T₁ & Magnetization Transfer

Peter van Gelderen

AMRI, LFMI, NINDS, National Institutes of Health, Bethesda, MD, United States

Outline

- T₁ and T₂
- Relevance for MRI
- Measuring T₁
- Magnetization Transfer (MT)
- Measuring MT
- Sources of T₁ contrast: T₁ & MT

Nuclear spins polarize in a magnetic field

Nuclear spins polarize in a magnetic field

Nuclear spins polarize in a magnetic field

$$N_{-}/N_{+} = e^{-h\gamma B_{0}/k_{b}T} \approx 1 - h\gamma B_{0}/k_{b}T = 1 - 6.5x10^{-6}B_{0}$$

Nuclear spins polarize in a magnetic field, but how fast? Change in polarization requires energy transfer to different species.

Pure water: little energy transfer -> slow (change in) polarization

Time course:

- every spin has certain probability to transition
- P₋ for \uparrow P₊ for \uparrow where P₋ slightly higher than P₊ (due to ΔE)
- $M = N_{+} N_{-}$
- change in M= dM= (N₋P₋ -N₊P₊)
- dM= 0 for equilibrium (M₀), $N_{+0}/N_{-0}=P_{-}/P_{+}$
- $M = M_0 + \Delta$, $N_{-} = N_{-0} \Delta/2$, $N_{+} = N_{+0} + \Delta/2$,
- $dM = ((N_{-0} \Delta/2)P_{-} (N_{+0} + \Delta/2)P_{+}) = N_{-0}P_{-} N_{+0}P_{+} \Delta/2(P_{-}+P_{+}) = -\Delta/2(P_{-}+P_{+})$
- $dM/dt = -k(M-M_0)$, $k = R_1 = 1/T_1$

T₁-Relaxation in MRI

Mz not directly measured, M needs to be transverse:

M rotates around B₀ Frequency: γB₀

M rotates around B₀

Frequency: γB₀

B₀ not the same everywhere:

dispersion

Mt in rotating frame:

T₂ is dispersion of M in transverse plain caused by frequency differences, from

- spin-spin interactions (true T₂)
- field inhomogeneity from magnet or local susceptibility (T2*)

No energy transfer, can be (much) faster then T₁

MR measurement:

Relevance for MR Imaging

T₁-Relaxation & MRI

T₁-Relaxation & TR

T₁-Relaxation & Flip Angle

T₁-Relaxation & Flip Angle

T₁-Relaxation: Signal Calculation

Solution: $M_a = (1-E_1)/(1-\cos(\alpha)E_1)$

Signal: $M_t = \sin(\alpha)M_a$

Inversion

More RF than excitation

Inversion Recovery

T₁ can be measured in two ways:

- saturation
- inversion recovery

Saturation

 $T_1 \& MT$

Inversion Recovery

Inversion Recovery Hybrid: MPRAGE

Complications

Signal depends on T₁, but also on:

- T₂(*)
- RF (flip angle): Transmit coil, Dielectric effects, Calibration
- Receive sensitivity: Coils, System amplification
- Proton density

Choosing a method

Inversion Recovery: best quantification, slow

Saturation: fast, but mixed with RF and some T₂

MPRAGE: fast and useful contrast, hard to quantify,

and potential for spatial blurring.

MPRAGE with second scan (MP2RAGE) can compensate some of the coil contrast etc.

Examples: 7T IR with EPI

4

Examples: MPRAGE, MP2RAGE

Examples: 7T 0.5mm MP2RAGE

Curtesy of Pascal Sati, NINDS

Examples: 7T, MPRAGE, Gd-injection due to open blood -brain

T₁: Sources

Pure water: very little energy transfer -> slow relaxation

Interaction with other molecules required: in the brain, mostly lipids and protein

Interaction: Magnetization Transfer (= part 2)

MT: T₂

MT: T₂
Lipid has more structure

MT: T₂

Average field ≠ 0: short T₂

MT: T₂

Short T₂

T₂ << 1 ms : not visible in MRI

But: 'hidden' magnetization interacts with water

Solids in White Matter

Trinity College, Hartford, CT

MT: T₂ Lipid and Exchange

MT: T₂ Lipid and Exchange

MT Lipid and Exchange

Exchange:

- Magnetic
- Chemical

MT Lipid and Exchange

Macro Molecular Protons Water Protons

MT Parameters

MT Parameters

Magnetization measured relative to some baseline: normalization changes the equations and definition of variables

Normalization can be for total magnetization, the sum of the water pools (for more complex models), or per pool individually.

Starting point: Bloch equation for Mz for one pool:

$$d M_{wp} / dt = -R_{1wp} (M_{wp} - M_{wp,0})$$

Normalize to M_{wp,0}:

$$d M_{wp} / dt = -R_{1wp} (M_{wp} - 1)$$

Add second pool (each pool normalized to one):

$$d M_{wp} / dt = -R_{1wp} (M_{wp} - 1)$$

 $d M_{mp} / dt = -R_{1mp} (M_{mp} - 1)$

multiply by relative sizes:

$$(1-f)d M_{wp} / dt = -(1-f)R_{1wp} (M_{wp} - 1)$$

 $f d M_{mp} / dt = -f R_{1mp} (M_{mp} - 1)$

Add exchange:

$$(1-f)d \ M_{wp} / dt = -(1-f)R_{1wp} (M_{wp} - 1) - k M_{wp} + k M_{mp}$$

$$f d \ M_{mp} / dt = -f \ R_{1mp} (M_{mp} - 1) - k M_{mp} + k M_{wp}$$

k= fraction of spin exchanging compared to total

Alternative form (1), divide by size:

$$d M_{wp} / dt = -R_{1wp} (M_{wp} - 1) - k/(1-f) M_{wp} + k/(1-f) M_{mp}$$

$$d M_{mp} / dt = -R_{1mp} (M_{mp} - 1) - k/f M_{mp} + k/f M_{wp}$$

with $k_{mp}=k/f$ and $k_{wp}=k/(1-f)$:

$$d \ M_{wp} / dt = -R_{1wp} (M_{wp} - 1) - k_{wp} M_{wp} + k_{wp} M_{mp}$$

$$d \ M_{mp} / dt = -R_{1mp} (M_{mp} - 1) - k_{mp} M_{mp} + k_{mp} M_{wp}$$

Alternative form (2), normalized to sum of pools, substituting $M'_{wp}=(1-f)M_{wp}$, and $M'_{mp}=fM_{mp}$

$$d M'_{wp} / dt = -R_{1wp} (M'_{wp} - 1) - k/(1-f) M'_{wp} + k/f M'_{mp}$$

$$d M'_{mp} / dt = -R_{1mp} (M'_{mp} - 1) - k/f M'_{mp} + k/(1-f) M'_{wp}$$

with $k_{mp}=k/f$ and $k_{wp}=k/(1-f)$:

$$d M'_{wp} / dt = -R_{1wp} (M'_{wp} - 1) - k_{wp} M'_{wp} + k_{mp} M'_{mp}$$

$$d M'_{mp} / dt = -R_{1mp} (M'_{mp} - 1) - k_{mp} M'_{mp} + k_{wp} M'_{wp}$$

MT Equations Summary

```
(1-f)d M_{wp} / dt = -(1-f)R_{1wp} (M_{wp} - 1) - k M_{wp} + k M_{mp}
   f d M_{mp} / dt = -f R_{1mp} (M_{mp} - 1) - k M_{mp} + k M_{wp}
                            -R_{1wp} (M_{wp} - 1) - k_{wp} M_{wp} + k_{wp} M_{mp}
     d M_{wp} / dt =
     d M_{mp} / dt =
                            -R_{1mp} (M_{mp} - 1) - k_{mp} M_{mp} + k_{mp} M_{wp}
    d M'_{wp} / dt =
                          -R_{1wp} (M'_{wp} - 1) - k_{wp} M'_{wp} + k_{mp} M'_{mp}
    d M'_{mp} / dt = -R_{1mp} (M'_{mp} - 1) - k_{mp} M'_{mp} + k_{wp} M'_{wp}
```

 $k_{mp}=k/f$, $k_{wp}=k/(1-f)$, $(1-f)k_{wp}=f$ k_{mp}

MT Parameters

$$k_{mp}=k/f$$
, $k_{wp}=k/(1-f)$, $(1-f)k_{wp}=f$ k_{mp}

Saturation: $S=1-M_z$

 $d S_{WP} / dt = -R_{1wp} S_{WP} - k_{WM} S_{WP} + k_{WM} S_{MP}$ $d S_{MP} / dt = -R_{1mp} S_{MP} - k_{MW} S_{MP} + k_{MW} S_{WP}$

 $dS/dt=R_xS$; $R_x=matrix$, solution:

 $S_{WP}(t) = a_1e^{-\lambda_1t} + a_2e^{-\lambda_2t}$; $\lambda_{1,2}$ eigenvalues of R_x

MT $Saturation S_{WP}(t) = a_1 e^{-\lambda_1 t} + a_2 e^{-\lambda_2 t}$

Saturation

MT Measurement

MT Saturation Equilibrium

MT Saturation in balance with T₁

Saturation by off-resonance RF

Saturation by off-resonance RF

 $T_1 \& MT$

T₁ Measurement

Inversion Recovery

MT Measurement

MT Saturation Recovery

PW/T₂ times

Pulse Design

Pulse Effect

Pulse Design

Approximate Short T₂:

Long T₂:

Transitions: $(\gamma B_1)^2 PW/2 \sin(\alpha)^2 PW/2$

MT Recovery

145

64

TI:

256

380

ms

Normalized difference with reference

Saturation efficiency

Saturation efficiency

Saturation efficiency

MT and spectral properties MPs in human brain Roger Jiang

- MP spectral properties (the saturation effects on MPs as a function of frequency offset):
- Calculate pair of amplitudes $(a_1(F), a_2(F))$ for every voxel at each F, using decay rates (λ_1, λ_2)
- Calculate $FS_{MP}(0,F) = \frac{a_1(F)(-\lambda_1 + k_{WM} + R_{1,WP})}{k_{WM}} + \frac{a_2(F)(-\lambda_2 + k_{WM} + R_{1,WP})}{k_{WM}}$

Frequency offset *F* (from left to right: -16, -8, -4, -2, -1, -0.5, 0.5, 1, 2, 4, 8, 16 kHz)

Average in WM ROI's

MT and spectral properties MPs in human brain Roger Jiang

- A Lorentzian line (the black solid curve) and sum of two Lorentzian lines (the red dashed curve) fitting to $FS_{MP}(0,F)$.
- ΔF of -727 Hz (-2.42ppm), close to -2.34 ppm at 3 T (Hua et al, MRM 2007) and -2.55 ppm at 4.7 T (Pekar et al, MRM 1996).
- 2-Lorentzian fitting: a component (73%) with T_2 of 23 μ s was found, consistent with the results in the study on fixed marmoset brain.

IR and Exchange

MP

WP

IR and Exchange

MP WP

Inversion & MT IR and Exchange

In an IR experiment initial saturation of MP depends on RF power Early part of IR dominated by exchange

IR double exponential and RF dependent

Calculated T₁ as function of TI High RF Low RF

MT Equations

 $d S_{WP} / dt = -R_{1WP} S_{WP} - k_{WM} S_{WP} + k_{WM} S_{WP}$ $d S_{MP} / dt = -R_{1MP} S_{MP} - k_{MW} S_{MP} + k_{MW} S_{WP}$

$$f k_{MW} = (1-f) k_{WM}$$

$$S_{WP}(t) = a_1 e^{-\lambda_1 t} + a_2 e^{-\lambda_2 t}$$

 $\lambda_{1 \approx} (1-f)R_{1WP} + fR_{1MP}$

 $R_{1eff} = \lambda_{1} \approx (1-f)R_{1WP} + fR_{1MP}$

T₁ & MT Sumary

- Pure water has a very long T₁
- Main source of T₁ relaxation is semisolid lipids & other macro molecules through MT between water and MP
- Consequences:
 - :: MT and T₁ contrast both measure MP
 - :: T₁ relaxation (at least) biexponential

T₁ & MT Sumary

Reality more complex:

- multiple pools of water (intra-, extra- cellular, myelin)
- multiple kinds of MP, each with R₁, T₂ etc.

Two pool T₁ generally sufficient, fast component more important at higher field

Many compartments

Many compartments

T₁ & MT

The End