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Why Predict Performance?



What is Performance?
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• Dictionary Definition: the action or process of carrying out or 
accomplishing an action, task, or function
• Our definition: An individual’s score on a test of:
• Cognitive abilities
• Symptom severity
• Educational achievement

• Often central to a patient’s mental health complaint



Neuroimaging’s Path to Prediction
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Predict Individual
Outcomes

Sheline, Biol Psych 2001

Find Group
Differences

Find Performance
Differences

Siegle, Am J Psych 2006
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Shed New Light on Neural Processes
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Make Brain-Based Diagnoses and Classifications
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Suggest Targeted Interventions
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Why Predict Performance?

• Shed light on neural processes and individual differences

• Make brain-based diagnoses and classifications

• Suggest targeted interventions 
• Drugs
• Therapy
• Brain stimulation
• Neurofeedback



How Can We Predict 
Performance?



Machine Learning!
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Machine 
Learning



Machine Learning Features

12

In machine learning and pattern recognition, a feature is an individual 
measurable property of a phenomenon being observed. (Bishop, 2006)

le
ng

th

weight

ag
e

speed

animal #

age
speed

animal #

length
weight

fe
at

ur
e

CatsTurtles Vs.



0 10 20 30 40 50 60 70 80 90 100
sig

na
l in

 
RO

I 1
-2
-1
0
1
2

0 10 20 30 40 50 60 70 80 90 100

sig
na

l in
 

RO
I 2

-2
-1
0
1
2

0 10 20 30 40 50 60 70 80 90 100

sig
na

l in
 

RO
I 3

-2
-1
0
1
2

time (samples)
0 10 20 30 40 50 60 70 80 90 100

sig
na

l in
 

RO
I 4

-2
-1
0
1
2

fMRI Magnitude for Prediction
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Functional Connectivity for Prediction
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FC

Behavior

Whole-Brain FC Predicts Participant’s Behavior
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Left-Out
Subject FC
Matrices

Mean
FC

Finn et al., Nat Neu 2015



FC

Behavior

MVPA Predicts Participant’s Behavior
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Similarity to
Optimal Pattern

emiliereas.com/tag/mvpa



Performance as a Trait
“Inherent Ability”



DMN and WM networks have stronger negative FC 
in good n-back (WM) performers

Sala-Llonch, 2012 Cortex

http://www.psy-journal.com/article/S0010-9452(11)00231-0/abstract
http://www.psy-journal.com/article/S0010-9452(11)00231-0/abstract


FC

Behavior

Whole-Brain FC Predicts Participant’s Behavior
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Left-Out
Subject FC
Matrices

Mean
FC

Finn et al., Nat Neu 2015



High and Low-Attention Networks  Learned from 
Grad-CPT Task Data

21
Rosenberg, Monica D., et al. "A neuromarker of sustained attention from whole-brain 
functional connectivity." Nature neuroscience (2015).
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Predicting Other Behaviors
Sustained attention

Creativity

Reading ability

Beaty et al., PNAS (2018)

Personality traits

Hsu et al., Soc Cogn Aff Neurosci (2018)

Lake et al., 
submittedJangraw et al., NeuroImage (2017)

ADHD, autism symptom severity

Rosenberg, Finn et al., Nat Neurosci (2016)
Rosenberg, Finn et al., Nat 
Neurosci (2016)

Feng et al., Hum Brain Mapp (2018)

Narcissism

(slide courtesy of Emily Finn, Lecture 9)



Uncovering a Suite of Networks 
for a Suite of Abilities

23Rosenberg et al., TICS 2017



Performance as a State
“Mind-Wandering”



Sustained Attention Tasks

Christoff, 2009 PNAS
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SART

Esterman, 2013 Cer Cor

GradCPT



Activation-Based Mind-Wandering Prediction

Christoff, 2009 PNAS 26



Multi-Feature Mind-Wandering Prediction

27Mittner, J Neuro, 2014



Activation Predicts Visual Working Memory 
Performance

Pessoa, 2002 Neuron (at NIMH with Peter Bandettini & Leslie Ungerleider)

Correct trials
Incorrect trials

https://www.sciencedirect.com/science/article/pii/S0896627302008176
https://www.sciencedirect.com/science/article/pii/S0896627302008176#FIG1


Meta-Analysis of Subsequent Memory (SM)

29
Kim, Hongkeun. "Neural activity that predicts subsequent memory and forgetting: a meta-
analysis of 74 fMRI studies." Neuroimage 54.3 (2011): 2446-2461.



Intervening to Improve 
Performance



Targeted Interventions to Improve Performance
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• Drugs

• Therapy

• Brain stimulation

• Neurofeedback



“Attention Network” Functional Connectivity 
Influenced by Methylphenidate (Ritalin)

32
Rosenberg, Monica D., et al. "Methylphenidate Modulates Functional Network 
Connectivity to Enhance Attention." Journal of Neuroscience 36.37 (2016): 9547-9557.



Face/Scene MVPA Pattern and Neurofeedback

• Visual discrimination task on blended face & scene
• Real-time decoding of focus on face or scene

• Neurofeedback based on decoding improved focus

33DeBettencourt, Nat Neuro, 2015



Case Study: 
Predicting Reading Recall



Predicting Recall Behavior from a 
Naturalistic Reading Task

35

… Reading Recall
Questions

Recall % Correct

Reading Recall Behavior       

Jangraw, NeuroImage 2018



Bad 
Readers

Functional Connectivity (FC):
Patterns of Correlating Activity
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Good 
Readers

Reading recall

Mean FC 
in network
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Found “Reading Network”
Whose FC Predicts Reading Recall
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+ edge
- edge

Edge Color:

Reading Network FC in Reading Network Predicts Subject’s 
Recall (LOO Cross-Validated)

Recall % Correct



Spatial Distribution of Reading Network is 
Distinct from Default Mode Network
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ROI Color:

+ edge
- edge

Edge Color:

L R L R

DMN

Overlap

Derived from NeuroSynth (Yarkoni, 2011)



Spatial Distribution of Reading Network is 
Distinct from Language Network
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L R L R

Language Networks

Overlap

Derived from NeuroSynth (Yarkoni, 2011)

ROI Color:
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- edge
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Regions Informing Reading Recall Performance are 
Distinct from Typical Activation Maps
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Reading FC NetworkGLM of Reading vs. Fixation

Positive Network
Negative Network
Both-3     Group β Value    3
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Saccade Rate Pupil Dilation Default Mode 
Network (DMN) F.C.

Reading 
Network F.C.

Eye-Based Predictors Brain-Based Predictors

Language 
Network F.C.

Good
readers

Poor
readers

Good
readers

Poor
readers

+ edge
- edge

Edge Color:

Reading Network
Uses Different Brain Areas



Reading Network 
Outperforms Other Metrics
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Combining Reading Edges with Attention 
Edges Can Improve Prediction
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DMN Sust. Attn. Reading
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Reading Recall Prediction: Outcomes
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• Identified Reading-Recall-Specific Brain 
Network

• It uses Different Brain Areas from 
attention/language metrics

• It has Predictive Information beyond 
other metrics

• Its information is Not Redundant with 
other metrics

• Using them together could boost prediction

Jangraw, NeuroImage 2018



Confounds and Conclusions



Performance Confounds: IQ & Compliance

• Reliability of MRI signature depends on 
reliability of performance measure
• Often covaries with conditions
• Collect multiple performance measures
• Remove effect with projection, partial 

correlation
• Decide whether you care!
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MRI Confounds: Motion & Breathing

• Can lead to fMRI signal change not 
coming from brain activity
• Often covaries with conditions
• Preprocessing and Censoring
• See previous lectures

• Motion-matched participants
• Careful examination of data & 

results

Epstein, Psych Res: Neuroim, 2007



Conclusions

• Performance is central to quality of life
• Prediction can be based on many features

• Combination of literature and “data-driven” selection
• Performance can be State-Based (Innate Ability)

• Stable, present regardless of Task
• Performance can be Trait-Based (Mind-Wandering)

• Based on time-limited signals observed during task
• Performance Prediction with fMRI can:

• Shed light on neural processes and individual differences
• Suggest targeted interventions (drugs, neurofeedback)

• Confounds can affect results & interpretation
• Be proactive!
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Extra Slides



Better Predictions with 
Functional Connectivity (FC)
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Salvadore, Neuropsychopharmacology 2010



FC

Behavior

Better Predictions with 
Whole-Brain FC
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Left-Out
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Matrices

Mean
FC



Connectome-based Predictive Modeling: 
Whole-Brain FC Predicts Participant’s Behavior
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FC

Behavior

Subject FC
Matrices

Rosenberg et al., Nat Neu 2015



Connectome-based Predictive Modeling: 
Whole-Brain FC Predicts Participant’s Behavior
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Subject FC
Matrices

FC

Behavior

Rosenberg et al., Nat Neu 2015



Connectome-based Predictive Modeling: 
Whole-Brain FC Predicts Participant’s Behavior
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Subject FC
Matrices

FC

Behavior

Rosenberg et al., Nat Neu 2015



Spatial Distribution of Reading Network is 
Distinct from Sustained Attn. Network
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Activation Predicts Visual Working Memory 
Performance

Pessoa, 2002 Neuron (at NIMH with Peter Bandettini & Leslie Ungerleider)

https://www.sciencedirect.com/science/article/pii/S0896627302008176
https://www.sciencedirect.com/science/article/pii/S0896627302008176#FIG1


DMN and WM networks have stronger negative FC 
in good n-back (WM) performers

Sala-Llonch, 2012 Cortex

http://www.psy-journal.com/article/S0010-9452(11)00231-0/abstract
http://www.psy-journal.com/article/S0010-9452(11)00231-0/abstract

