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FIM Agenda

WHAT IS BOLD FUNCTIONAL CONNECTIVITY DYNAMICS?
* Original observations
e Spatial Distribution
e Relationship to Structural Connectivity

RELATIONSHIP TO COGNITION / DISEASE

* Sleep Staging based on Dynamic FC Changes.
* Cognitive State Detection based on Dynamic FC Changes.
* Disruption of Dynamic FC Patterns in patient populations.

SOME COMMENTS ON METHODOLOGY

* Interpretational Issues with Sliding Window Correlation
* Dynamic Conditional Correlation (DCC)
* Single-volume Co-Activation Patterns (CAPs)

CONCLUSIONS




FIM fMRI Connectivity Dynamics: DEFINITION

>

Seed Voxel|in PCC

60 Minutes of Continuous Rest Data | TR = 1s

Gonzalez-Castillo et al., Frontiers in Neuroscience 2014



’ Original Observations (I)

“Most studies of resting-state functional connectivity using fMRI employ methods that assume
temporal stationarity, such as correlation and data-driven decompositions computed across the
duration of the scan. However, evidence from task-based fMRI studies and animal electrophysiology
suggests that functional connectivity may exhibit changes within the time scale of seconds to
minutes....”

Arbitrary BOLD Units

Sliding Window
Correlation

Chang & Glover, Neurolmage 2009



FIM Original Observations (I)
“Most studies of resting-state functional connectivity using fMRI employ methods that assume
temporal stationarity, such as correlation and data-driven decompositions computed across the
duration of the scan. However, evidence from task-based fMRI studies and animal electrophysiology
suggests that functional connectivity may exhibit changes within the time scale of seconds to

minutes....”

“..Although it is unclear whether the observed coherence and phase variability can be attributed to
residual noise or modulation of cognitive state, the present results illustrate that resting-state
functional connectivity is not static, and it may prove valuable to consider measures of variability, in

addition to average quantities, when characterizing resting state.” Chang & Glover, Neurolmage 2009



FIM Original Observations (I1): Short Term FC can strongly deviate from Average Patterns
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Original Observations (l1l): Short Term FC can strongly deviate from Average Patterns

a) Dynamic FC

25
500
2
1000 1.5

Connectivity pair index
N
o
o
o
o
Correlation (z)

05
2500

-1
3000 1.5

2
3500

25

* 20 40 60 80 1@ 120 140 160 180 f
Window number

b) Example FC networks

- »- | ‘_. ; -+ A':- -,-
Frontal{10 bR B

Occipital {50
Parietal {m I,

Subcortical {72
Temporal { *+

Brain regions

5 s
50 60 70 80

10 20 30 40 50 60 70 80

Brain regions

Leonardi et al. Neurolmage 2013



Original Observations (lll): Dynamic FC also present in anaesthetized monkeys
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FIM Spatial Distribution of Short Term FC Stability (1) — Most Stable Connections
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FIM Spatial Distribution of Short Term FC Stability (I) — Most Variable Connections
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Most Variable Connections correspond primarily inter-network, inter-hemispheric
connections involving the fronto-parietal network and occipital regions. Also some DMN
regions.

Gonzalez-Castillo et al., Frontiers in Neuroscience 2014



’ Spatial Distribution of Short Term FC Stability (Il)
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ZONE OF INSTABILITY: Set of Intrinsic Connectivity Networks with the most variable FC
based on approx. 6 min long rest scans acquired on a group of 405 young adults and using a
window length of 44 seconds.

Allen et al. Cerebral Cortex 2014



* Overlap with regions of high inter-subject variability in stationary FC

Inter-subject Variability in FC A

Evolutionary Cortical Surface Expansion
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Inter-subject Variability

Higher inter-subject variability in FC in heteromodal
association cortex and lower variability in unimodal
cortex.

23 Subjects | 5 scans over 6 months | 6 min long rest scans
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Functional Connectivity variability is highly
correlated with evolutionary cortical surface
expansion.

Mueller et al. Neuron, 2013



* FC Dynamics & Anatomical Connectivity (ll)

Connection type: ~ Ho: Interhemispheric connections between homologous rois

ntrahemispheric () Ha- Interhemispheric connections between non-homologous rois
heterotopic (he)

homotopic (ho) I: Intrahemispheric connections.

Human Data: 2 Conditions Rest | Induced Negative Rumination
Macaque Data: 1 Condition Light Anesthesia

Across conditions & species, Homotopic FC is the most stable of all 3 types of connections.
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FC Dynamics & Anatomical Connectivity (ll)

Connection type: ~ Ho: Interhemispheric connections between homologous rois

ntrahemispheric () Ha- Interhemispheric connections between non-homologous rois
heterotopic (he)

homotopic (ho) I: Intrahemispheric connections.

Human Data: 2 Conditions Rest | Induced Negative Rumination
Macaque Data: 1 Condition Light Anesthesia

Temporal stability of homotopic FC is facilitated by direct anatomical projections and
their conduction characteristics
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Temporal stability
(autocorrelation coefficient)

FC Dynamics cannot be explained simply by distance
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Reproducible Short-term patterns of FC — Connectivity States

FUNCTIONAL CONNECTIVITY STATES: a series of re-occurring short-term (in the order of
seconds) whole-brain connectivity patterns that are common across subjects.
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* Reproducible Short-term patterns of FC — Connectivity States

State 1 (33%) State 2 (7%) State 3 (9%
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FIM FC Dynamics — Interim Conclusions (I)

+* FC exhibit a rich dynamic behavior at the scale of minutes to seconds.

+* Present both in awake humans, as well as, anesthetized macaques.

+» Observed short-term FC patterns can deviate significantly from average/stationary FC
patterns.

¢ FC Dynamics have well defined spatial patterns:
* Interhemispheric Homotopic Connections are among the most stable.
* Heterotopic Connections are among the most variable.

¢ Spatial distribution of FC Dynamics overlap with:
e Spatial maps of Between-Subject Long Term FC Stability.
* Spatial maps of evolutionary cortical expansion.

¢ There are reproducible re-ocurring patterns of whole brain connectivity common across
subjects, commonly referred to as “Functional Connectivity States”.
* Depart substantially from average connectivity patterns (networks break down).
* Have the potential to be biologically/cognitively meaningful.




RELATIONSHIP TO
COGNITIVE/MENTAL STATES
&
PRELIMINARY CLINICAL
APPLICATIONS



FIM Word of Caution

A Time Series % change from mean Amplitude Specta abs(fftz)
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p FC Dynamics vs. Sleep Stages

e Concurrent BOLD fMRI and Jedial vieua | steral vieual aucitory

EEG Recordings. o an
* Approx. 50 min long scans. it i2

* Manual Sleep Staging based
on EEG/AASM Criteria.

Thalamus

WL =60s-4 minutes

Manual scoring | |5 |
i AASM rules) | artition Into| | correlation
L ( ) | raining sets | between all
» L.234min) |, pajrs of signals

0 5 10 15 | 20 25 3d 135

Training Phase

| |

|

I |

. . ' - . . ( :
| o
0 5 10 15 1 20 ‘25 ”30 ,!35 = .-.E.-=--.
| m SUEE —2NEE) —or) > cE EEE NS E
XDy 1 N ] [ =]
| EEEEEEEEEE
| I u ] ||
0 5 10 15 20 25 30 35
Time (min)

Algorithm: Multi-level Support Vector Machine

Tagliazucchi et al. Neurolmage 2012



2

AASM (EEG) SVM (fMRI)

FC Dynamics vs. Sleep Stages (1)
Test set #1 (wake & sleep)
Wake - {Wake '
REM} 1 REMI | |
N1 N1t
N2} N2t
N3t . N3 . .
0 40 0 20 40
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80% Accuracy for WL = 2 mins and above

Tagliazucchi et al. Neurolmage 2012



’ FC Dynamics vs. Externally Imposed Mental State Detection (I)

Four different 10 min scans as subject engage
in different self-driven mental states.
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* FC Dynamics vs. Mental States Imposed by Task (1)

Mental States Imposed
by Experiment

Computation of
Windowed
FC Patterns
FC State
Detection

FC State N
Timeline e

Validation Comparison of FC and mental state timelines
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Gonzalez-Castillo et al. PNAS 2015
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FC Dynamics vs. Mental States Imposed by Task (1)
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FIM FC Dynamics vs. Task Outcome Prediction

-
Examined the relationship between a psychomotor vigilance task and the interacting
default mode and task positive networks. b)
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FIM Alterations of Dynamic Connectivity & Disease (1): Schizophrenia
-
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Dynamic states in a large (n > 300) data set of schizophrenia patients
and controls in which the patients are spending significantly more
time in the relatively less connected state 4. Damaraju et al. Neurolmage Clinical, 2014



FIM Alterations of Dynamic Connectivity & Disease (l1): Schizophrenia vs. Bipolar Disorder

State 1

Connecting Links:
=HC > SZ
Yellow = HC < SZ
Green = SZ >BP
=HC > BP
White = HC < BP

Domains:
I Frontal
| Parietal
B Occipital
| Sub-Cortical
B Temporal
3 Cerebellum

% Note that colors representing the

connecting links and domains are
independent of each other.

“Specific states differentiate schizophrenia, bipolar, and healthy
controls... and that most of these are tied to a single state in this case.” Rashid et al. Frontiers in Neuroscience, 2014




FIM Interim Conclusions (ll)

+* Dynamic changes in FC at the scale of seconds to minutes can be used to:

= Reliably perform automatic sleep staging at the single subject level.
= Discriminate between externally imposed mental states at the single subject level.
= Predict Task performance on an individual basis.

+¢» Huge Diversity of Experimental and Analytical Methods:

= Differences in Acquisition: scan durations / TRs / window lengths

= Differences in Pre-processing:

= Differences in Parcellation Scheme: number of ROIs / selection criteria / coverage
= Differences in Metrics used to Capture FC Dynamics

= Differences in classification/grouping algorithms: SVM / K-means / Similarity

= Differences in validation schemes: None / Tasks / Populations

+» Comparison / Consolidation of Results is quite challenging.

+* Some groups already working on potential clinical applications based on measures of
dynamic FC
= Schizophrenia, Bipolar Disorder, Alzheimer’s, Multiple Sclerosis...
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FIM Sliding Window Analysis
-

Perhaps the most commonly used strategy for examining dynamics.

\ STATIONARY FC | DYNAMIC FC
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What window type to use?
What window length?

What window step?

* It seems easy to interpret.
* |t seems to capture phenomena with potential biological/neuronal relevance.

* Too small windows may render correlation estimates unreliable.
* Interpretation is more complex that it seems.



& Sliding Window Correlation: Spurious Correlations (I)

WL < 1 Period of slower fluctuation = Spurious fluctuations in correlation traces will appear
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Leonardi et al. Neurolmage 2015



Signal from 2 ROls

Spurious Fluctuations (1)

Sliding Window Correlation
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Sliding Window Correlation: Spurious Fluctuations (1)

1. Data Collection }
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w Sliding Window Correlation: Window Length vs. Amount of Fluctuation

COMMON OBSERVATION: The longer the window, the less the observed variability in

Dynamic FC.
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ﬁ I M Sliding Window Correlation: Window Length vs. Amount of Fluctuation
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(1) Spurious fluctuations in dynFC can be limited by appropriate high pass filtering (1/WL).
(2) Remaining fluctuations in dynFC will be low-pass filtered (1/WL).

(3) Smaller windows and/or longer TR = greater influence of noise in estimation of dynFC.
Leonardi et al. Neurolmage, 2015



ﬁ Functional Connectivity States: Parcellation Selection
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Functionally defined ROIs seem to perform better than Anatomically defined ROls.
Shirer et al. Cerebral Cortex 2012
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“More smaller ROIs” seem to perform better than “Less larger ROIS”

Gonzalez-Castillo et al., PNAS 2015



* Functional Connectivity States: Clustering Algorithm
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Other Methods: Dynamic Conditional Correlation (DCC) (1)

DCC: A model for computation of time-varying variances and correlations in non-
stationary time-series borrowed from the financial literature (multivariate

volatility models).
* Does not requires a-priori selection of window length.
* Robust against previously discussed limitations of the sliding window correlation.

Slowly-varying Periodic change in correlation
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Linquist et al., Neurolmage, 2014




p Other Methods: Dynamic Conditional Correlation (DCC) (I1)

DCC: A model for computation of time-varying variances and correlations in non-
stationary time-series borrowed from the financial literature (multivariate

volatility models).
* Does not requires a-priori selection of window length.
* Robust against previously discussed limitations of the sliding window correlation.

Transient State Changes
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* Computation time increases linearly with number of
ROIs. Linquist et al., Neurolmage, 2014



FIM Other Methods (1l): Co-Activation Patterns

¢ Co-Activation Patterns (CAPs)
Cluster selected individual BOLD volumes of a resting-state scan based on spatial
similarity.
Use resulting cluster centroids, defined as “co-activation patterns” (CAPs), to
characterize a set of representative instantaneous configurations of BOLD activity.
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Example: Decomposition of the Dorsal Attention Network in 12 CAPS Lui et Dyun, PNAS, 2013
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p General Conclusions / Open Questions

+» BOLD Functional Connectivity exhibit rich spatio-temporal dynamic behavior at the
scale of seconds to minutes.

+ Short-term patterns significantly differ from whole-scan average patterns. Some of
these short-term patterns re-occur in time and are consistent across subjects.

s Emerging evidence suggests that dynamic FC metrics may index changes in
macroscopic neural activity patterns underlying critical aspects of cognition and
behavior.

w Better understand which methods actually capture biologically and neuronally relevant
functional connectivity dynamics.

** Itis unclear the extent to which dynamic FC is best conceptualized as a multi-stable
state space wherein multiple discrete patterns recur, or whether it simply varies along
a continuous state space.

/7

+* The study of dynamic FC raises the issue that the concept of a “network” is rather
elusive, hinging (among other factors) upon the time-scale over which it is defined.




FIM Some Guidelines

+» Data Acquisition
= Spatial <-> Temporal Resolution 2 Temporal Resolution is key.

= Consider the use of Multi-Band/Multi-Slice Acquisition Techniques.

4

+* Data Pre-processing

= Use appropriate filtering.
= Consider using a combination of methods.
= Temporal Windows of interest ( 25s — 60s).

00

L)

Parcellation Scheme

= Functionally defined ROIs seem to outperform anatomically defined ROls.
=  “More smaller ROIs” better than “Less larger ROIs”.

* Interpretational Challenges

= Control for obvious sources of variability: motion/physiological noise/scanner.
= When possible, design your experiment so that you can validate results.

X4

L)

Two Excellent Reviews

| "

= Hutchison et al. “Dynamic Functional Connectivity: Promise, Issues, and Interpretations”
Neurolmage 80:360-378 (2012).

| o

= Calhoun et al. “The Chronnectome: Time-varying connectivity networks as the next frontier in
fMRI Data Discovery” Neuron 84(2): 262 — 274 (2014).
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