Intro to pharmacological (ph)MRI

Jennifer Evans
06Jul18
FMRIF Summer Course

Outline

- Pharmacological MRI
 - Role of fMRI in drug discovery
 - Types (study design)
 - examples
 - Confounding factors & how to mitigate them
- Summary

Pharmacological fMRI

- An fMRI experiment + drug administration
- Pharmacological modulation of
 - 'activity' over pharmacokinetic timescales
 - task-related `activity`
 - 'resting state activity'
- Recall that BOLD (Blood Oxygenation Level Dependent Imaging) signals are a function of changes in
 - Metabolic oxygen consumption
 - Cerebral blood flow
 - Cerebral blood volume

Pharmacological imaging

- Demonstrate a drug effect on central activity
 - Central penetration?
 - Choosing a dose
- Provide confidence for go/no-go decisions in drug development
- Objectively identify target targets for drug action
- Suggest / confirm a mechanism of action at brain systems level
 - Comparing compounds with different mechanisms
- A neuroscientific tool for modulating brain systems

Drug development process ...

Long and costly

John D. Loike and Jennifer Mille ,The Scientist, Feb, 2017, Opinion--Improving-FDA-Evaluations-Without-Jeopardizing-Safety-and-Efficact

US health-care costs per capita.

(CNS) Drug development

- majority of clinical trials have failed to translate into measurable clinical benefit
- integrate imaging early in drug development
 - to identify direct neural targets
 - determine subgroups (responders, non-responders)
 - dosing

Role of imaging in clinical trials

Drug penetration into the brain

Adjunct to subjective response

Study design

Resting state changes

Midazolam sedation
 Sensory motor

Greicius, M et al., Human Brain Mapping 29:839-847 (2008)

Response changes

 Decrease in the response to painful stimulus (dashed lines) during drug administration

Acute drug response

• 1 min injection of nicotine

Pharmacokinetic response

Wise et al. Neuropsychopharmacology. 2004

Drugs tested

Possible confounding factors.... and solutions

- Cognitive:
 - Placebo effect
 - Study design
- Acquisition:
 - These changes are slow (minutes) and on the same scale as drift artifacts
 - Use multi-echo fMRI?
- Signal:
 - BOLD signal is affected by changes in blood flow/volume
 - Use EEG-fMRI?
 - Use ASL?

Placebo effect

- Driven by the expectation that the treatment will bring relief
- Has been shown to have significant overlap with brain regions that are associated with drug response

Study design

Parallel Trial

Crossover Trial

Matched Pair Trial

Study design considerations

- Open-label / randomized
- Single/ double-blind
- Placebo controlled
- 'Healthy' volunteers and patient population(s)
- Considerations
 - Number of subjects
 - Baseline?
 - Speed of drug action / duration / crossover effects
 - Reliability/repeatability of measurement

ETPB examples

04-M-0222 - Ket-MOA

14-M-0085 - Ket-Alc

15-M-0188 - RISC

17-M-0060 - Repeat Dose

Schematics courtesy of Alex Noury

Possible confounding factors.... and solutions

- Cognitive:
 - Placebo effect
 - Study design
- Acquisition:
 - These changes are slow (minutes) and on the same scale as drift artifacts
 - Use multi-echo fMRI?
- Signal:
 - BOLD signal is affected by changes in blood flow/volume
 - Use EEG-fMRI?

Imaging slow stimuli doesn't work well

Response to ketamine infusion

The problem

- With single echo data artifactual drifts are indistinguishable from BOLD signal
 - High pass filter, model
 - set the task frequency higher
 - remove ICA components...

What does fMRI measure?

Multi-echo (ME) fMRI.

Multi-echo denoising

 Enables the identification of signals that scale with measured TEs

BOLD, EEG signals and visual contrast change.

- BOLD intensity varies as a function of stimulus contrast
- Contrast sensitivity is not linear

- Group average timeseries taken over voxels in V1 for a visual block and ramp contrast task
- The thick line is the mean and the shading is the standard error.
- Slope task is not visible in OC or detrended data

- Both tasks are clear in the me-dn BOLD data
- The scanner specific drift is visible in the non-BOLD data
- It effectively cancels the ramp in the OC data

Group spatial correlation maps

 Task positive correlation spatial extent group maps for a) block and b) ramp tasks for the medn BOLD, OC, detrended and non-BOLD timeseries.

- The block response is resolved in the detrended data and in the medn
- The ramp task is only seen in the medn data
- No positive task correlation is seen in the OC or non-BOLD data

Possible confounding factors.... and solutions

- Cognitive:
 - Placebo effect
 - Study design
- Acquisition:
 - These changes are slow (minutes) and on the same scale as drift artifacts
 - Use multi-echo fMRI?
- Signal:
 - BOLD signal is affected by changes in blood flow/volume
 - Physiological changes
 - Use EEG-fMRI?
 - Use ASL?

What does fMRI measure?

Neural or vascular changes?

BOLD imaging confounds

- BOLD is rarely enough on its own as there can be problems with interpretation
- Use MEG/EEG?

EEG signal origins

Simultaneous EEG-FMRI

http://nld.tamu.edu/eeg

A Meyer-Lindenberg Nature 468, 194-202 (2010)

Simultaneous EEG-fMRI setup

Console room

Simultaneous EEG-fMRI - Technical issues

The MR environment adds noise to the EEG recordings...

Approximate magnitudes of different signals

EEG: ± 10-150μV

Signal of interest

Gradient artifact : ± 10mV

BCG artifact: ± 200μV

MR environment artifacts

• Blink: ± 150μV

Movement: < 1mV

• ECG: ± 20μV

• EMG: $\pm 50 \mu V$

Physiological contributions

Helium pump: 40-60Hz and AC line

COMPARISON OF 4 BODY SIGNALS WITH HEART/BRAIN SPIKERSHIELD, SAME GAIN

Example: effect of caffeine

C – caffeine P- placebo

B - baseline

D - drug

Auditory oddball

Shortened P300 response in the complex task, little change in the simple visual task

'Simulated' Example

EEG Validation

- The envelope of the EEG signal at the task frequency agrees very well with the task BOLD response
- Confirms the ME-denoised data represents the true task

Possible confounding factors.... and solutions

- Cognitive:
 - Placebo effect
 - Study design
- Acquisition:
 - These changes are slow (minutes) and on the same scale as drift artifacts
 - Use multi-echo fMRI?
- Signal:
 - BOLD signal is affected by changes in blood flow/volume
 - Use EEG-fMRI?
 - Use ASL?

Imaging slow stimuli doesn't work well

ASL vs. BOLD

ASL-BOLD example

ASL – CBF decreases MDMA - placebo

Amygdala connectivity changes

Other analysis?

Summary

- Pharmacological fMRI may have many benefits for mapping drug effects in the human brain but remains challenging
- Simultaneous EEG-fMRI is an example of an imaging adjunct to fMRI, there are others (ASL, PET)

Acknowlegements

Carlos Zarate

Research Staff

Trainees

Patients and their families

Clinical Team

Collaborators

Prantik Kundu

Catie Chang Silvina Horovitz

Peter Bandettini
Pete Molfese

Sean Marrett Vinai Roopchansingh

Zhongming Liu