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revisiting the classics

What fMRI has taught us about human vision
Susan M Courtney* and Leslie G Ungerleidert

The recent application of functional magnetic resonance
imaging (fMRY) to visual studies has -begun to elucidate how
the human visual system is anatomically and functionally
organized. Bottom-up hierarchical processing among visual
cortical areas has been revealed in experiments that have

correlated brain activations with human perceptual experience.

Top-down modulation of activity within visual cortical areas
has been demonstrated through studies of higher cognitive
processes such as attention and memory.
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Abbreviations

fMRI functional magnetic resonance imaging
LO lateral occipital (area)

MT middle temporal (area)

PET positron emission tomography

vi primary visual cortex

results in a localized increase in the fMRI signal in the
brain [3-5]. Therefore, fMRI signal intensity is correlated
with localized changes in neural activity (typically aver-
aged over 2-6s and over 1-27mm3 of cortex). At least
within the primary visual cortex (V1), the fMRI signal
increases monotonically with stimulus contrast [6°].

Organization of visual cortical areas in monkeys

Vision is the most richly represented sensory modality
in primates. Visual information is processed in over
30 functional cortical areas. In Old World monkeys
[7]—our seemingly closest evolutionary ancestors, aside
from apes—these cortical areas cover about one-half of
the total cortex. Visual cortical areas are organized into two
processing pathways, or ‘streams’, both of which originate
in area V1 [8]. The ventral stream, projecting from area
V1 through areas V2 and V4 to the inferior temporal
cortex, processes the physical attributes of stimuli that
are important for object identification, such as color,
shape, and pattern. The dorsal stream, projecting from V1
through areas V2 and V3 to the middle temporal area (MT)
and thence to additional areas in superior temporal and
parietal cortex, processes attributes of stimuli important
for localizing objects in space and for the visual guidance
of movement towards them, such as the direction and
velocity of stimulus motion {9].

Curr Opin Neurobiol, 1997, 554-61

20 years later...what have we
learned? what questions remain?
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human brain is best model for...

Neuroscience 296 (2015) 130-137
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A CASE FOR HUMAN SYSTEMS NEUROSCIENCE

J. L. GARDNER

Laboratory for Human Systems Neuroscience, RIKEN Brain
Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Abstract—Can the human brain itself serve as a model for a
systems neuroscience approach to understanding the
human brain? After all, how the brain is able to create the
richness and complexity of human behavior is still largely
mysterious. What better choice to study that complexity
than to study it in humans? However, measurements of
brain activity typically need to be made non-invasively
which puts severe constraints on what can be learned about
the internal workings of the brain. Our approach has been to
use a combination of psychophysics in which we can use
human behavioral flexibility to make quantitative measure-
ments of behavior and link those through computational
models to measurements of cortical activity through mag-
netic resonance imaging. In particular, we have tested vari-
ous computational hypotheses about what neural
mechanisms could account for behavioral enhancement
with spatial attention (Pestilli et al., 2011). Resting both on
quantitative measurements and considerations of what is
known through animal models, we concluded that weighting
of sensory signals by the magnitude of their response is a
neural mechanism for efficient selection of sensory signals
and consequent improvements in behavioral performance
with attention. While animal models have many technical
advantages over studying the brain in humans, we believe
that human systems neuroscience should endeavor to
validate, replicate and extend basic knowledge learned from
animal model systems and thus form a bridge to
understanding how the brain creates the complex and rich
cognitive capacities of humans.

This article is part of a Special Issue entitled: Contribu-
tions From Different Model Organisms to Brain Research.
© 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

A peculiar phenomenon had taken hold of the elevators of
the Meyer building when 1 first arrived as a post-doc at
NYU’s Center for Neural Science. Students, post-docs
and professors all seemed to have a different algorithm
for hitting the buttons on the elevator. Some would
simply hit the button for their floor and wait. Others,
though, would use different cryptic combinations of
buttons, stretching their fingers wide to simultaneously
press the floor they wanted and the current floor. For
some, the order was apparently crucial — hitting first
their floor before reaching for the current floor. Others
used the exact opposite order. After inquiring around
about this curious behavior, | was earnestly informed
that these combinations of button presses were required
to make the doors of the elevator close more quickly — a
matter of great importance to impatient occupants of the
building. But, what could explain the diversity of different
techniques | had witnessed? After some time in the
department, | developed my own (incompletely tested)
theory — that the elevator had a time-out of a few
seconds, after which any button press, or combination
thereof, would trigger the doors to close. Thus, the
occupants of the building had all learned various
completely different behaviors, all of which produced the
same reward of a swift start to the elevator ride.
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what is a visual area?

PhACT
e Physiology
e Architecture
e Connections

e Topography



Topography (human V1)
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retinotopic mapping stimuli

Radial component Angular component




retinotopic mapping
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DeYoe et al., 1996
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retinotopic map, timing of activity
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computational flattening
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visual area boundaries

>
- ot
2
A
e}
o
Q
O
O
L

Polar angle
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retinotopic mapping

progress and challenges...



additional areas discovered

Average
N=15
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Left hemisphere Right hemisphere

Larson & Heeger, 2006



multiple maps in IPS

Subj 1 RH

Swisher et al., J. Neurosci, 2006



face topography in IPS

—3—— 45— 66—/ 89— 107115124

e IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ----------

Sereno et al., Nat Neurosci (2006)



face topography in IPS




many (>25) visual areas!
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Wang et al., Probabilistic maps of visual topography
in human cortex. Cereb Cortex, 2015, 3911-31.



retinotopic map, timing of activity
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better mapping methods (pRFSs)

pRF maodel
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- allows for more flexible stimulus sets

- more full characterization of visual
responses (e.g., pRF size)

- richer set of models (surround
suppression, non-Gaussian
receptive fields)

https://dbirman.github.io/learn/prf/prf.html

after Doumolin & Wandell, 2008



Y Pos (deg)

pRFs are elliptical and radially oriented

Circular pRF model

X Pos (deg)

mean V2v pRF

center location = X, y
sigma=0

mean V2d pRF

Elliptical pRF model

mean V2v pRF

center location = x, y
aspect ratio = 0/C
orientation = 6

mean V2d pRF

X Pos (deq)

Silson et al., J. Neurosci, 2018



retinotopic mapping

progress and challenges...



but we need better methods

A. Individual subjects’ retinotopic maps as predicted via Data alone

p=

Training Data can be used as a prediction of Validation Data

Subject 51204, Training Dataset 1

B. Individual subjects’ retinotopic maps as predicted via the Prior alone
(1) Apply Prior Warping: (2) Apply Model
: to X,

(3) Unwarp Prediction

C. Individual subjects’ retinotopic maps as predicted via Bayesian inference (Data + Prior)
(1) Apply Prior Warping: (2) Further Warp using Data: (3) Apply Model (4) Unwarp Prediction

Xp = Xw X,, = argminy F(x; X, E, ©, P

Benson & Winawer, bioRxiv, 2018



the venous eclipse
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Winawer et al., 2010



better mapping methods (pRFSs)
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test case: orientation selectivity
can we measure it with fMRI?
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solution 1: high resolution fMRI




human ocular dominance and
orientation columns

yacoub, harel, ugurbil, PNAS (2008)



solution 2: fMRI decoding (classifiers)

small biases in fMRI response because voxels
sample an irregular underlying columnar
architecture

3 mm

kamitani & tong, 2005
fMRI decoding: an imager’s microelectrode? haynes & rees, 2005

boynton, 2005



fMRI decoding
with multi-voxel

pattern analysis
(MVPA)

1) train classifier on subset of data
2) test classifier on left-out data
3) get a single number (% correct)

4) compare to ‘chance’

haynes & rees, nature neurosci, 2006
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retinotopic map

Left hemisphere Right hemisphere



retinotopic map

Right hemisphere




retinotopic map

Left hemisphere Right hemisphere

orientation bias map
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map Is sufficient for decoding
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map IS sufficient for decoding

classity averaged responses

average

orientation

polar angle
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map Is sufficient for decoding

classity averaged responses
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map Is sufficient for decoding

classity averaged responses
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map IS necessary for decoding

classity residuals after removing response
component predicted by polar angle
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map IS necessary for decoding

classify residuals after removing response
component predicted by polar angle
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what (ventral) and where (dorsal) pathways
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human MT




topography in human MT
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Huk, Dougherty, & Heeger (2002)



topography in human MT

Coherence
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Amano, Dumoulin, & Wandell,
J Neuophysiol (2009)



direction selective adaptation in human MT

Adapted Opposite
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Huk, Ress, & Heeger (2001)



direction selectivity across visual areas
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direction selective columns?

columnar architecture for motion
direction in MT




motion direction bias




motion direction bias

, hemisphere
hemisphere



direction bias depends on aperture
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direction bias depends on aperture
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direction bias depends on aperture
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suppression along path of motion
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e functional specialization
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hierarchical processing in visual cortex
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Movshon lab, unpublished



overview

e top-down influences on visual cortical areas



source of top-down modulation

Observer 1 Observer 2
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Dugue, Merriam, etc al., 2018



source of top-down modulation
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top-down influences on visual cortical areas

( . . . ey s . . )
e bottom-up hierarchical processing within visual cortical areas

v,

L The future is layer fMRI!!



thank you!







