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Why Predict Performance?



What is Performance?

 Dictionary Definition: the action or process of carrying out or
accomplishing an action, task, or function

e Our definition: An individual’s score on a test of:
* Cognitive abilities
* Symptom severity
* Educational achievement

e Often central to a patient’s mental health complaint



Neuroimaging’s Path to Prediction

Find Group

Find Performance

Predict Individual

Sheline, Biol Psych 2001

Schaefer, J Cog Neu 2002
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Shed New Light on Neural Processes

Block-Design Analysis Predicting Performance
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Make Brain-Based Diagnoses and Classifications
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Suggest Targeted Interventions

Research Domain Criteria Initiative

Inducing brain
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Why Predict Performance?

* Shed light on neural processes and individual differences

* Make brain-based diagnoses and classifications

e Suggest targeted interventions
* Drugs
* Therapy
* Brain stimulation
* Neurofeedback




How Can We Predict
Performance?



Machine Learning!

Machine
Learning

THIS 1S YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT
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Machine Learning Features

In machine learning and pattern recognition, a feature is an individual
measurable property of a phenomenon being observed. (Bishop, 2006)

@ Turtles Vs.

feature
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fMRI Magnitude for Prediction
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Functional Connectivity for Prediction
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Dynamic Functional Connectivity
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Whole-Brain FC Predicts Participant’s Behavior

Mean
FC .

Behavior

Left-Out
Subject FC
Matrices

Finn et al., Nat Neu 2015
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MVPA Predicts Participant’s Behavior

Similarity to
Optimal Pattern '
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Performance as a Trait



DMN and WM networks have stronger negative FC
in good n-back (WM) performers
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Fig. 1 — Design of the fMRI n-back task.

Fig. 4 — (A) Spatial maps of the two selected components: IC1 corresponds to the WMN and ICG2 to the DMN. Hot colours
represent brain activations and cold colours represent deactivations. (B) Time series of the two components: red lines are
the component-related mean responses, while green lines show the fit with the task. (C) Scatter plots showing the
relationship between the between-network correlations in the 3-back and fixation blocks and individual performance
scores for the 3-back WM task.
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http://www.psy-journal.com/article/S0010-9452(11)00231-0/abstract
http://www.psy-journal.com/article/S0010-9452(11)00231-0/abstract

Whole-Brain FC Predicts Participant’s Behavior
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High and Low-Attention Networks Learned from

Grad-CPT Task Data

Prefrontal
Motor

Parietal
Temporal
Occipital

Cerebellum
Subcortical
Brainstem

“Attention Network”
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P=13x10"’
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e GLM

0
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Rosenberg, Monica D., et al. "A neuromarker of sustained attention from whole-brain

functional connectivity." Nature neuroscience (2015).
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Predicting Other Behaviors

(slide courtesy of Emily Finn, Lecture 9)

Sustained attention

Reading ability

Reading Network
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Uncovering a Suite of Networks
for a Suite of Abilities

Autism symptoms?

{ ]
® —0__ e i itc?
X/ oé /\,' Personality traits:
Fluid intelligence

*<¢>e Emotion regulation?
Working memory?

Rosenberg et al., TICS 2017

23



Performance as a State



Sustained Attention Tasks

GradCPT
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Activation-Based Mind-Wandering Prediction

Preceding SART errors
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Multi-Feature Mind-Wandering Prediction
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Activation Predicts Visual Working Memory
Performance

Working Memory Trials

Fixate
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https://www.sciencedirect.com/science/article/pii/S0896627302008176
https://www.sciencedirect.com/science/article/pii/S0896627302008176#FIG1

Meta-Analysis of Subsequent Memory (SM)




Intervening to Improve
Performance



Targeted Interventions to Improve Performance

* Drugs

 Therapy

* Brain stimulation sl L
/ g /’/fx&:omparg//tf =

* Neurofeedback 1

“Similarity” feedback
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“Attention Network” Functional Connectivity
Influenced by Methylphenidate (Ritalin)

Methylphenidate > Control Control > Methylphenidate
Rest Task Rest Task

99 @®

<>

Rosenberg, Monica D., et al. "Methylphenidate Modulates Functional Network
Connectivity to Enhance Attention." Journal of Neuroscience 36.37 (2016): 9547-9557.



Face/Scene MVPA Pattern and Neurofeedback

* Visual discrimination task on blended face & scene
* Real-time decoding of focus on face or scene

* Neurofeedback based on decoding improved focus
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Case Study:
Predicting Reading Recall




Predicting Recall Behavior from a
Naturalistic Reading Task

- Reading Recall
Questions

Reading Recall Behavior

40 50 60 70 80 90 100
Recall % Correct
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Functional Connectivity (FO):
Patterns of Correlating Activity
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Found “Reading Network™
Whose FC Predicts Reading Recall
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Recall (LOO Cross-Validated)
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Spatial Distribution of Reading Network is
Distinct from Default Mode Network
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Spatial Distribution of Reading Network is
Distinct from Language Network
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Regions Informing Reading Recall Performance are
Distinct from Typical Activation Maps
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Il Negative Network
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Reading Network
Uses Different Brain Areas

Edge Color:
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Reading Network

OQutperforms Other Metrics

Correlation with

Reading Recall
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Combining Reading Edges with Attention
Edges Can Improve Prediction
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Reading Recall Prediction: Outcomes

* |ldentified Reading-Recall-Specific Brain
Network

* |t uses Different Brain Areas from
attention/language metrics

* |t has Predictive Information beyond
other metrics

e |ts information is Not Redundant with
other metrics

* Using them together could boost prediction
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Confounds and Conclusions



Performance Confounds: 1Q & Compliance

* Reliability of MRI signature depends on
reliability of performance measure

Correlation of Behavior with

i Ofte n Cova ri eS With CO n d it i O n S Reading Network FC observed during fMRI Task

012 -

* Collect multiple performance measures

% g <0.05 (with Oral
Reading Recog only)

0.06 -

* Remove effect with projection, partial
correlation

Mean Across
fMRI Tasks

* Decide whether you care! &

Behavior



MRI Confounds: Motion & Breathing

* Can lead to fMRI signal change not
coming from brain activity

e Often covaries with conditions

* Preprocessing and Censoring

Mean (S.D.) Mean (S.D.)

 See previous lectures

Youths

o Motion_matched pa rticipa nts Mock scanner motion 5.0 (7.6) 3.0 (4.1) 0.76

Actual scanner motion 0.10 (0.06) 0.07 (0.04) 1.50

e Careful examination of data & e— - | ,,
results - w oom om oo ‘

Actual scanner motion 0.08 (0.03) 0.07 (0.04) 0.49

Note: Mock scanner motion measured as the number of head movements greater than 2 mm; actual scanner

motion measured as mean motion (in mm) per image acquisition (i.e., 2.5 s)



Conclusions

e Performance is central to quality of life

* Prediction can be based on many features
e Combination of literature and “data-driven” selection

* Performance can be State-Based (Innate Ability)
» Stable, present regardless of Task

e Performance can be Trait-Based (Mind-Wandering)
* Based on time-limited signals observed during task

 Performance Prediction with fMRI can:

* Shed light on neural processes and individual differences
e Suggest targeted interventions (drugs, neurofeedback)

e Confounds can affect results & interpretation
* Be proactive!
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Better Predictions with
Functional Connectivity (FC)
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Better Predictions with
Whole-Brain FC
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Mean
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Behavior
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Connectome-based Predictive Modeling:
Whole-Brain FC Predicts Participant’s Behavior

/.

Behavior
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Matrices

Rosenberg et al., Nat Neu 2015
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Connectome-based Predictive Modeling:
Whole-Brain FC Predicts Participant’s Behavior
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Rosenberg et al., Nat Neu 2015
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Connectome-based Predictive Modeling:
Whole-Brain FC Predicts Participant’s Behavior
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Rosenberg et al., Nat Neu 2015
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Spatial Distribution of Reading Network is
Distinct from Sustained Attn. Network
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Activation Predicts Visual Working Memory
Performance

A. Encoding

Working Memory Trials
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https://www.sciencedirect.com/science/article/pii/S0896627302008176
https://www.sciencedirect.com/science/article/pii/S0896627302008176#FIG1

DMN and WM networks have stronger negative FC
< (WM) performers
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Fig. 3 — (A) Spatial pattern of the DMN for all subjects during the resting acquisition. (B) Area within the DMN whose activity
correlates with subsequent 3-back performance (p < .05, FWE corrected). (C) Scatter plot depicting a positive correlation
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