fMRI Paradigm Designs and Processing Methods

Peter A. Bandettini, Ph.D.

Section on Functional Imaging Methods Laboratory of Brain and Cognition

http://fim.nimh.nih.gov

&

Functional MRI Facility

http://fmrif.nimh.nih.gov

Focus of this lecture

Technology

High field strength Coil arrays High resolution Novel functional contrast

Methodology

Paradigm Designs Processing Methods

Fluctuations / Correlations Dynamics

Healthy Brain Organization

Interpretation

Applications

fMRI Paradigm Designs and Processing Strategies

- 2. Resting State fMRI
- **3. fMRI Decoding**

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Event-Related
- 5. fMRI adaptation
- 6. Orthogonal Block Design
- 7. Free Behavior Design.

- **1. Block Design**
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Event-Related
- 5. fMRI adaptation
- 6. Orthogonal Block Design
- 7. Free Behavior Design.

P. A. Bandettini, A. Jesmanowicz, E. C. Wong, J. S. Hyde, Processing strategies for time-course data sets in functional MRI of the human brain. *Magn. Reson. Med.* 30, 161-173 (1993).

Predictive Response Model effect on fMRI Results (III)

DIFFERENT RESPONSE SHAPES ARE PRESENT ACROSS DIFFERENT REGIONS OF THE BRAIN FOR A SINGLE STIMULUS TYPE

Uludag et al. Magn Reson Imaging. 2008 Sep;26(7):863-9.

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Event-Related
- 5. fMRI adaptation
- 6. Orthogonal Block Design
- 7. Free Behavior Design.

Tapping left and right fingers at two different "on/off" frequencies

P. A. Bandettini, A. Jesmanowicz, E. C. Wong, J. S. Hyde, Processing strategies for time-course data sets in functional MRI of the human brain. *Magn. Reson. Med.* 30, 161-173 (1993).

- 1. Block Design
- 2. Frequency Encoding
- **3. Phase Encoding**
- 4. Event-Related
- 5. fMRI adaptation
- 6. Orthogonal Block Design
- 7. Free Behavior Design.

E. A. DeYoe, G. Carman, P. Bandettini, G. S., W. J., R. Cox, D. Miller, J. Neitz, Mapping striate and extrastriate visual areas in human cerebral cortex. *Proc. Nat'l. Acad. Sci.* 93, 2282-2386 (1996).

E. A. DeYoe, G. Carman, P. Bandettini, G. S., W. J., R. Cox, D. Miller, J. Neitz, Mapping striate and extrastriate visual areas in human cerebral cortex. *Proc. Nat'l. Acad. Sci.* 93, 2282-2386 (1996).

High fidelity tonotopic mapping using swept source functional magnetic resonance imaging, MM Cheung et al. NeuroImage Volume 61, Issue 4, 16 July 2012, Pages 978-986

High fidelity tonotopic mapping using swept source functional magnetic resonance imaging, MM Cheung et al. NeuroImage Volume 61, Issue 4, 16 July 2012, Pages 978-986 Tonotopic mapping of human auditory cortex Melissa Saenz, Dave R.M. Langers, Hearing Research, 307, 42-52 (2014)

1 x 1 x 1 mm

2 x 2 x 2 mm

3 x 3 x 3 mm

Orientation Columns in Human VI as Revealed by fMRI at 7T

High-field fMRI unveils orientation columns in humans, E. Yacoub, N. Harel, K. Ugurbil, **PNAS**, vol 105, pp. 10607-10612

Orientation Columns in Human VI as Revealed by fMRI at 7T

High-field fMRI unveils orientation columns in humans,

E. Yacoub, N. Harel, K. Ugurbil, **PNAS**, vol 105, pp. 10607-10612

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Event-Related
- 5. fMRI adaptation
- 6. Orthogonal Block Design
- 7. Free Behavior Design.

Neuronal Activation Input Strategies 1. Block Design 2. Frequency Encoding 3. Phase Encoding 4. Event-Related **5. Orthogonal Block Design** 6. Free Behavior Design.

R. L. Buckner, P. A. Bandettini, K. M. O'Craven, R. L. Savoy, S. E. Peterson, M. E. Raichle, T. L. Brady, B. R. Rosen, fMRI detection and time course of distributed cortical activations during single trials of a cognitive task. *Proc. Nat'l. Acad. Sci. USA* 93, 14878-14883 (1996).

P. A. Bandettini, R. W. Cox. Functional contrast in constant interstimulus interval event - related fMRI: theory and experiment. *Magn. Reson. Med.* 43: 540-548 (2000).

Contrast to Noise Images

(ISI, SD)

P. A. Bandettini, R. W. Cox. Functional contrast in constant interstimulus interval event - related fMRI: theory and experiment. *Magn. Reson. Med.* 43: 540-548 (2000).

Selective Averaging of Rapidly Presented Individual Trials Using fMRI

Anders M. Dale* and Randy L. Buckner

Massachusetts General Hospital Nuclear Magnetic Resonance Center and the Department of Radiology, Harvard Medical School, Boston, Massachusetts 02129

20 sec

20 sec

20 sec

A sec

0 sec2 sec

0 sec

Detectability vs. Average ISI

R. M. Birn, R. W. Cox, P. A. Bandettini, Detection versus estimation in Event-Related fMRI: choosing the optimal stimulus timing. *NeuroImage* 15: 262-264, (2002).

Estimation accuracy vs. average ISI

R. M. Birn, R. W. Cox, P. A. Bandettini, Detection versus estimation in Event-Related fMRI: choosing the optimal stimulus timing. *NeuroImage* 15: 262-264, (2002).

fMRI during tasks that involve brief

Blocked Design

R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks involving brief motion. *Human Brain Mapping* 7: 106-114 (1999).

Speaking - Blocked Trial

Speaking - ER-fMRI

R.M. Birn, R.W. Cox, P.A. Bandettini, NeuroImage, 23, 1046-1058 (2004)

Overt Responses

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Event-Related
- 5. fMRI adaptation
- 6. Orthogonal Block Design
- 7. Free Behavior Design.

Brief stimuli produce larger responses than expected

R. M. Birn, Z. Saad, P. A. Bandettini, (2001) "Spatial heterogeneity of the nonlinear dynamics in the fMRI BOLD response." *NeuroImage*, 14: 817-826.

BOLD Correlation with Neuronal Activity

Logothetis et al. (2001) "Neurophysiological investigation of the basis of the fMRI signal" Nature, 412, 150-157.

P. A. Bandettini and L. G. Ungerleider, (2001) "From neuron to BOLD: new connections." Nature Neuroscience, 4: 864-866.

Adaptation: from single cells to BOLD

signals, Bart Krekelberg, Geoffrey M. Boynton, and Richard J.A. van Wezel, Trends in Neurosciences, 29, 5, 2006

fMR-adaptation: a tool for studying the functional properties of human cortical neurons Kalanit Grill-Spector, Rafael Malach, Acta Psychologica, 107 (2001), 293-321

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Event-Related
- 5. fMRI adaptation
- 6. Orthogonal Block Design
- 7. Free Behavior Design

Example of a Set of Orthogonal Contrasts for Multiple Regression

Transient and Sustained activity in a distributed neural system for human working memory, S. M. Courtney, L. G. Ungerleider, K. Keil, J. V. Haxby, Nature, 386, pp. 608-611

Transient and Sustained activity in a distributed neural system for human working memory, S. M. Courtney, L. G. Ungerleider, K. Keil, J. V. Haxby, Nature, 386, pp. 608-611

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Event-Related
- 5. fMRI adaptation
- 6. Orthogonal Block Design
- 7. Free Behavior Design

Free behavior or naturalistic or continuous stimuli

Maguire – navigation U. Hasson – time reversal, cross subject Gallant – semantic space multiple regression DARPA competition – guess what's happening

Category	Definition	Mean number of occurrences (SD)
Customer-driven Route Planning	Planning a route to a given destination	16.6 (1.8)
Subtypes: Initial plan	Planning from the initial request	6.8 (0.8)
Change in plan	Planning after an en route request from a customer to alter the destination	9.8 (1.0)
Spontaneous Route Planning	Further planning en route, independent of customers	34.3 (10.9)
Subtypes: Filling in	Planning the next stage of the journey	17.7 (6.6)
Re-planning	Altering the current plan to adapt to the environment	16.7 (5.7)
Action Planning	Planning future movements with the vehicle	45.8 (15.1)
Expectation Confirmation	Detecting the presence of an expected environmental feature	28.6 (9.9)
Expectation Violation	Detecting the absence of an expected environmental feature	31.6 (10.5)
Expectation	Looking out for the next expected environmental feature	24.5 (8.5)
Visual Inspection	Visual inspection of an environmental feature	36.0 (11.8)
Monitoring Traffic	Watching moving traffic in the environment	11.4 (5.9)
Coasting	Navigating automatically without any directed thoughts	25.8 (7.5)
Customers' Navigationally- Irrelevant Statements	Navigationally-irrelevant statements by customers, (a control for Customer-driven Route Planning)	6.6 (0.9)

Thoughts, behaviour, and brain dynamics during navigation in the real world. Hugo J. Spiers and Eleanor A. Maguire, NeuroImage, 31 (2006), 1826-1840. Thoughts, behaviour, and brain dynamics during navigation in the real world. Hugo J. Spiers and Eleanor A. Maguire, NeuroImage, 31 (2006), 1826-1840.

Multi-modal integration

Hippocampal-cortical interaction during periods of subcortical silence

N. K. Logothetis^{1,2}, O. Eschenko¹, Y. Murayama¹, M. Augath¹, T. Steudel¹, H. C. Evrard¹, M. Besserve^{1,3} & A. Oeltermann¹

By combining electrophysiological recordings in hippocampus with rippletriggered functional magnetic resonance imaging, here we show that most of the cerebral cortex is selectively activated during the ripples, whereas most diencephalic, midbrain and brainstem regions are strongly and consistently inhibited

22NOVEMBER2012 | VOL491 | NATURE | 547

fMRI Paradigm Designs and Processing Strategies

1. Neuronal Activation Input Strategies

- 2. Resting State fMRI
- **3. fMRI Decoding**

Activation-based fMRI and "resting state" fMRI

Task Activation (Right vs. Left Hand Tapping) $^{-1}$ -1.5 -2.0L 100 150 200 250 300 50 350

Resting Correlation (Right Hand Seed)

100

70

200

300

400

500

60

Resting State Correlations

Activation: correlation with reference function seed voxel in motor cortex

Rest:

B. Biswal et al., MRM, 34:537 (1995)

Resting state fMRI: Why is this area important?

- The number of papers and applications has exploded.
- Neuronal, psychiatric, and developmental disorders may relate to altered connectivity.
- Methods are in their infancy, and rapidly evolving.
- Neuronal correlates of spontaneous fluctuations are not fully understood.

ICA

Seed Voxel

Visual

Seed Based Correlation from the Posterior Cingulate Cortex

Greicius M D et al. PNAS 2003;100:253-258

De Luca, Neuroimage 29(4) 2000

Sliding Seed Movies

Relative correlation strength pattern obtained with a systematically shifted seed region

Seed 1

GM/WM Boundary

LH (seed hemi)

RH (contra hemi)

Time Course Correlation Matrix

PAIR-WISE TIME COURSE CORRELATION MATRIX

http://www.nil.wustl.edu

NeuroImage 60 (2012) 1759-1770

Contents lists available at SciVerse ScienceDirect

NeuroImage

reurolmage

journal homepage: www.elsevier.com/locate/ynimg

Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI

Prantik Kundu^{a, c,*}, Souheil J. Inati^b, Jennifer W. Evans^{a,d}, Wen-Ming Luh^b, Peter A. Bandettini^{a,b}

^a Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, MD, 20892 USA

^b Functional MRI Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892 USA

^c Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ UK

^d Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Rockville, Maryland, 20852 USA

Integrated strategy for improving functional connectivity mapping using multiecho fMRI

Prantik Kundu^{a,b,1}, Noah D. Brenowitz^a, Valerie Voon^b, Yulia Worbe^b, Petra E. Vértes^b, Souheil J. Inati^c, Ziad S. Saad^d, Peter A. Bandettini^{a,c,2}, and Edward T. Bullmore^{b,e,f,2} PNAS Vol 110, No 40, 16187–

"Section on Functional Imaging Methods, "Functional MRI Core Facility, and "toppical and Scientific Computing Core, National Institute of Mental Health, Bethesda, MD 20814; "Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 1QP, United Kingdom; "National Institute of Health Research Cambridge Biomedical Research Centre, Cambridgeshire Peterborough National Health System Foundation Trust, Cambridge SW1A 2NS, United Kingdom; and ⁴Clinical Unit Cambridge, GlaxoSmithKline, Cambridge CB2 0QQ, United Kingdom

Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved July 31, 2013 (received for review January 29, 2013)

Test-retest of group clustering at 350 clusters

Rest 1

Rest 2 (color matched to Rest 1)

Clustering based on Resting State

Two other issues with imaging resting state fluctuations:

1. Global signal correction or not?

2. Short range correlations may be scanner-related.

The issue of global signal regression

K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, P. A. Bandettini, NeuroImage, 44, 893-905 (2009)

fMRI Paradigm Designs and Processing Strategies

1. Neuronal Activation Input Strategies

- 2. Resting State fMRI
- **3. fMRI Decoding**

Ventral temporal category representations

Object categories are associated with distributed representations in ventral temporal cortex

Haxby et al. Nature 2001

Visual Stimuli

Human Early Visual Cortex

(1057 visually most responsive voxels)

Monkey-Human Comparison Procedure

Human

- fMRI in four subjects (repeated sessions, >12 runs per subject)
- "quick" event-related design (stimulus duration: 300ms, stimulus onset asynchrony: 4s)
- fixation task (with discrimination of fixation-point color changes)
- occipitotemporal measurement slab (5-cm thick)
- small voxels (1.95×1.95×2mm³)
- 3T magnet, 16-channel coil (SENSE, acc. fac. 2)

Monkey (Kiani et al. 2007)

- single-cell recordings in two monkeys
- rapid serial presentation (stimulus duration: 105ms)
- fixation task
- electrodes in anterior IT (left in monkey 1, right in monkey 2)
- 674 cells total
- windowed spike count (140-ms window starting 71ms after stimulus onset)

Lower spatial frequency clumping

Kamitani & Tong (2005)
fMRI Paradigm Designs and Processing Strategies

1. Neuronal Activation Input Strategies

- 2. Resting State fMRI
- **3. fMRI Decoding**