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Noise !?
• “Impacting the effect of fMRI noise through hardware 

and acquisition choices – Implications for controlling 
false positive rates”
Wald & Polimeni, NeuroImage (2017)

• First sentence of their introduction
• Applied to the intensity fluctuations of a pixel in an fMRI 

time- series, the term “noise” is so non-specific and carries 
such negative connotations that it should probably be 
eliminated from the fMRI vocabulary.



What is noise?



Noise
• Merriam Webster: “Irrelevant or meaningless data 
or output occurring along with desired information”

• Stuff that gets in the way of of measuring what we 
want to measure

• Noise is defined by each study’s goals
• One study’s noise can be another study’s signal



One study’s noise can be another study’s signal

Areas of the brain that decrease activity across a wide range of cognitive tasks
Raichle, MacLeod et al, PNAS 2001 “A default mode of brain function”



“Random” fluctuations become signal

Correlations with “seed 
voxel” in motor cortex 

during rest

Activation during 
finger-tapping

B. Biswal et al., MRM, 34:537 (1995)



Noise in one study can be a clinical biomarker in another

Greicius M D et al. PNAS 2004;101:4637-4642

Default mode brain regions distinguish
Alzheimer’s Disease patients from healthy elderly



Ways to categorize noise

From the measurement tools

From the system being measured



Measures of noise
• Signal-To-Noise Ratio (SNR)
• Temporal Signal-To-Noise Ratio (TSNR)
• Contrast-To-Noise Ratio (CNR)

High SNR Low SNR TSNR

CNR

CNR



How to think about noise 
reduction or removal

Unstructured random noise
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• Less noise in original data is better
• IF all data are similarly noisy, 

unlikely to bias results
• More repetitions reduces noise



More repetitions reduces noise

100 five minute runs
9 hours of functional data per volunteer

3 volunteers

Gonzalez-Castillo … Handwerker … PNAS 2012

Unstructured random noise



100 runs of responses in primary visual cortex

Gonzalez-Castillo … Handwerker … PNAS 2012
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100 runs of responses in primary auditory cortex

Gonzalez-Castillo … Handwerker … PNAS 2012

INDIVIDUAL RUNS

100

99.5

100.5

LEFT RIGHT LEFTRIGHT

AVERAGING

Time (s)

Rest Rest Rest Rest Rest RestTASK TASK TASK TASK TASK

0s 30s 50s 90s 110s 150s 170s 210s 230s 270s 290s 340s

30   50         90   110       150 170       210 230       270 290       

Time (s)
30   50         90   110       150 170       210 230       270 290       



More data means more of the brain is 
significantly modeled by the task

Gonzalez-Castillo … Handwerker … PNAS 2012



How to think about noise 
reduction or removal

Structured random noise
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unlikely to bias results
• Can cause problems if a study 

cares about individual data sets
• More repetitions is less noise



How to think about noise 
reduction or removal

Structured random noise

• Task-based fMRI
• Head motion
• Respiration and heart rate
• Neurovascular coupling variation
• Trial-to-trial behavioral variation

• These variations ideally cancel each other out over time
• Worrying about these from a noise perspective was a peripheral 

concern for the first decade+ of fMRI



How to think about noise 
reduction or removal
Structured non-random noise
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• Less noise in original data is better
• No amount of averaging can make this go away

• Avoid
• Actively remove through data processing
• Know limits from interpreting data



Structured non-random noise



Structured non-random noise
• Task-based fMRI

• Task correlated Head motion
• Task correlated Respiration and heart rate
• Unmodeled systemic behavioral variation

• Connectivity based fMRI analyses
• All head motion
• All respiration & heart rate fluctuations
• Unmodeled structured behaviors

• Image drop-out, mis-alignment, and distortions
• Unmodeled Hemodynamic Responses / Neurovascular Coupling



Signal & noise are correlated for functional connectivity

Model-based fMRI
Noise that isn’t time-

locked to a task is 
annoying. 

Connectivity-based fMRI
Common noise across 

regions can contaminate 
results



Functional Brain Networks Develop from 
a ‘‘Local to Distributed’’ Organization

assignments of nodes into communities. We applied the modular-
ity optimization algorithm to the group connectivity matrices
derived from the sliding boxcars described above.

Measures of modularity (Q) were high, and did not show large
changes across the age range (Figure 3A and Figure S1 and
Figure S2). This result was not dependent on any particular
threshold (Figure S1). Although comparable community struc-
ture was detected at all ages examined, the components of the
communities varied by age. As per our qualitative approach
described above, in children, region clusters were largely
arranged by cerebral lobe; while in adults, regions were largely
clustered by their adult functional properties (Figure 4A). Again,
this result was not unique to any particular threshold (Figure 4B
and 4C) or size of boxcar (Figure S3). We do note, however, that
limited data points (i.e., subjects) are available between the ages
of 16 and 19 years (see Materials and Methods) and that our
estimate of the specific transitions within this period should be
interpreted with care.

Over development, functional connections seem to
evolve progressively along a ‘‘local to distributed’’
organizational axis

As previously reported [22,34], the segregation of closely
apposed regions and the integration of distributed functional
networks is associated with a general decrease in correlation
strength between regions close in space and an increase in
correlation strength between many regions distant in space. This
trend is shown in Figure 5 and also Figure S4. Long-range
functional connections tend to be weak, but increase over time
(warm colors above the diagonal in Figure 5C and 5D and
Figure S4C and S4D), integrating distant regions into functional
networks. Short-range functional connections tend to be stronger
(i.e., higher correlation strength) in children, yet those regions
that do change predominantly become weaker over age (cool
colors below the diagonal in Figure 5A and 5B and Figure S4A
and S4B).

Figure 2. Over age the graph architecture matures from a ‘‘local’’ organization to a ‘‘distributed’’ organization. In this figure we show
the dynamic development and interaction of positive correlations between the two task control networks, the default network, and cerebellar
network using spring embedding. The figure highlights the segregation of local, anatomically clustered regions and the integration of functional
networks over development. A and B represent individual screen shots (at average ages 8.48, 13.21, and 25.48 years) of dynamic movies (Video S1) of
the transition in the network architecture from child to adult ages. Nodes are color coded by their adult network profile (core of the nodes) and also
by their anatomical location (node outlines). Black – cingulo-opercular network; Yellow – fronto-parietal network; Red – default network; Blue –
cerebellar network; Light blue – frontal cortex; Grey – parietal cortex; Green - temporal cortex, Pink – cerebellum, Light pink – thalamus. Connections
with r$0.1 were considered connected. (A) In children regions are largely organized by their anatomical location, but over age anatomically clustered
regions segregate. The cluster of frontal regions (highlighted in light blue) best demonstrates this segregation. (B) In children the more distributed
adult functional networks are in many ways disconnected. Over development the functional networks integrate. The isolated regions of the default
mode network in childhood (highlighted in light red) that coalesce into a highly correlated network best illustrate this integration. Over age node
organization shifts from the ‘‘local’’ arrangement in children to the ‘‘distributed’’ organization commonly observed in adults.
doi:10.1371/journal.pcbi.1000381.g002

Brain Develops from Being ‘‘Local to Distributed’’

PLoS Computational Biology | www.ploscompbiol.org 5 May 2009 | Volume 5 | Issue 5 | e1000381

Fair… Petersen, PLoS Comp Bio 2009



Noise from head motion drove the network result

lead to artifactual signal changes of opposite sign in the anterior and
posterior parts of the head, and in dorsal and ventral parts of the head
(a clear example of this is shown in Figure S4). The data of Fig. 7 are in
accord with such an interpretation, because the greatest increases in
correlation upon scrubbing are predominantly in relationships orient-
ed in anterior–posterior and dorsal–ventral directions, whereas
laterally-oriented correlations tend to decrease upon scrubbing. Also
note that head movements tend to produce large amplitude changes
in BOLD signal. Since correlation calculations are based upon differ-
ences of individual measures from means, these large displacements
in BOLD signal carry substantial weight in such computations.

In conclusion, subject head motion-induced artifacts contribute sub-
stantially to the rs-fcMRI signal, and produce systematic but spurious
patterns in correlation. This effect is present in healthy control subjects,
and is likely to be larger in developing, aging, or clinical populations
that, as groups, have more movement of all forms. Optimal handling of
rs-fcMRI data will need to take into account the consequence of motion
artifact that is only incompletely addressed with standard realignment
and motion regression analysis strategies.

Supplementary materials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.10.018.
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When they scrubbed data for areas of higher head motion (more 
common in children), the main network differences disappeared 

Power, … Petersen, Neuroimage 2012

“It really, really, really sucks. My favorite result of the 
last five years is an artifact,” Steve Petersen
http://sfari.org/news-and-opinion/news/2012/movement-during-brain-scans-may-lead-to-spurious-patterns



Noise can be task correlated
Respiration depth over time (RVT) during a letter/number discrimination task

Birn, Murphy et al NeuroImage 2009 “fMRI in the presence of task-correlated breathing variations”



Neurovascular coupling noise
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This shows what happens, not why it happens



We know a lot about neurovascular coupling
It’s not directly driven by oxygen or energy needs
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There’s still a lot we don’t know about 
neurovascular coupling

N
E

37C
H

09-H
illm

an
A

R
I

31
M

ay
2014

7:5

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

R RR Ca2+

ER

IP3

KCa

DAG
AA

EETsPGI2NO

Ca2+-calmodulin

L-Arg + NOSEDHF

ACh, BK, adenosine, ATP, ADP, UTP…

Cx

K+ K+

TRP

Hyperpolarization

SKCa IKCa

Cx

Na+/K+

pump
Cx KIR

GTP

cGMP
ATP

cAMP

Relaxation

Cav

Hyper-
polarization BKCa

IKCa

PG EETs

NO

K+

GTP

cGMP
ATP cAMP

Catecholamines?

PGI2
R

ACh?

mGluR

AACOX1

EETs
PG

KCa

NO, VIP?

NO

PGI2NOEDHF EETsPGI2?NO?

Relaxation?

?

PGI2

PGI2?

?

?
R

?

CAPILLARY ARTERIOLE

Neuron

Astrocyte

Pericyte

Interneuron

Smooth muscle cell

Endothelial cell

Gap junction

?

?

?

?

SKCa

Thalamic input, basal forebrain, or NBM afferent?

P450

CO
X1

,2Cx
Hyperpolarization

IP3

PLC

PLC

ER

MEGJ?

Relaxation

PLCPLC

PLA
2

IP3 ER

172
H

illm
an

Annu. Rev. Neurosci. 2014.37:161-181. Downloaded from www.annualreviews.org
 Access provided by National Institutes of Health Library (NIH) on 11/20/14. For personal use only.

Elizabeth Hillman, Annual Review of Neuroscience 2014. 37:161–81 



Population differences can occur from 
non-neural variation

jects were 8.4% in FEF, 10.4% in M1, 8.7% in SEF, and
8.7% in V1. M1 was significantly different from the other
ROIs (P < 0.023).
Figure 2A,B shows the mean signal percent change for

the peak magnitude during the saccade and hypercapnia
tasks for each population in each ROI and collapsed across
ROIs. Collapsed across ROIs, a significant decrease in mag-
nitude was found from younger to older subjects during
the saccade task but not during the hypercapnia task.
Within individual ROIs, there were significant differences
across populations in FEF, SEF, and V1 during the saccade
task. Figure 3A–D shows that the distributions of the mean
signal percent change values across groups are almost
identical.
In addition to comparing percent change in younger vs.

older subjects, we used regression analyses to examine
percent change vs. age. Since each TR had a different num-
ber of trials and slices, TR was also included in the regres-
sions as a dummy variable. Percent change during the sac-
cade task was significantly correlated with age in FEF (P ¼
0.01), SEF (P ¼ 0.042), V1 (P ¼ 0.002), and across all
regions (P ¼ 0.005). Percent change during the hypercap-
nia task was not significantly correlated with age.
Although there were a different number of trials and slices
for each TR, neither the percent change during the saccade
task nor the percent change during the hypercapnia task
significantly changed with TR. This was true for the young
and old subjects grouped together and for each group ana-
lyzed separately. This demonstrates that the results were
not biased by the data from one sampling rate.

BOLD Signal Relationships for
Saccade vs. Hypercapnia Tasks

Linear regression analysis was used to compare the per-
cent signal change by voxel of the saccade task vs. the
hypercapnia task. The selected voxels were significantly
active during the saccade task and all comparisons across
tasks used the same voxels for each task.

Collapsed across ROIs

There was a significant linear regression between activ-
ity in the saccade task vs. hypercapnia with voxels from
all ROIs and clustered by subject (P < 10"26, R2 ¼ 0.566,
slope ¼ 0.0959, and the intercept ¼ 0.843). When subjects
were divided into younger and older populations, the
slope of the regression for younger subjects was 0.100 and
0.087 for older subjects. Neither the slope nor intercept dif-
ferences across the populations were significant. There was
also a significant linear regression in most individual sub-
jects. Figure 4 shows examples of these regressions from
four younger and four older subjects. Forty-eight of the 50
subjects showed significant linear regressions of signal

Figure 2.
Bar graphs of regions and populations. A,B: Mean percent change
across voxels in all subjects during the saccade task and the hyper-
capnia task, respectively. C: Mean of the percent change during
the saccade task divided by the percent change during the hyper-

capnia task in each voxel. The error bars show the robust stand-
ard error clustered by subject. The P-values are shown above sig-
nificant differences and were calculated from regressions that com-
pared across populations and included a dummy variable for TR.

Figure 3.
A,B: Histograms of percent signal change during the saccade task.
C,D: Percent signal change during the hypercapnia task. E,F: The
ratio, by voxel of the percent signal changes of the saccade task di-
vided by the hypercapnia task. This includes data from all subjects
and all anatomical masks. Histograms A,C,E use a 1.1-s TR and
B,D,F use a 2-s TR. Since each population had a different number
of subjects and a different raw number of significantly active voxels,
the y-axis was scaled to percent of voxels in that population.

r Handwerker et al. r
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Response magnitudes in several brain regions vary during a cognitive task and a primarily vascular 
breath holding task. 

Separate measures of simple tasks, enriched gas breathing, baseline CBF, standard deviation of resting scans can 
provide calibration or simply sanity checks

These can take scanner time away from studying the effects of interest, which has limited their popularity

Handwerker et al, Human Brain Mapping 2007



Modeling the order of neural events with fMRI is 
fundamentally problematic

Handwerker et al NeuroImage 2012

Author's personal copy

hemodynamic response function shape (Fig. 2A), convolved it with an
event-related time series of neural events (Fig. 2B), and scaled and
added it to noise (Figs. 2C and D). The HR was constant in node 1.
The HR in node 2 was identical to node 1, had a 1 s delayed peak or
onset, or a larger relative post-stimulus undershoot. For the event-
related design, there was a 50% chance of an event appearing at
each time point (sampling rate=2 s). The identical event pattern
with no time lag was used in both nodes. While a 1 s HR onset
delay is equivalent to a 1 s shift in event timing, all other cases should
be null results (i.e. neither node significantly predicts the other).
To get realistic fMRI noise with minimal causality and correlation,
each of the two nodes contained spontaneous fluctuations from a
single voxel taken from a different subject and brain region
(Fig. 2C). These data had 300 time points and were collected as part
of Murphy et al. (2009). The noise time series had a correlation

magnitude of r=−0.08. Simulated data were created by adding
these noise time series to the scaled synthetic responses (Fig. 2B).
The data were scaled so that the correlations between the nodes
when the HRs were identical would represent a higher (r=0.78)
and lower (r=0.46) temporal signal-to-noise ratio (TSNR). A DCM
analysis in the SPM8 software package was run on both of the net-
works in Fig. 2E at both TNSR levels and all 4 pairings of HR shapes
(Fig. 2D). The DCM analysis was also run on the noise time series
(Fig. 2C). The underlying noise time series in nodes 1 and 2 were
also switched to confirm that the presented results were a function
of HR variation and not noise characteristics.

Fig. 2F shows the results comparing posterior probabilities from
each model. If one model is higher than the other, it is more likely to
represent the data. A typical significance cutoff is a posterior probabil-
ity greater than 0.9. As expected, neither model is significantly better
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Fig. 2. The left column shows the inputs to node 1 of the dynamic casual modeling (DCM) simulation and the right column shows the inputs to node 2. (A) Node 1 always includes a
single HR shape. Node 2 includes the same HR shape or HR shapes that have delayed onsets, peak times, or undershoot magnitudes. (B) The HRs are convolved with an event-
related design of neural event times (black dots). This shows a 150 s window of the 300 s time series (C) Each node has a noise time series from different subjects' scans of spon-
taneous fluctuations. (D). The HR time series in B are scaled and added to the noise in C. This figure shows how the time series look for the lower TSNR condition. (E) Schematics of
the two models that were compared using DCM. (F) Comparisons of the two models in E. For each HR shape tested, if the blue or green lines are higher, that means node 1 is more
likely to predict node 2. If the red or yellow bars are higher, node 2 is more likely to predict node 1. The dashed line at 0.9 is a typical significance threshold.
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Summary: Why is noise removal so hard to solve?
• Signal vs Noise is defined by a study’s goals
• Annoying noise vs result-biasing noise also depends on a 

study’s goals
• Some factors are easily measurable: 

Motion, breathing, pulse
• But they aren’t always measured or examined closely
• Measuring can identify problems, but not necessary solutions

• Some factors aren’t easily measurable: 
Neurovascular coupling, non-task-specific behavior



Minimizing noise during data acquisition
• Maximize Signal-To-Noise Ratio (SNR)
• Maximize Contrast-To-Noise Ratio (CNR)
• Maximize Temporal Signal-To-Noise Ratio (TSNR)
• Minimize specific artifacts
• Minimize distortions & signal dropout
• Minimize subject-induced or unmodeled variation
• Improve temporal resolution
• Improve spatial specificity

We want fast data at super high resolution where responses can be 
resolved in just a few trials with no distortion, dropout, or artifacts

Everything is a balance of priorities with no definitive right answer, 
but many wrong ones



General acquisition goals
• Give thought to the specific priorities of a study

• Response shape sensitivity vs specificity
• Anatomical accuracy
• Robustness against general artifacts
• Robustness against artifacts that can bias a study

• The optimal acquisition options aren’t always obvious.

• What is the best flip angle for an fMRI study?



better contrast at lower flip angles translates in easier segregation of
tissue compartments.

Discussion

Physiological noise is a major source of undesired variance in
BOLD fMRI time courses in a vast majority of experimental situations
(Kruger and Glover, 2001; Kruger et al., 2001; Triantafyllou et al.,
2005; Bodurka et al., 2007). We have investigated, both theoretically
and experimentally, the effect that MR-signal strength-dependent
physiological noise exerts on BOLD fMRI temporal signal to noise

ratio (TSNR) as a function of the flip angle in situations where
physiological noise constitutes a dominant source of time course
variance. We have scanned 8 subjects at a commonly used BOLD
fMRI voxel volume of 3.75×3.75×4 mm3, where physiological noise
is the dominant source of time course variance (Bodurka et al.,
2007); and physiological noise introduces a non-linear dependence
in TSNR, which translates into a flattening of the TSNR vs. flip angle
curve. We have also demonstrated that this TSNR behavior can be
exploited to perform BOLD-fMRI at flip angles other than the Ernst
angle with no detrimental effects in our ability to detect statistically
significant neuronal activations.

Fig. 7. Averaged hemodynamic response across all eight subjects for all flip angles in three different anatomically defined ROIs: right visual cortex, left visual cortex and left primary
motor cortex. The top panel shows 3D renderings of the ROIs. Themiddle panel shows estimations of the hemodynamic response without intensity normalization (i.e., only constant,
linear and quadratic trends were removed). The bottom panel shows estimations of hemodynamic response in terms of signal percent change. These were obtained by means of
intensity normalization prior to the detrending step.
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Optimal flip angle?

appreciably smaller than the response for the reference angle
(θ=75°, black curve) in all ROIs. Conversely, for larger angles (θ=
[45°, 60°, 90°, 105°, 120°]), the differences are small (visual cortex) or
do not exist (motor cortex). After intensity normalization, differences
across ROI persists, e.g. visual cortex ROIs shows a positive deflection
of about 1.5% while motor cortex shows levels below 1%, but
differences across flip angles are clearly reduced. Intensity normalized
HRs are almost undistinguishable across flip angles in all three ROIs,
with the exception of the HR for θ=9° (red curve), which appears to
be slightly stronger in all regions.

Across subjects averaged total noise (σfmri), BOLD contrast (ΔS)
and CNR levels are presented in Fig. 8. Noise level and BOLD contrast
vary with flip angle, still CNR appears not to be modulated by flip
angle, at least for the angles under consideration. To evaluate the
significance of these observations we performed independent 3-way
mixed effect ANOVAs [A=Flip Angle, Fixed; B=Subject, Random;
C=ROI, Fixed] for each metric. Noise levels significantly vary across
flip angles (F=60.32; pb0.05) in all ROIs. Subsequent multiple
comparison analysis (MATLAB function multcompare) reveals that
noise levels at low angles [θ=9°, 15°, and 30°] were significantly
smaller than noise levels at θ=75°. For all other angles, the multiple
comparison analysis on noise levels revealed no significant differences
with θ=75°. The same tendency is true for BOLD contrast levels
(F=42.76; pb0.05). Conversely, CNR shows no significant variation
across flip angles (F=1.09, p=0.37).

Task-related activation results

Figs. 9 and 10 show statistical maps of activation for visual and
motor cortices, respectively, in a sample of four representative
subjects. Results for the remaining set of subjects were similar to
the ones depicted in the figures. Significant activations at pFDRb0.05
were detected in bilateral visual cortex and left primary motor
cortex in all subjects and at all flip angles. Overlap maps on the right
most column of the figures show high consistency of activation across
flip angles for each subject in both regions. The ratio of volume
overlap for the full brain was Roverlap=0.65±0.06. When calculations
are restricted to the left primary motor ROI, Roverlap increases to a
value of 0.76±0.09. When the ratio is computed considering
all voxels within left and right visual ROIs, it reaches a value of
0.91±0.04.

Finally, Fig. 11 shows results for the voxel-wise β-coefficient
correlation analysis. Fig. 11A shows a scatter plot and linear fit for the

ideal case where voxel-wise estimations of β are identical for two
different flip angles. For this ideal situation to occur, there is the need
for no flip angle effect (meaning beta values are the same across
different flip angles) and no uncounted inter-run variance. Fig. 11.B
shows two representative scatter plots computed for two different
subjects (Sbj8, Sbj5) and two different ROIs (right visual cortex, left
primary motor cortex). A clear linear relationship exists between the
β-coefficients at θ=75° and other flip angles (θ=45°, θ=15°).
Moreover, the slope (S=0.98, S=1.17) and constant terms (C=
−0.08, C=0.11) of these two representative cases do not greatly
differ from the ones associated with the ideal case (S=1, C=0). To
evaluate if deviations from the ideal case were significant, we
computed averaged values of S and C for each angle-pair comparison
within each ROI. Fig. 11C shows a summary of these average values
(bar height=average value, error bar=95% confidence interval). The
slope of the linear fits was significantly different (pUncorrectedb0.05)
from the ideal case (S=1) in three cases for the right visual ROI
(red error bars), two cases for the left primary motor cortex (red
error bars), and no cases for the left visual cortex. When corrected
for multiple comparisons (pBonferronib0.05) none of these cases
survive the threshold. With respect to the constant term, a
similar situation arises. The constant term was significantly different
(pUncorrectedb0.05) from the ideal case (C=0) for one case in the right
visual cortex (red error bars), two cases in the left visual cortex (red
error bars) and no cases for the left primary motor cortex. When
corrected for multiple comparisons (pBonferronib0.05) none of these
cases survived the threshold.

Tissue contrast dependence with flip angle

Fig. 12A shows simulations of Eq. (12) for three tissue contrasts of
interest; namely GM vs. WM (ΔSWM,GM), GM vs. CSF (ΔSGM,CSF) and
WM vs. CSF (ΔSWM,CSF). These simulations correspond to a TR=2 s
and experimental measures of So and T1 reported in Table 2. Mean and
standard deviation measures of tissue contrast at imaged flip angles
are also presented in the figure. Agreement between experimental
measures and theoretical curves can be observed in the figure.
Moreover, it can be observed that contrast between WM and CSF is
higher at lower flip angles in the vicinity of θS,GM (black dashed line;
ΔSGM,CSF≈16%) than at larger imaging angles in the vicinity of the
Ernst angle for GM (black dotted line; ΔSGM,CSF≈−8%). Fig. 12B
shows axial slices, after steady-state have been reached, for an
exemplary subject. This figure allows us to visually appreciate how

Fig. 6. SNR and TSNR Results for GM, WM and CSF. Dotted lines represent simulations of Eqs. (4) and (9) using parameter values obtained experimentally (Table 2). Averaged
measurements of SNR and TSNR are represented as circles. Standard deviation error bars accompany these mean values. Finally, suggested flip angles are depicted as yellowmarkers
for each tissue compartment.
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Increases in SNR 
also increase the 

physiological noise 
signal and dampen 
the temporal SNR 

benefits from a 
signal increase

λ is amount of 
physiological noise

the relationship between TSNR and flip angle is relatively constant
across a wide range of flip angles. We subsequently evaluate if the use
of flip angles other than the Ernst angle has any detrimental effect on
our ability to detect BOLD-related neuronal activity. For that purpose
we conducted a block-design experiment with a combined visual-
motor task. Using these data, we examined flip angle effects on the
time-course of the hemodynamic response associated with task
epoch, on contrast-to-noise ratio (CNR), and on statistical maps of
activation. Our results suggest that, as could be expected on the basis
of TSNR behavior, under specific experimental conditions the use of
angles larger or smaller than the Ernst angle does not reduce our
ability to detect BOLD-based neuronal activity. In this respect, we also
provide formulation of the suggested flip angle (θS), which provides a
conservative estimate of the minimum flip angle that can be used
under given experimental SNR and physiological noise levels.

The possibility of performing fMRI at low flip angles without great
loss in TSNR, as our results suggest, comes accompanied by a series of
additional benefits such as: (1) reduction of RF power, (2) limitation
of apparent T1-related inflow effects—e.g., increasing BOLD specificity,
(3) reduction of through-plane motion artifacts, (4) lower levels of
physiological noise—as a result of the linear dependence between
physiological noise and signal level and (5) improved tissue contrast.
Two of these benefits, lower physiological noise and lower RF induced
heating are of special importance in imaging at ultra-high fields.

Theory

Signal-to-Noise Ratio (SNR)

SNR =
S
σo

ð1Þ

SNR for magnetic resonance images (Eq. (1)) is defined as the ratio
of the signal (S) from a small volume of material in the body to the
thermal noise present in the measuring system (σo) (Edelstein et al.,
1986). In the case of gradient recalled-echo, in which a series of
consecutive imaging volumes are acquired with repetition times (TR)
in the same order of magnitude as the longitudinal relaxation time
(T1) of the sample under study, the numerator in Eq. (1) no longer
refers to the signal generated after a single excitation, but to the
steady state signal that develops after several seconds. The mathe-
matical formulation of this steady state signal (SSSIS) is provided in
Eq. (2) (Zur et al., 1991)

SSSIS ≡ SðθÞ = Mo⋅
1−e−TR=T1

! "
⋅ sinðθÞ

1−e−TR=T1 ⋅ cosðθÞ
⋅e−TE =T#

2 ð2Þ

where θ=flip angle, TE=echo time, T2*=transverse relaxation time,
and Mo=longitudinal magnetization. If we now define SNRo as the
signal-to-noise ratio for the first image of the fMRI time-series for
θ=90° (Eq. (3)), we can obtain a simplified version (Eq. (4)) of SNR as
a function of flip angle (θ) for gradient echo fMRI that depends solely
on parameters easily obtained experimentally.

SNRo =
So
σo

=
Mo⋅e−TE =T#

2

σo
ð3Þ

SNRðθÞ = SNRo⋅
1−e−TR=T1

! "
⋅ sinðθÞ

1−e−TR=T1 ⋅ cosðθÞ
ð4Þ

Temporal Signal-to-Noise Ratio

In fMRI, temporal signal to noise ratio (and typically not signal to
noise ratio) is the determinant of sensitivity. Temporal signal to noise
ratio (TSNR), which is many times used in fMRI to evaluate data

quality (Bellgowan et al., 2006; Bodurka et al., 2007; Kruger and
Glover, 2001; Murphy et al., 2007; Parrish et al., 2000; Triantafyllou
et al., 2005), is commonly defined as

TSNR =
SSSIS
σ
fmri

ð5Þ

where SSSIS is the mean voxel time course signal, and σfmri is the voxel
time course standard deviation. It has been already demonstrated
(Bodurka et al., 2007; Kruger and Glover, 2001; Kruger et al., 2001)
that the noise variance in an imaging voxel (σfmri

2 ) is the sum of
thermal noise (σo

2) and physiological noise (σp
2). The thermal noise in

MR (σo) arises from the subject and scanner electronics, and depends
on B0, but is independent of MR-signal strength (Kruger and Glover,
2001; Edelstein et al., 1986). The physiological noise (σp) is directly
proportional to MR-signal strength (σp=λ⋅SSSIS), and creates the
following non-linear relationship between SNR and TSNR:

TSNR =
SNRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λ2⋅SNR2
p ð6Þ

If we combine Eqs. (4) and (6) we obtain the following expression
of TSNR as a function of flip angle

TSNR θð Þ =
SNRo⋅

1−e−TR = T1ð Þ⋅ sin θð Þ
1−e−TR = T1 ⋅ cos θð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λ2⋅ SNRo⋅
1−e−TR = T1ð Þ⋅ sin θð Þ
1−e−TR = T1 ⋅ cos θð Þ

$ %2
s ð7Þ

Fig. 1 shows plots of Eqs. (4) and (7) for three human tissue
compartments—namely grey matter (GM), white matter (WM), and
cerebrospinal fluid (CSF)—as well as for a Silicone Oil phantom. The
values of T1, λ, and SNRo (Table 1) used in these simulations
correspond to values previously reported in the literature for 3 T
scanners (Bodurka and Bandettini, 2009; Wang et al., 2006).
Repetition time (TR) is set to 2.0 s, a commonly used value in fMRI
experimentation. In the figure, it can be observed that both SNR and
TSNR reach their respective maximum values at the Ernst angle (Ernst
and Anderson, 1996). The figure also shows how SNR strongly varies
as a function of flip angle in all cases under consideration. Conversely,
TSNR presents two different behaviors depending on the amount of
physiological noise present in the measured system. For a Silicone Oil
phantom, which presents aminor contribution of signal-dependent or
physiological-like noise (λ=0.0015), TSNR behaves in a similar
manner to SNR. Conversely, for GM (λ=0.0067), WM (λ=0.0053)
and, especially for CSF (λ=0.0095), the TSNR curves suffer little
modulation by the flip angle for a wide range of angles above and
below the Ernst angle. To further investigate the effect of λ on the
shape of the TSNR curve, we generated additional plots of TSNR vs.
Flip Angle for different levels of physiological noise (ranging from
λ=0 to λ=0.05) while keeping T1 and SNRo equal to the values
reported in Table 1 for GM. Fig. 2.A shows these additional plots. It can
be observed that as λ increases, the TSNR curve becomes flatter and
conserves a value close to its maximum for a wider range of angles.
Moreover, if we look at the angle below the Ernst angle for which
TSNR has decreased to half its maximum value (θ50%)–marked as
squares in Fig. 2.A–we can see that as λ increases this angle becomes
smaller. Fig. 2B shows how this angle, θ50%, decreases very rapidly and
reaches a value of 7.22° for λ=0.0067 (physiological noise level
previously reported for GM (Bodurka and Bandettini, 2009)).

These results, coupled with the fact that TSNR is the primary
measure of the ability to detect BOLD signal changes (Bellgowan et al.,
2006; Parrish et al., 2000), suggest that detection of BOLD fMRI
changes might not be detrimentally affected by the use of flip angles
other than the Ernst angle. In the experiments described below we
explore this possibility in detail.
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the relationship between TSNR and flip angle is relatively constant
across a wide range of flip angles. We subsequently evaluate if the use
of flip angles other than the Ernst angle has any detrimental effect on
our ability to detect BOLD-related neuronal activity. For that purpose
we conducted a block-design experiment with a combined visual-
motor task. Using these data, we examined flip angle effects on the
time-course of the hemodynamic response associated with task
epoch, on contrast-to-noise ratio (CNR), and on statistical maps of
activation. Our results suggest that, as could be expected on the basis
of TSNR behavior, under specific experimental conditions the use of
angles larger or smaller than the Ernst angle does not reduce our
ability to detect BOLD-based neuronal activity. In this respect, we also
provide formulation of the suggested flip angle (θS), which provides a
conservative estimate of the minimum flip angle that can be used
under given experimental SNR and physiological noise levels.

The possibility of performing fMRI at low flip angles without great
loss in TSNR, as our results suggest, comes accompanied by a series of
additional benefits such as: (1) reduction of RF power, (2) limitation
of apparent T1-related inflow effects—e.g., increasing BOLD specificity,
(3) reduction of through-plane motion artifacts, (4) lower levels of
physiological noise—as a result of the linear dependence between
physiological noise and signal level and (5) improved tissue contrast.
Two of these benefits, lower physiological noise and lower RF induced
heating are of special importance in imaging at ultra-high fields.

Theory

Signal-to-Noise Ratio (SNR)

SNR =
S
σo

ð1Þ

SNR for magnetic resonance images (Eq. (1)) is defined as the ratio
of the signal (S) from a small volume of material in the body to the
thermal noise present in the measuring system (σo) (Edelstein et al.,
1986). In the case of gradient recalled-echo, in which a series of
consecutive imaging volumes are acquired with repetition times (TR)
in the same order of magnitude as the longitudinal relaxation time
(T1) of the sample under study, the numerator in Eq. (1) no longer
refers to the signal generated after a single excitation, but to the
steady state signal that develops after several seconds. The mathe-
matical formulation of this steady state signal (SSSIS) is provided in
Eq. (2) (Zur et al., 1991)

SSSIS ≡ SðθÞ = Mo⋅
1−e−TR=T1

! "
⋅ sinðθÞ

1−e−TR=T1 ⋅ cosðθÞ
⋅e−TE =T#

2 ð2Þ

where θ=flip angle, TE=echo time, T2*=transverse relaxation time,
and Mo=longitudinal magnetization. If we now define SNRo as the
signal-to-noise ratio for the first image of the fMRI time-series for
θ=90° (Eq. (3)), we can obtain a simplified version (Eq. (4)) of SNR as
a function of flip angle (θ) for gradient echo fMRI that depends solely
on parameters easily obtained experimentally.

SNRo =
So
σo

=
Mo⋅e−TE =T#

2

σo
ð3Þ

SNRðθÞ = SNRo⋅
1−e−TR=T1

! "
⋅ sinðθÞ

1−e−TR=T1 ⋅ cosðθÞ
ð4Þ

Temporal Signal-to-Noise Ratio

In fMRI, temporal signal to noise ratio (and typically not signal to
noise ratio) is the determinant of sensitivity. Temporal signal to noise
ratio (TSNR), which is many times used in fMRI to evaluate data

quality (Bellgowan et al., 2006; Bodurka et al., 2007; Kruger and
Glover, 2001; Murphy et al., 2007; Parrish et al., 2000; Triantafyllou
et al., 2005), is commonly defined as

TSNR =
SSSIS
σ
fmri

ð5Þ

where SSSIS is the mean voxel time course signal, and σfmri is the voxel
time course standard deviation. It has been already demonstrated
(Bodurka et al., 2007; Kruger and Glover, 2001; Kruger et al., 2001)
that the noise variance in an imaging voxel (σfmri

2 ) is the sum of
thermal noise (σo

2) and physiological noise (σp
2). The thermal noise in

MR (σo) arises from the subject and scanner electronics, and depends
on B0, but is independent of MR-signal strength (Kruger and Glover,
2001; Edelstein et al., 1986). The physiological noise (σp) is directly
proportional to MR-signal strength (σp=λ⋅SSSIS), and creates the
following non-linear relationship between SNR and TSNR:

TSNR =
SNRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λ2⋅SNR2
p ð6Þ

If we combine Eqs. (4) and (6) we obtain the following expression
of TSNR as a function of flip angle

TSNR θð Þ =
SNRo⋅

1−e−TR = T1ð Þ⋅ sin θð Þ
1−e−TR = T1 ⋅ cos θð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λ2⋅ SNRo⋅
1−e−TR = T1ð Þ⋅ sin θð Þ
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Fig. 1 shows plots of Eqs. (4) and (7) for three human tissue
compartments—namely grey matter (GM), white matter (WM), and
cerebrospinal fluid (CSF)—as well as for a Silicone Oil phantom. The
values of T1, λ, and SNRo (Table 1) used in these simulations
correspond to values previously reported in the literature for 3 T
scanners (Bodurka and Bandettini, 2009; Wang et al., 2006).
Repetition time (TR) is set to 2.0 s, a commonly used value in fMRI
experimentation. In the figure, it can be observed that both SNR and
TSNR reach their respective maximum values at the Ernst angle (Ernst
and Anderson, 1996). The figure also shows how SNR strongly varies
as a function of flip angle in all cases under consideration. Conversely,
TSNR presents two different behaviors depending on the amount of
physiological noise present in the measured system. For a Silicone Oil
phantom, which presents aminor contribution of signal-dependent or
physiological-like noise (λ=0.0015), TSNR behaves in a similar
manner to SNR. Conversely, for GM (λ=0.0067), WM (λ=0.0053)
and, especially for CSF (λ=0.0095), the TSNR curves suffer little
modulation by the flip angle for a wide range of angles above and
below the Ernst angle. To further investigate the effect of λ on the
shape of the TSNR curve, we generated additional plots of TSNR vs.
Flip Angle for different levels of physiological noise (ranging from
λ=0 to λ=0.05) while keeping T1 and SNRo equal to the values
reported in Table 1 for GM. Fig. 2.A shows these additional plots. It can
be observed that as λ increases, the TSNR curve becomes flatter and
conserves a value close to its maximum for a wider range of angles.
Moreover, if we look at the angle below the Ernst angle for which
TSNR has decreased to half its maximum value (θ50%)–marked as
squares in Fig. 2.A–we can see that as λ increases this angle becomes
smaller. Fig. 2B shows how this angle, θ50%, decreases very rapidly and
reaches a value of 7.22° for λ=0.0067 (physiological noise level
previously reported for GM (Bodurka and Bandettini, 2009)).

These results, coupled with the fact that TSNR is the primary
measure of the ability to detect BOLD signal changes (Bellgowan et al.,
2006; Parrish et al., 2000), suggest that detection of BOLD fMRI
changes might not be detrimentally affected by the use of flip angles
other than the Ernst angle. In the experiments described below we
explore this possibility in detail.

2 J. Gonzalez-Castillo et al. / NeuroImage xxx (2010) xxx–xxx

Please cite this article as: Gonzalez-Castillo, J., et al., Physiological noise effects on the flip angle selection in BOLD fMRI, NeuroImage (2010),
doi:10.1016/j.neuroimage.2010.11.020



Selecting the right voxel size
• Smaller -> Lower SNR
• Smaller -> More anatomical specificity -> Higher TSNR of interest

Huber, Tse et al NeuroImage (2018)
VASO imaging with spatial 
smoothing

3x3x3mm3 voxels = 27 mm3

1x1x1mm3 voxels = 1 mm3



Griffanti et al NeuroImage 2014

Temporal Sampling Rate (TR) 
• Shorter -> lower SNR, but better temporal resolution and 

possibly higher TSNR
• Shorter -> Better filtering of high frequency artifacts (if not 

removed using other methods)
• Still limited by the speed of the hemodynamic response



Pay attention to artifacts:
Fat ghosts can have small signal but large instability

Mean signal with normal 
fat saturation

Standard devision with 
normal fat saturation

Mean signal with ultra 
strong fat saturation

Standard deviation with 
ultra strong fat saturation

VASO data presented at OHBM 2016. Handwerker, Huber et al



Huber et al., 
NeuroImage, 2016

The “best” pulse sequence interacts with voxel size & SNR
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Pulse sequence sensitivies

Images from Laurentius Huber
graphical depiction of review articles [Uludaĝ and Blinder 2017] and [Huber et al., 2017]
drawn based on Duvernoy, 1981 Brain Res



[Huber et al., ISMRM, 2017]
Images from Laurientius Huber

Functional Response
Pulse sequence sensitivies



Using peripheral measures: Eye tracking
• Correlations to eyelids 

open vs closed
• Other studies have shown gaze 

to also be an arousal/attention 
measure

• This variation my have a neural 
origin, but it can still be noise 
when unmodeled

Chang, Leopold, et at 2016



Head movement can be reduced
• Less head motion -> Less need to remove motion in data processing
• Head movement may systematically vary across populations
• Don’t assume the way you saw someone else restrict head movement is the 

best way
• “The best” varies by head coil, head size, & population
• There are more and more options

caseforge.cohttp://www.magmedix.com/pearltec-multipad-slim.html



Prepare participants
• Take the time to make sure a participant knows what to do 

in the MRI and is comfortable
• The more feedback you get in a task, the better you know 

what a participant is doing
• For classic ”resting state” scans, peripheral measurements are 

particularly useful
• Noise IS NOT independent from task design



Task design & head movement
Experimental design affects head motion

Huijbers, Van Dijk, et al 2017



Experimental 
design affects head 

motion

Vanderwal, Kelly, et al 2015
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MRI Quality Assessment Scans
NIH Intramural example

• Approximately daily scans of an oil phantom for every commonly 
used head coil on every scanner

• Parameters that can provide long-term consistency
• Single Echo EPI, no acceleration; 72x72 grid; 37 slices; 3mm3 voxels; 

5-10 min of data per receiver coil

• Save reconstructed & (sometimes) raw data
• Try to automate processing & recording pipeline



Sample QA Plots of Temporal Signal To Noise Ratio

From different scanners From each receiver coil on one scanner

Images from Vinai Roopchansingh



Regular Results Evaluations

Image from: http://mriqc.readthedocs.io/en/stable/reports/group.html

MRIQC code: https://github.com/poldracklab/mriqc
MRIQC new web API: https://mriqc.nimh.nih.gov/



Summary: Removing Noise during acquisition

• Every MRI pulse sequence parameter choice is a compromise
• Need to know what the priorities of a study are

• Noise at acquisition is about more than pulse sequences and 
MRI hardware

• Undesired Head motion and behavioral changes can be reduced 
through study design and working proactively with volunteers

• Peripheral measures like respiration, pulse, and eye movement can 
model some noise sources

• Scanner quality can vary with time. Regular quality assurance 
scans can prevent undesired surprises



Next time

The least bad ways to remove noise


