Do We Have to Deal with Multiple Comparisons in Neuroimaging?

Gang Chen

Scientific and Statistical Computing Core National Institute of Mental Health National Institutes of Health, USA

Preview

Issues with current correction for multiplicity

• Two toy examples

- NBA players
- Kidney cancer

• Application: region-based analysis (RBA)

• Program in AFNI: *RBA*

Other applications

- Matrix-based analysis (program in AFNI: MBA)
- $_{\circ}~$ Region-based inter-subject correlation (ISC) analysis
- Gray matter connectivity analysis
- $_{\circ}~$ Others cases involving multiplicity

Multiplicity in Neuroimaging • 100,000 spatial units

•100,000 models: MUA

Assumption of spatial independence
Sharing no information

Corrections

- Multiplicity + spatial relatedness
- \circ Problems
 - Heavy penalty: information waste
 - Other issues

Null Hypothesis Significance Testing

• Straw man H_o: null hypothesis

Witch hunt: Don Quixote's windmills

- **Type I error** = $P(data | H_o)$ = false positive = *p*-value
 - Surprise or weirdness of data: 0.05
 - No effect until shown with small *p*-value
 - Innocent until proven guilty
- **<u>Type II error</u>** = $P(\text{accept } H_0 \mid H_1)$ = false negative


```
HoTrueHoFalseReject HoType I Error<br/>(false positive)CorrectFail to Reject HoCorrectType II Error<br/>(false negative)
```

Issues: NHST

• Arbitrary dichotomy

Binary or discrete: innocent vs guilty

Unrealistic: "activated" vs "not activated"?

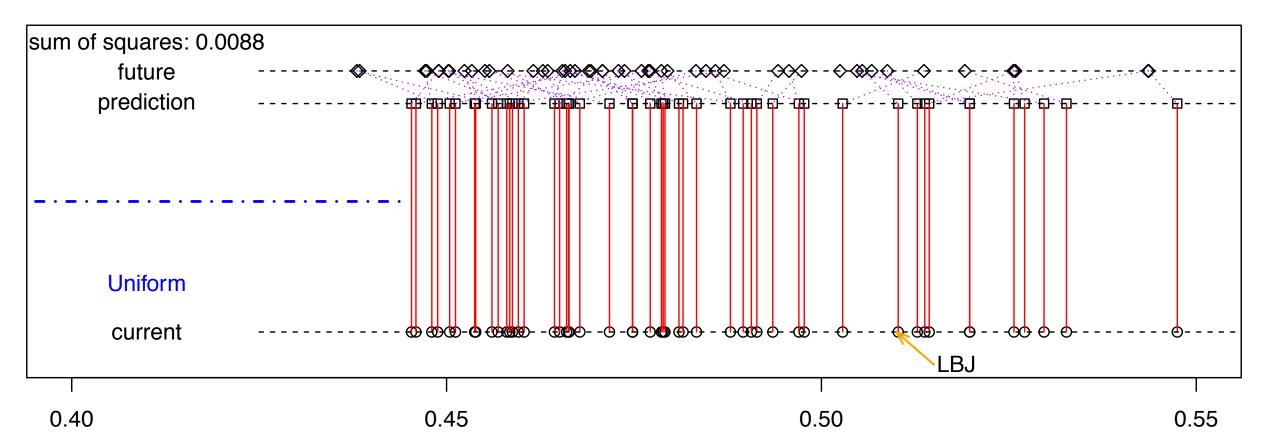
• Vulnerable to misconceptions

- ∘ p (weirdness | H_o) ≠ p (H_o | data)
- Absence of evidence ≠ evidence of absence

Vulnerable to data manipulations

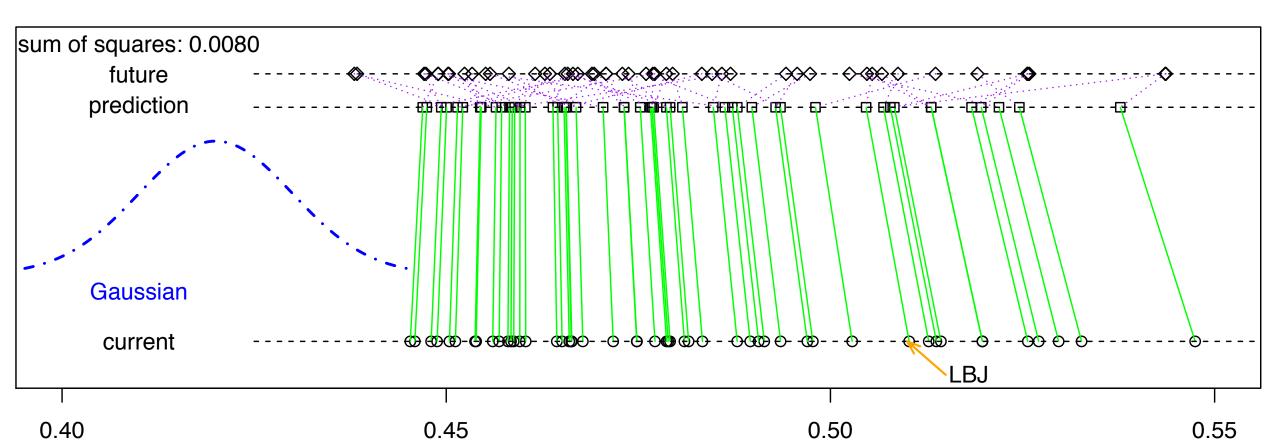
• Statistical evidence changes: whole brain, gray matter, region

Inflated effect estimates

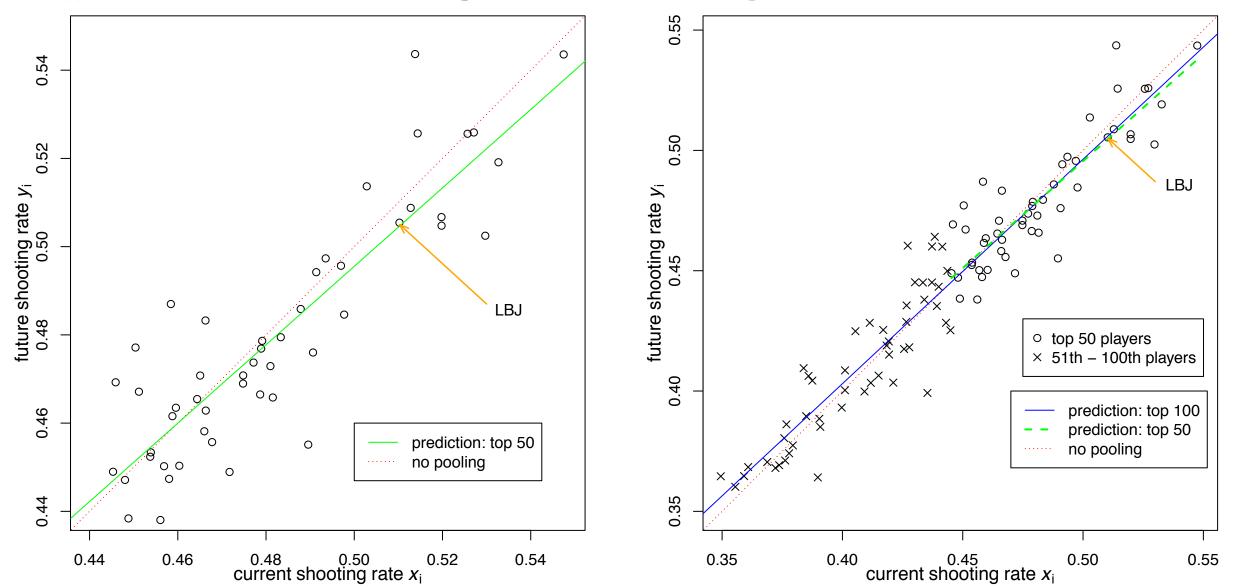

• Type M (magnitude) error: biasedness

Issues: NHST

- Disregarding effect size
- Uncertainty unavailable • No standard deviation at voxel or cluster level
- Lack of spatial specificity • Locating regions per peak voxel
- Penalizing small regions


• NBA players

- \circ LeBron James field goals percentage: 51%
- Prediction: performance during next season?
- One vs. top 50 players: **no pooling** vs complete pooling



• NBA players

- $_{\odot}~$ LeBron James field goals percentage during 2019: 51%
- Prediction: performance during 2020?
- One vs. top 50 players: **partial pooling** (regression to the mean)

• Top 50 vs. 100 NBA players: adaptivity

• Kidney cancer distribution among U. S. counties

Highest rate

lowest rate

Morals from kidney cancer data

• Multiplicity problem: > 3000 counties!

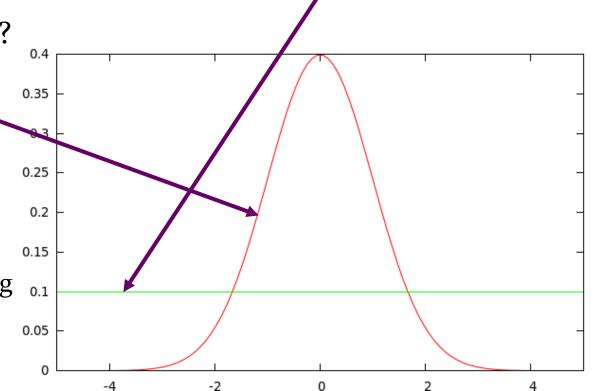
- Divide *p*-value by number of counties?
- Borrow idea from neuroimaging: leverage geographical relatedness?

• What can we learn from the example? Food for thought

- Care about strawman H_0 (zero kidney rate), false positives, *p*-value?
- Trust individual county-wise estimates? Unbiased! BLUE
 - **Incorrect sign errors** (type S): some counties really have higher kidney cancer rate than others?
 - **Incorrect magnitude** (type M): some counties really have higher/lower cancer rate?
- Would correction for multiplicity help at all?
 - Useless in controlling for type S and M errors

• How can we do better?

- Information share: across spatial elements
- **Research hypothesis:** *P* (effect > o | data)


What do we know about spatial elements?

• Element-wise modeling

- $_{\circ}~$ Pretend full ignorance: fully trust the data
- Uniform distribution: each element equally likely to have any value in $(-\infty, +\infty)$
- Similar for variances: variances can be negative in ANOVA

• One crucial prior for spatial elements

- Reasonable to assume Gaussian distribution?
- Gaussian assumption adopted everywhere!
 - Subjects, residuals across TRs
- How can Gaussian assumption help?
 - Loosely constraining elements
 - No full trust for individual estimates
 - Information sharing: shrinkage or partial pooling
 - Controlling type S and M errors

Short summary: what we intend to achieve

• Abandon strawman and *p*-value

• Directly focus on research interest P(effect > 0 | data) vs. P(data | effect = 0)

• Build one model

- Incorporate all elements into a multilevel or hierarchical structure
- Loosely constrain elements: leverage prior knowledge
- Achieve higher modeling efficiency: **no more multiplicity**!
- $_{\circ}~$ Validate the model by comparing with potential competitors
- Be conservative on effect estimates by controlling type S and M errors: **biased?**
- Always be mindful of uncertainties: strength of evidence (no proof)
- Less vulnerable to data manipulations: whole brain, gray matter, regions, ...

Avoid dichotomous decisions

- Report full results if possible
- $_{\circ}~$ Highlight instead of hide based on gradient of evidence

Application: region-based analysis

• Dataset

- Subjects: *n* = 124 children; resting-state data (Xiao et al., 2019)
- Individual subjects: seed-based correlation for each subject
 - 3D correlation between seed and whole brain ("functional connectivity")
- Explanatory variable (behavior data): Theory of Mind Index x_i

• Voxel-wise group analysis: GLMs

- Focus: association between *x* and seed-based correlation (*z*-score)
- Pretense: voxels unrelated equal likelihood within $(-\infty, \infty)$
- Information waste!
- GLMs: mass univariate multiplicity m = 100,000 voxels \rightarrow 100,000 models

Xiao et al., 2019. <u>Neuroimage</u> 184:707-716

Uniform distribution: total freedom - each parameter on its own

 ϵ_1

E2

1st voxel: $\boldsymbol{y}_1 = a_1 + b_1 \boldsymbol{x} + b_1 \boldsymbol{x}_1$

2nd voxel: $\boldsymbol{y}_2 = a_2 + b_2 \boldsymbol{x}$

mth voxel: $\boldsymbol{y}_m = a_m$

GLMs: dealing with multiplicity!

• Voxel-based analysis: GLMs

- Penalty time for pretense: multiple testing (m = 100,000), magic 0.05
- Show time for various correction methods
 - Voxel-wise *p*, FWE, FDR, spatial smoothness, clusters, ...
 - Simulations, random field theory, permutations, ...
 - How would dataset turn out under GLM? 4 lucky clusters manage to survive

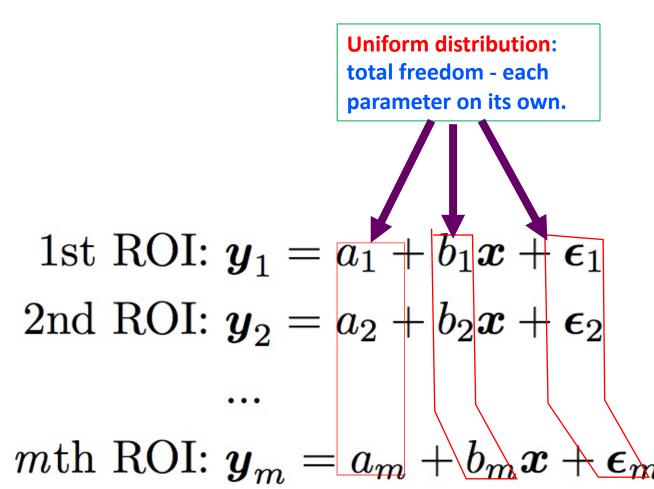
voxel p	cluster threshold	surviving ROIs	ROIs
0.001	28	2	R PCC, PCC/PrC
0.005	66	4	R PCC, PCC/PrC., L IPL, L TPJ
0.01	106	4	R PCC, PCC/PrC., L IPL, L TPJ
0.05	467	4	R PCC, PCC/PrC., L IPL, L TPJ

Switching from voxels to ROIs: still GLMs

• Region-wise analysis : GLMs

• Focus: association between and seed-based correlation (*z*-score)

Pretense: ROIs unrelated

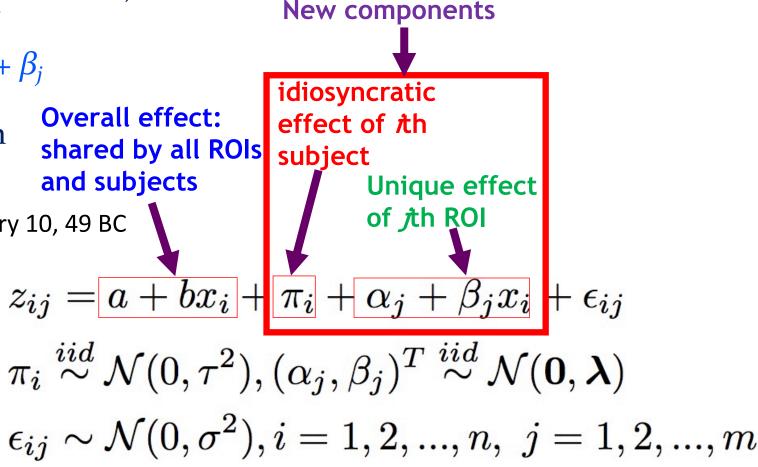

• GLMs: mass univariate

 $m = 21 \text{ ROIs} \rightarrow$

21 models

 Penalty time for pretense: multiple testing – what to do?

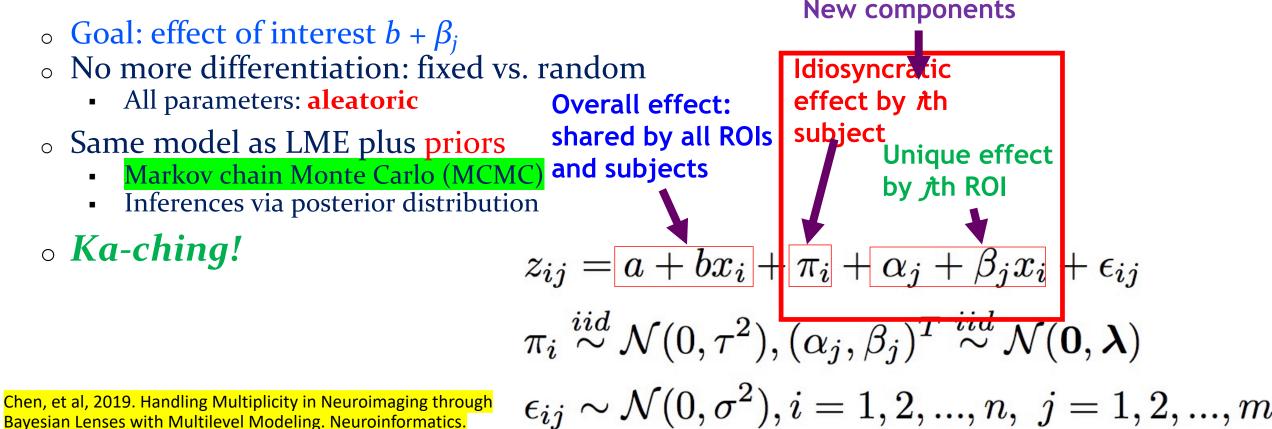
- Bonferroni? Unbearable
- What else?



Switching from GLMs to LME

• **Region-wise analysis : Linear Mixed-Effects (LME) model**

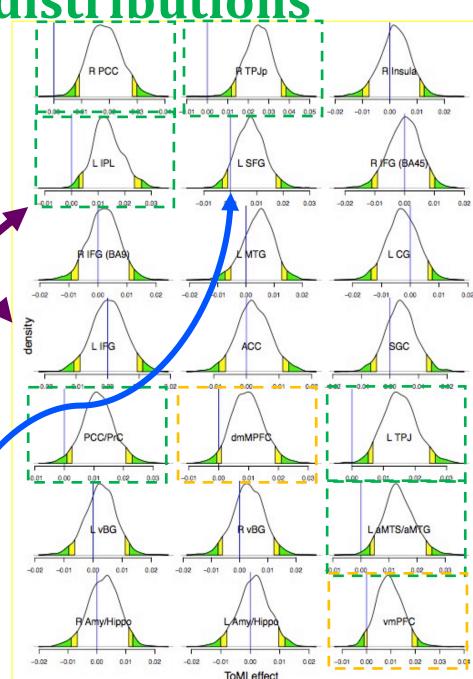
- **One** model integrates all regions
- ROIs loosely constrained instead of being unrelated
 - Gaussian distribution: Is it far-fetched or subjective?
 - Similar to cross-subject variability
- Goal: effect of interest- $a + \alpha_j$, $b + \beta_j$
- Differentiation: fixed vs. random
 - Fixed: **epistemic** uncertainty
 - Random: **aleatoric** uncertainty
 - Julius Caesar: Alea iacta est. January 10, 49 BC
- What can we get out of LME?
 - Conventional framework
 - Estimates for fixed effects
 - Variances for random effects


• Dead end!

Switching from GLMs to BML

• Region-wise analysis : Bayesian multilevel (BML) model

- **One** model integrates all regions: basically same as LME
- ROIs loosely constrained instead of being unrelated
 - Gaussian distribution: Is it far-fetched or subjective?
 - Similar to cross-subject variability

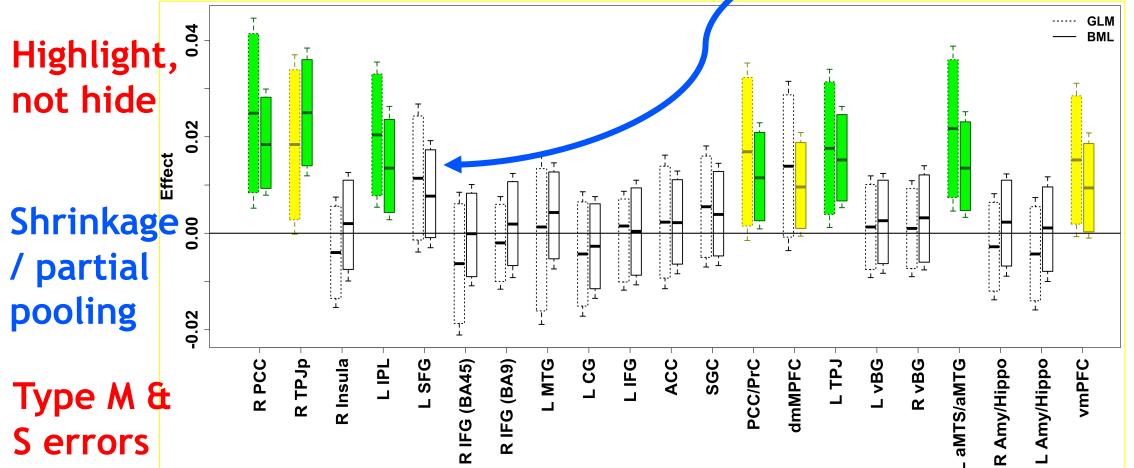


Inferences from BML: full distributions

Highlight, not hide

- Region-based BML: 21 ROIs
- Full report with richer information: posterior distributions for each ROI
 - No dichotomization
 - No results hiding
 - No discrimination against small regions
 - No ambiguities about spatial specificity
 - No inconvenient interpretation of confidence interval
 - Evidence for each ROI: *P* (effect > 0 | data)
- <u>9 ROIs</u> with strong evidence of effect compared to
 - Region-wise GLM with Bonferroni correction
 - Voxel-wise GLM at cluster level: 2 clusters

How about Left SFG?



Inferences from BML: uncertainty

- ROI-based BML: 21 ROIs
- Full report with bar graph uncertainty intervals
 - O Nothing hidden under sea level

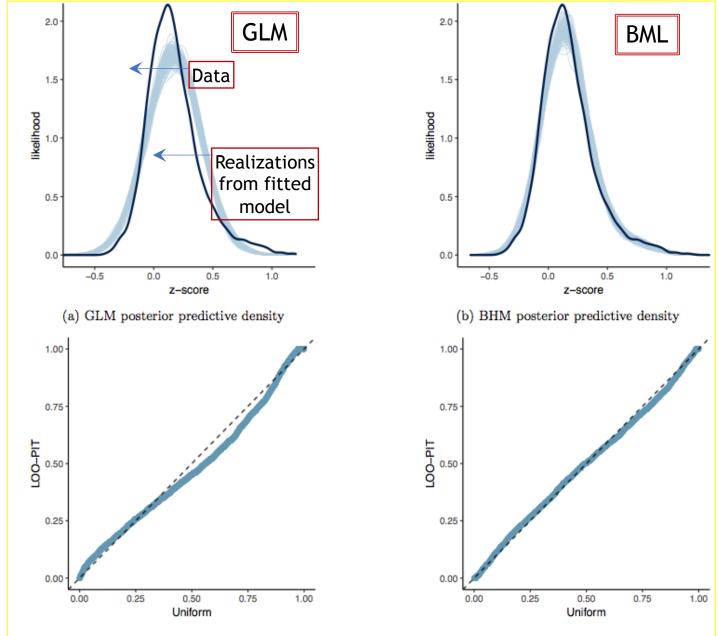
How about Left SFG?

• 8 ROIs with strong evidence for effect of interest

BML: model validations

(c) GLM cross-validation: Q-Q plot (uniform)

Cross-validation

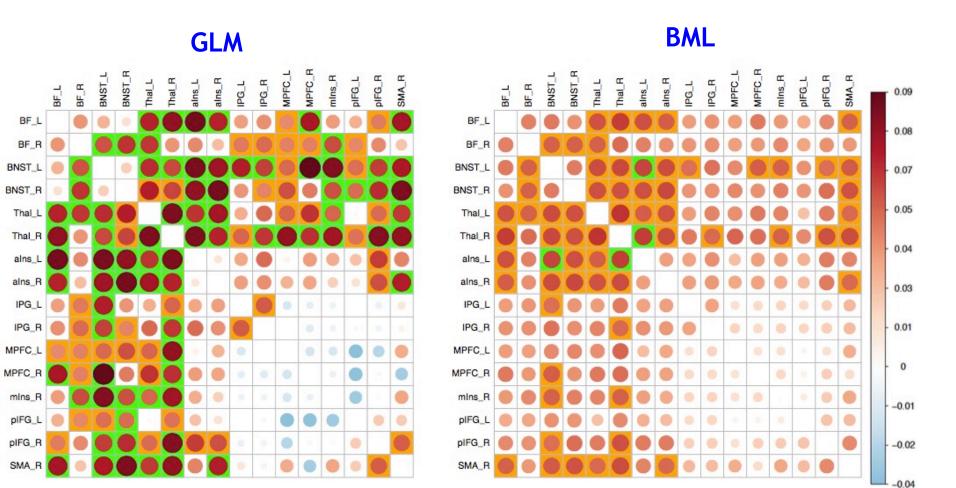

Leave-one-out information
 criterion (LOOIC)
 Cross-validation

	LOOIC	SE
GLM	-300.39	98.25
BML	-2247.06	86.42
GLM - BML	1946.67	96.35

Posterior predictive checking

• Effects of BML

- Regularizing ROIs: don't fully trust individual ROI data
- Sacrificing fit at each ROI; achieving better overall fit



(d) BHM cross-validation: Q-Q plot (uniform)

Other applications

• Matrix-based analysis

o 63 RPs identified by GLMs with *p* of 0.05
none survived after correction with NBS via permutations
o 33 RPs with strong evidence under BML

Summary

Issues with current correction for multiplicity

• Two toy examples

- NBA players
- Kidney cancer

• Application: region-based analysis (RBA)

• Program in AFNI: *RBA*

Other applications

- Matrix-based analysis (program in AFNI: MBA)
- Region-based inter-subject correlation (ISC) analysis
- Gray matter connectivity analysis
- $_{\circ}~$ Others cases involving multiplicity

Keep Kidney Cancer in Mind! • Kidney cancer distribution among counties

Highest rate

lowest rate

Calibration

Acknowledgements

- Paul-Christian Bürkner (Department of Psychology, University of Münster)
- Andrew Gelman (Columbia University), Stan Development Team, R Foundation
- Yaqiong Xiao, Elizabeth Redcay, Tracy Riggins, Fengji Geng
- Luiz Pessoa, Joshua Kinnison (Depart of Psychology, University of Maryland)
- Zhihao Li (School of Psychology and Sociology, Shenzhen University, China)
 Lijun Yin (Department of Psychology, Sun Yat-sen University, China)
- Emily Finn, Daniel Handwerker (SFIM/NIMH, National Institutes of Health)
- Paul A. Taylor, Daniel R. Glen, Justin K. Rajendra, Richard C. Reynolds, Robert W. Cox (SSCC/NIMH, National Institutes of Health)