### Nuts and Bolts of MRI and FMRI

#### Vinai Roopchansingh

Functional MRI Facility, National Institute of Mental Health, National Institutes of Health, DHHS, USA

June 6, 2018







# Outline

- System overview
- Components of the acronym
  - What's the Magnet for?
  - Where does Resonance come in?
  - How is Imaging accomplished?
- Some basic types of MR contrast
- Re-cap of System overview

# Outline

- System overview
- Components of the acronym
  - What's the Magnet for?
  - Where does Resonance come in?
  - How is Imaging accomplished?
- Some basic types of MR contrast
- Re-cap of System overview

### System overview



Huettel - Functional Magnetic Resonance Imaging

# Outline

- System overview
- Components of the acronym
  - What's the Magnet for?
  - Where does Resonance come in?
  - How is Imaging accomplished?
- Some basic types of MR contrast
- Re-cap of System overview

 Certain nuclei (odd number of protons and/or neutrons) have magnetic properties (i.e. magnetic moment - 1952 Nobel Prize in Physics, to Bloch and Purcell).

Include <sup>13</sup>C, <sup>23</sup>Na, <sup>31</sup>P, <sup>129</sup>Xe, and ...

 Certain nuclei (odd number of protons and/or neutrons) have magnetic properties (i.e. magnetic moment - 1952 Nobel Prize in Physics, to Bloch and Purcell).

• Include <sup>13</sup>C, <sup>23</sup>Na, <sup>31</sup>P, <sup>129</sup>Xe, and ...

• 1H!

Protons randomly aligned naturally

 Magnetic poles line up when exposed to strong magnets



http://wikidoc.org/index.php/Basic\_MRI\_Physics



http://ccn.ucla.edu/BMCweb/SharedCode/TINS/FMRI-TINS.html



https://www.youtube.com/playlist?list=PLAE12114468910462

$$\omega_0 = \gamma B_0$$

#### **Bolts** Bolts

- Stronger main field (larger B<sub>0</sub>) higher frequency (ω<sub>0</sub>)
- More signal, i.e. larger net Magnetization (e.g. can be used to acquire higher resolution images)
- Different tissue contrast with stronger main field

#### **B**<sub>0</sub> Nuts and Bolts

- Stronger main field (larger B<sub>0</sub>) higher frequency (ω<sub>0</sub>)
- More signal, i.e. larger net Magnetization (e.g. can be used to acquire higher resolution images)
- Different tissue contrast with stronger main field

#### However ...

- Higher frequency RF (larger  $\omega_0$ ) gives rise to more SAR issues
- More issues with keeping B<sub>0</sub> uniform
- Might not be appropriate for some applications

# Outline

- System overview
- Components of the acronym
  - What's the Magnet for?
  - Where does Resonance come in?
  - How is Imaging accomplished?
- Some basic types of MR contrast
- Re-cap of System overview

#### Resonance

Protons aligned with main magnetic field (B<sub>0</sub>)
 are not visible / detectable in MR imaging

 "Flip" / excite into visibility by applying energy at the same frequency as precession ...

• == Resonance!

### Resonance



https://www.youtube.com/playlist?list=PLAE12114468910462

#### Resonance

 Perpendicular protons (partially or completely) are visible in typical MR experiment.

RF must be "on resonance" for efficient excitation

 Off resonance - power deposited in sample / no signal → high SAR.

 Uniform B<sub>0</sub> → uniform signal. Need additional info to localize signal to generate image.

#### RF Nuts and Bolts

- "Flip" angle ≈ degree of tip a type of contrast
- High RF power for short time vs. low power for longer time.
   Same flip angle but can give different contrast
- Types of RF pulse and timing give rise to lots of different MR tissue contrast (T<sub>2</sub>, DTI, ASL)
- Sometimes, off-resonance excitation can be used to create contrast (MT) - high power and higher SAR experiment.
- Multi-band EPI is a higher SAR experiment than single-band

# Outline

- System overview
- Components of the acronym
  - What's the Magnet for?
  - Where does Resonance come in?
  - How is Imaging accomplished?
- Some basic types of MR contrast
- Re-cap of System overview

• Uniform  $B_0 \rightarrow$  uniform signal - cannot localize ... so how to image?

• Uniform  $B_0 \rightarrow$  uniform signal - cannot localize ... so how to image?

Apply controlled distortion to B<sub>0</sub>





• Uniform  $B_0 \rightarrow$  uniform signal - cannot localize ... so how to image?

Apply controlled distortion to B<sub>0</sub>

→ → → Spatially varying frequency

$$\omega_0 = \gamma$$
  $B_0$ 

$$\omega_{x} = \gamma B_{x}$$

$$\omega_X = \gamma \left( B_0 + G_X \right)$$



http://sfb649.wiwi.hu-berlin.de/fedc\_homepage/xplore/ebooks/html/csa/node255.html

• Extend frequency change to other dimensions (x, y) for image encoding.

1st dimension → frequency encoding

2<sup>nd</sup> dimension → phase encoding



http://www.revisemri.com/questions/creating\_an\_image/frequency\_encoding\_gradient



 Extend frequency change to other dimensions (x, y) for image encoding.

1st dimension → frequency encoding

2<sup>nd</sup> dimension → phase encoding

Effects of gradients encodes "k-space"



JMRI, Paschal and Morris, DOI: 10.1002/jmri.10451



# Signal (Fourier Transform) Equation in MRI

$$s(t) = \int_{\vec{r}} M_{xy}(\vec{r}, 0) e^{-i2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r}$$









https://users.fmrib.ox.ac.uk/~stuart/thesis/chapter\_2/section2\_3.html

JMRI, Paschal and Morris, DOI: 10.1002/jmri.10451





https://users.fmrib.ox.ac.uk/~stuart/thesis/chapter\_2/section2\_3.html

JMRI, Paschal and Morris, DOI: 10.1002/jmri.10451

#### **Gradients Nuts and Bolts**

- Space / step size in k-space is inversely proportional to FOV.
- Extent in k-space is inversely proportional to voxel size.
- Covering k-space requires strong and fast gradients.
- Gradient switching rate FDA limited (200 mT/m/ms).
   Detectable below this threshold subject comfort issues.
- "Local" gradient coils present a possible solution to address FDA limits and power requirements.

### **Gradients Nuts and Bolts**



## Outline

- System overview
- Components of the acronym
  - What's the Magnet for?
  - Where does Resonance come in?
  - How is Imaging accomplished?
- Some basic types of MR contrast
- Re-cap of System overview

## Contrast - T<sub>1</sub>



## Contrast - T<sub>2</sub>



## Contrast - T<sub>2</sub> FLAIR





http://web.mit.edu/6.013\_book/www/chapter10/10.4.html



http://web.mit.edu/6.013\_book/www/chapter10/10.4.html





#### Contrast

- BOLD ==  $T_2^*$
- FLAIR (Fluid Attenuated Inversion recovery)
- Magnetization Transfer (MT) MRM, 1989 Vol 10:135-144 Wolff and Balaban
- Perfusion imaging MRM, 1992 Vol 23:37-45 Detre et.al.
- Diffusion imaging Nature Reviews Neuroscience 4, 469-480 (June 2003) - DOI:10.1038/nrn1119 (review paper)
- Phase imaging PNAS, 2007 Vol 104(28):11796-11801 Duyn et.al.

•

## Outline

- System overview
- Components of the acronym
  - What's the Magnet for?
  - Where does Resonance come in?
  - How is Imaging accomplished?
- Some basic types of MR contrast
- Re-cap of System overview

#### System overview



Huettel - Functional Magnetic Resonance Imaging