Session IV: Design of MVPA Studies

Martin Hebart
Laboratory of Brain and Cognition
NIMH
BUT BEFORE WE GET TO EXPERIMENTAL DESIGN…
General fMRI Preprocessing

Usual approach for searchlight decoding:

- Searchlight decoding
- Normalization
- Smoothing
- Group-level Stats

Alternative approach for searchlight decoding:

- Normalization
- Searchlight decoding
- Smoothing
- Group-level Stats

Second approach required for between-subject analysis
Usual approach for whole-brain / ROI decoding:

Alternative approach for whole-brain / ROI decoding:

Second approach required for between-subject analysis
EXPERIMENTAL DESIGN
Goals of this Presentation

MVPA Design
- What are requirements for the experimental design of MVPA studies?

Minimize Noise, Maximize Signal
- How can we maximize the information we extract by our experimental design?

Confounds in MVPA studies
- What are possible confounds that we have to consider?
- How can we avoid these confounds?
- If we cannot avoid them: How can we detect and eliminate them?
Important Note

• How you later want to analyze your data can have important consequences for your design
• This presentation: strong focus on fMRI classification within subject (e.g. different conditions)
• But: Principles apply also to between subject classification or other modalities (e.g. EEG)
MVPA Workflow

1. Design and Data Acquisition
2. Preprocessing
3. Type of Analysis
4. Classification
5. Statistical Analysis
MVPA DESIGN: GENERAL
Design choices for Multivariate Decoding

Most design choices identical to univariate GLM
- duration of experiment (longer = better)
- scanner settings (TR, TE, flip angle, descending acquisition, …)
- high spatial resolution: unclear if benefit specific to multivariate

What you need to consider
- classification requires independence (or dependence balanced between classes) of training and test data
- often data dependencies exist that invalidate this assumption
- crucial for cross-validation: all conditions needed in all folds
Leave-One-Run Out Cross-Validation

Typical Analysis: Leave-one-run-out cross-validation

Reason: Non-independence within run can bias results
How Many Runs for Leave-One-Run Out?

<table>
<thead>
<tr>
<th>Data variability</th>
<th>Many short runs</th>
<th>Few long runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of training data</td>
<td>more training data</td>
<td>less training data</td>
</tr>
</tbody>
</table>

- Usually 6 to 12 runs, 4 runs is usually minimum
- Number often determined by condition balancing within run
- When minimizing between-run differences: more runs better
HOW TO MINIMIZE NOISE AND MAXIMIZE SIGNAL
Minimize Noise

- Assuming that source of information lies in fine-scale patterns, noise perturbations can destroy this information.
- Most important sources of noise that affect fine-scale patterns:
 - head motion
 - physiological noise
 - scanner-related effects

Example: Effect of displacement on sampling of orientation columns

→ motion correction only interpolates

Maximize Signal: Design Efficiency

Design Efficiency

Goal: Maximize the pattern distinctness, i.e. increase between-class scatter or decrease within-class scatter

→ Improving design efficiency of GLM for univariate contrast will maximize the distinctness also for MVPA

Additional advice:
For single-trial event-related analysis and short TR (< 2.5s), time-locking onsets to TR can reduce between trial variability

http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
Interim Summary

- Reducing noise in the acquisition may have a stronger benefit for multivariate analyses than univariate analyses, but benefit is still unclear.
- Optimizing the design efficiency can improve the pattern distinctness.
- Common software for doing this at the end of the presentation.
THE PERVERSIVENESS OF CONFOUNDS IN MVPA STUDIES
Confounds

Two classes of confounds:
1. Confounds in the experimental design
2. Confounds in the results

→ Best practice is to avoid confounds before they happen
→ We can avoid confounds in experimental design
→ There are some confounds we cannot avoid, but can only control
Confounds in the Experimental Design

Typically disregarded issues can become a confound

Example: Classification of top-down visual attention

Confound: visual cue
Confounds in the Experimental Design

Typically disregarded issues can become a confound

Example: Classification of choice?

Confound: motor response
Confounds in the Experimental Design

Solution 1: Exclude brain regions that confound responds to
- For motor confound: Exclude motor-related brain regions
- For visual confound: Exclude visually responsive regions

But: Maybe unexpected brain region responds to confound? Maybe those regions respond to true effect?
And: Sometimes approach not possible
Confounds in the Experimental Design

Solution 2: Separate confound in time or through jitter
- For motor confound: Wait 20s with motor response
- For visual confound: Show cue jittered and model separately

But: Pattern autocorrelation can last very long
And: Jitter only reduces confound, never eliminates it!

not recommended
Confounds in the Experimental Design

Solution 3: Cross-classification

- For motor confound: Switch response modality, e.g. after each run
- Train classifier on data with one confound, test on data with other
- If above chance, then classifier generalizes across confound
- For visual confound: Use different cue

But: Less data available for training, i.e. possibly reduced sensitivity
And: Possible task-switching costs

recommended if no better possibility
Confounds in the Experimental Design

Solution 4: Cue Trick

- For motor confound: Use response-mapping rule
- Controls for confound by balancing
- For visual confound: Not always possible

But: Requires training of subject

Recommended when possible

Rule 1
- If up, press left
- If down, press right

Rule 2
- If up, press right
- If down, press left

Hebart et al (2014) – Cerebral Cortex
Confounds in the Experimental Design / Results

Different estimability of betas for class A vs. B problematic

Confounds in the Experimental Design / Results

Different estimability of betas for class A vs. B problematic

Result without any difference in mean pattern

Detection of Confounds

Example: Order confound

Impossible to distinguish if effect:
1. true difference in A vs. B
 or
2. based on fatigue (A first, B later)
Detection of Confounds

Possible solution to order confound: Counterbalancing?

If region responds to condition but not confound

If region responds to confound but not condition
Detection of Confounds

Possible solution to order confound: Counterbalancing?

If region responds to condition but not confound

If region responds to confound but not condition

1st A B 2nd
2nd A B 1st
1st A B 2nd
2nd A B 1st

trained classifier

opposite prediction = below chance!
Detection of Confounds in Design

Same analysis approach (Görgen et al., arXiv)

- We do decoding analysis using cross-validation
- Cross-validation is a different statistical method than classical statistics
- To measure the influence of a confound, we need to apply the same statistical method to it

Univariate decoding on confounding variable, i.e. treat confound as data
Can become part of efficiency optimization if confound in design is assumed
Elimination of Confounds

Approach 1: Balance confounds

- Do sub-classification on data
- Example: Representation of value in choice task

but: less sensitive than one classification (ameliorated by ensemble approach with repeated subsampling)

and: difficult to apply for continuous confounding variables
Elimination of Confounds

Approach 2: Add nuisance regressor to remove confound

A B RT

can introduce bias when control regressors correlated differently between classes

can lead to false sense of certainty that confound has been controlled

Summary

- Experimental design requires all conditions to be roughly equally present in all folds (e.g. runs)
- Confounds are difficult to deal with
- The cue trick is useful to decorrelate choices and button presses
- It is not easy to follow the own intuition to avoid confounds
- Below-chance accuracies (and false above-chance accuracies) can be explained by uncontrolled or badly-controlled confounds
- The same analysis approach provides a method for detecting confounds before they occur
Study Question

(1) If you are planning an MVPA study or have MVPA data, think about possible confounds in your experimental design. How would you deal with them? Discuss them in your small group.

(2) Alternatively, design a very simple experiment where participants make choices to two different stimuli.
(a) How can you avoid confounding choices with button presses?
(b) Can you think of other confounds? How can you take these into account?
Maximize Signal

Software for Design Efficiency

• Doug Greve: OptSeq
 http://surfer.nmr.mgh.harvard.edu/optseq/

• Wager & Nichols: Genetic algorithm
 https://github.com/canlab/CanlabCore

• No optimization algorithm, but easy and more flexible method to set up design matrix:
 http://martin-hebart.de/webpages/code/matlab.html

 Suggestion: Brute-force repetition works well in general