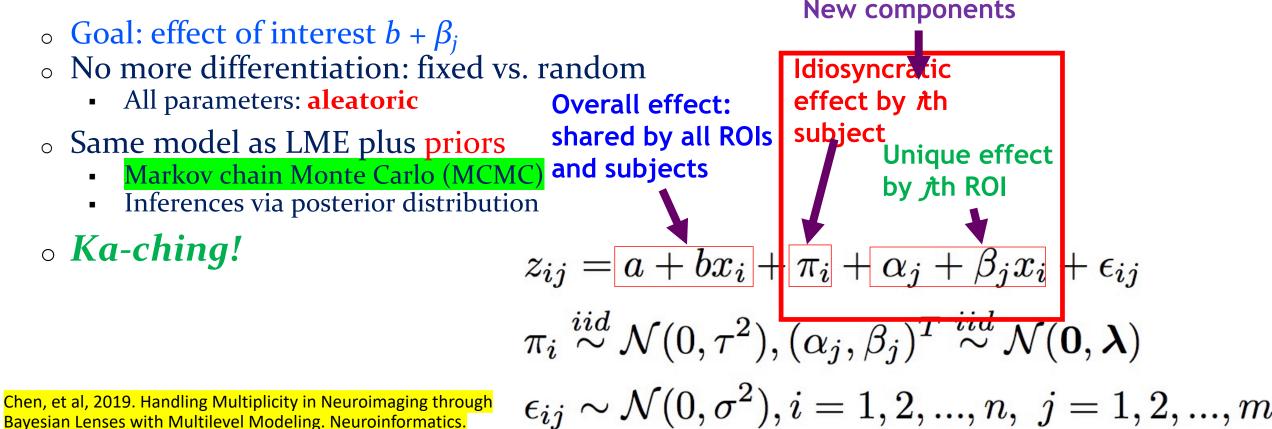
#### • Dead end!



# Switching from GLMs to BML

#### • Region-wise analysis : Bayesian multilevel (BML) model

- **One** model integrates all regions: basically same as LME
- ROIs loosely constrained instead of being unrelated
  - Gaussian distribution: Is it far-fetched or subjective?
  - Similar to cross-subject variability

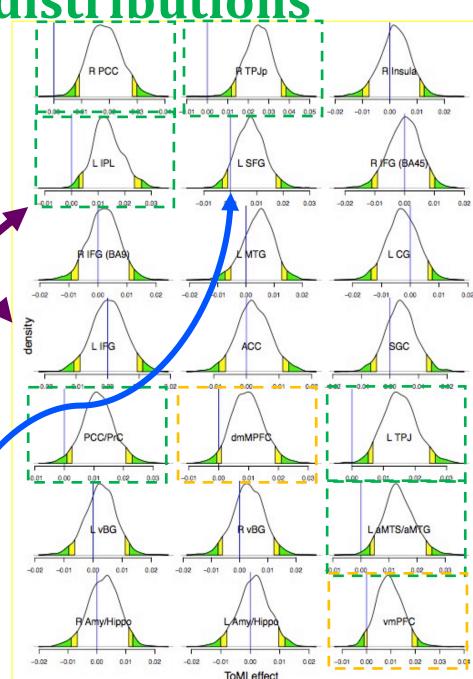


# Inferences from BML: full distributions

Highlight, not hide

- Region-based BML: 21 ROIs
- Full report with richer information: posterior distributions for each ROI
  - No dichotomization
  - No results hiding
  - No discrimination against small regions
  - No ambiguities about spatial specificity
  - No inconvenient interpretation of confidence interval
  - Evidence for each ROI: *P* (effect > 0 | data)
- <u>9 ROIs</u> with strong evidence of effect compared to
  - Region-wise GLM with Bonferroni correction
  - Voxel-wise GLM at cluster level: 2 clusters

How about Left SFG?

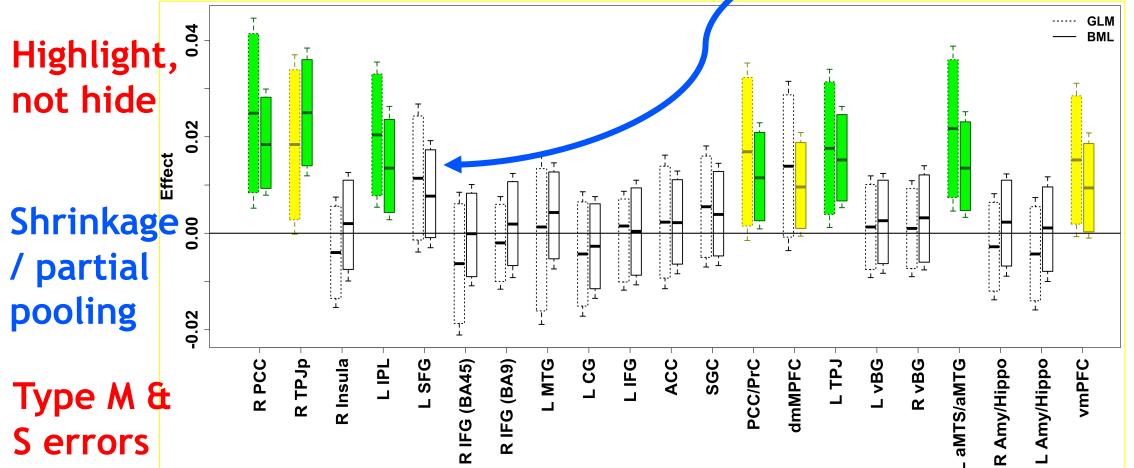


## Inferences from BML: uncertainty

- ROI-based BML: 21 ROIs
- Full report with bar graph uncertainty intervals
  - O Nothing hidden under sea level

How about Left SFG?

• 8 ROIs with strong evidence for effect of interest



### **BML**: model validations

(c) GLM cross-validation: Q-Q plot (uniform)

#### Cross-validation

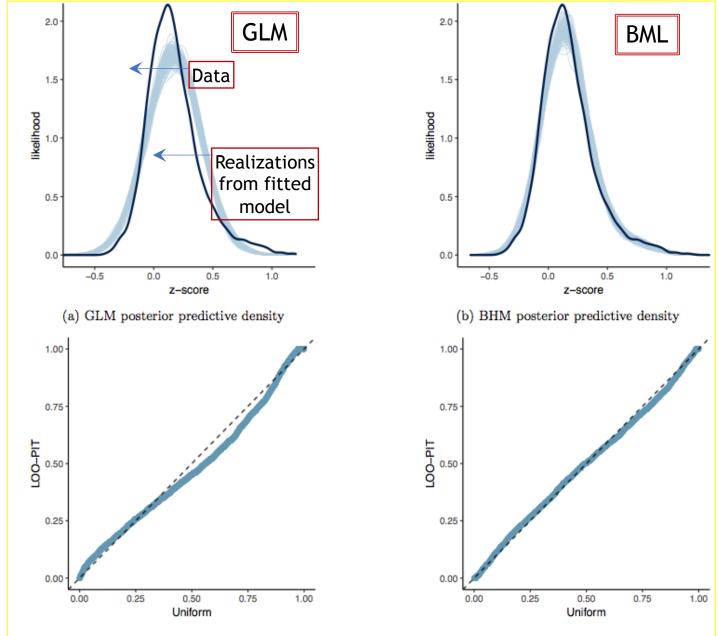
Leave-one-out information
 criterion (LOOIC)
 Cross-validation

|           | LOOIC    | SE    |
|-----------|----------|-------|
| GLM       | -300.39  | 98.25 |
| BML       | -2247.06 | 86.42 |
| GLM - BML | 1946.67  | 96.35 |
|           |          |       |

Posterior predictive checking

#### • Effects of BML

- Regularizing ROIs: don't fully trust individual ROI data
- Sacrificing fit at each ROI; achieving better overall fit

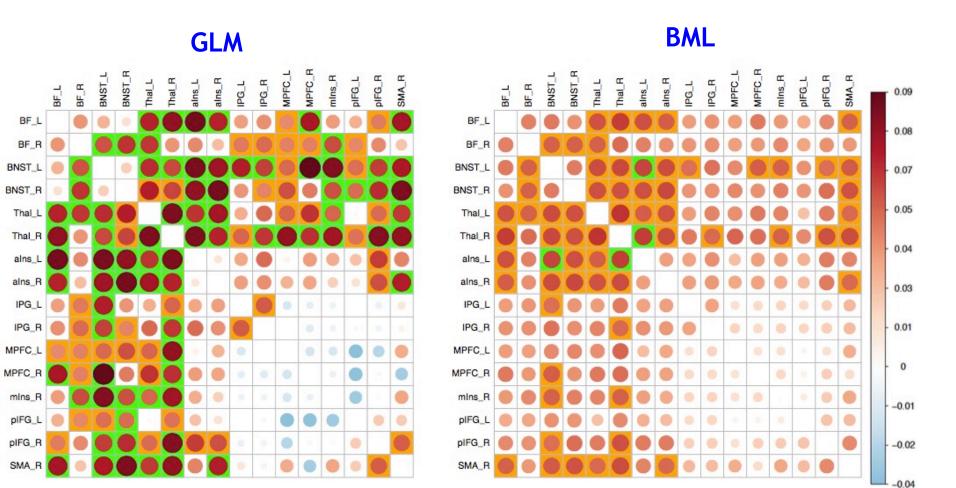


(d) BHM cross-validation: Q-Q plot (uniform)

# **Other applications**

#### • Matrix-based analysis

o 63 RPs identified by GLMs with *p* of 0.05
none survived after correction with NBS via permutations
o 33 RPs with strong evidence under BML



# Summary

Issues with current correction for multiplicity

# • Two toy examples

- NBA players
- Kidney cancer

### • Application: region-based analysis (RBA)

• Program in AFNI: *RBA* 

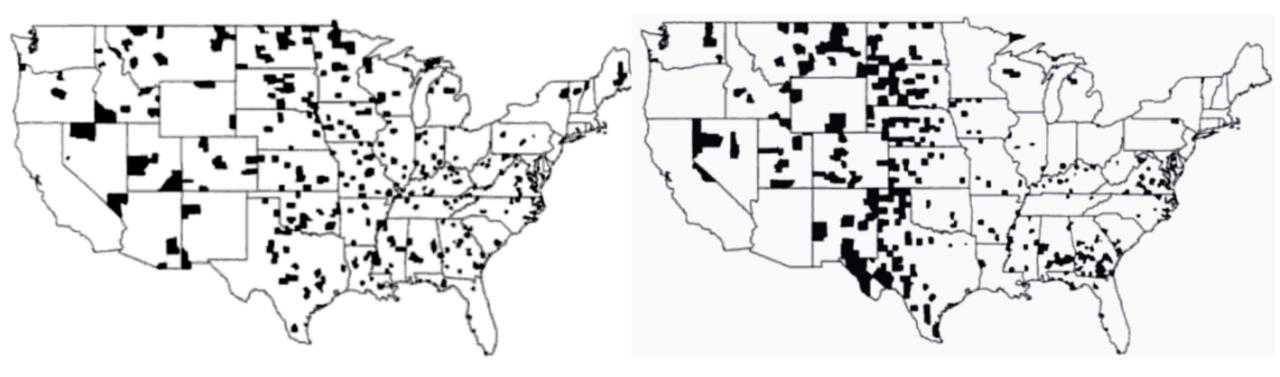
# Other applications

- Matrix-based analysis (program in AFNI: MBA)
- Region-based inter-subject correlation (ISC) analysis
- Gray matter connectivity analysis
- $_{\circ}~$  Others cases involving multiplicity

# Keep Kidney Cancer in Mind! • Kidney cancer distribution among counties

**Highest rate** 

lowest rate



Calibration

# Acknowledgements

- Paul-Christian Bürkner (Department of Psychology, University of Münster)
- Andrew Gelman (Columbia University), Stan Development Team, R Foundation
- Yaqiong Xiao, Elizabeth Redcay, Tracy Riggins, Fengji Geng
- Luiz Pessoa, Joshua Kinnison (Depart of Psychology, University of Maryland)
- Zhihao Li (School of Psychology and Sociology, Shenzhen University, China)
   Lijun Yin (Department of Psychology, Sun Yat-sen University, China)
- Emily Finn, Daniel Handwerker (SFIM/NIMH, National Institutes of Health)
- Paul A. Taylor, Daniel R. Glen, Justin K. Rajendra, Richard C. Reynolds, Robert W. Cox (SSCC/NIMH, National Institutes of Health)