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Goals of this Presentation

Basics of Representational Similarity Analysis
- Whatis RSA and why do it?

How does RSA work?

- Representational Geometry and Construction of Dissimilarity
Matrices

General Considerations for RSA

- Distance metrics Euclidean vs. Correlation

- Distance Estimates are Biased

« Are Dissimilarities Ratio Scale?

- Multivariate Noise Normalization

« Noise Ceilings



What is Representational Similarity Analysis?

A multivariate pattern analysis method to investigate the
content and format of representations
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Why do Representational Similarity Analysis?

1. Simple exploratory approach to characterize
multidimensional representations

Example: How does human IT represent object categories?
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Why do Representational Similarity Analysis?

2. Representational (dis)similarity matrices can be seen as a

common language to study representations across

methods (MEG, fMRI, cell recording, ...), brain regions,
humans and species
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Why do Representational Similarity Analysis?

3. Representational similarities can be used for testing
models of cognition

Example: Which facial features does a brain region represent?
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Why do Representational Similarity Analysis?

3. Representational similarities can be used for testing
models of cognition

Example: Which computational model best explains responses in human IT?
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HOW DOES REPRESENTATIONAL
SIMILARITY ANALYSIS WORK?



RSA: Linking Data at the Representational Level

Multi-unit
recordings fMRI

_—
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1000 fMRI voxels

_ 674 electrodes
<N

Firing rates in BOLD patterns

monkey brain in human
region brain region



RSA: Linking Data at the Representational Level

Multi-unit
recordings

Electrode X
Voxel A

Electrode Y ] Voxel B

4: 674 electrodes

Firing rate BOLD patterns
patternsin in human
monkey brain brain region



RSA: Linking Data at the Representational Level

Multi-unit
recordings

Electrode X
Voxel A




Representational Geometry (1)

- Representations can
geometrically be interpreted as
being embedded in a multi-
dimensional space

« One particular representation is
a point in this space and is a
combination of unknown
representational features

(unknown)

True representational feature 1

True representational feature 2
(unknown)



Representational Geometry (2)

voxel 2

. We don’t know the true high- voxel 1
dimensional representational
geometry, because we don't
know the representational
features

voxel 3

-  We can describe the geometry
by the relative distance between
each pair (e.g. chair is closer to
table than to car)

True representational feature 1
(unknown)

-  We can measure this geometry
with our recordings (= slices
through representational space)

True representational feature 2
(unknown)



How does RSA work?

- In RSA, we take our multivariate patterns (e.g. voxels) and
calculate pairwise dissimilarities (e.g. Euclidean distance or
1 — Pearson’s r)
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. . representational dissimilarity Voxel 2

Voxel 1 Voxel 2 matrix (RDM)




How does RSA work?

In RSA, we take our multivariate patterns (e.g. voxels) and

calculate pairwise dissimilarities (e.g. Euclidean distance or
1 — Pearson’sr)

Voxel 1

Human

Electrode X

Monkey

Electrode Y



How does RSA work?
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When is RSA useful / when is it not?

True, high-dimensional representational space
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When is RSA useful / when is it not?

Problem: Unknown representations



When is RSA useful / when is it not?

Classical experiment
(e.g. stimulus type A vs. stimulus type B)
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When is RSA useful / when is it not?

Condition-rich design
(= a little bit of.everything)



Quiz: which one is RSA? (A), (B), or both?

(A) correlate
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DISTANCE METRICS



Construction of RDM: Which Distance Metric to Use?

Basellne
shift

Y o

mm) Euclidean distance is invariant
to baseline shifts

v1
- EUClidean

v2 Angle l

Mean patternl Pattern scallng

Correlation distance is
invariant to scaling differences

subtracted changed

. p

mm) Sce talk by Fernando Ramirez

Garrido et al. (2013) — Front Hum Neurosci; Walther et al. (2016), Neuroimage



Distance Estimates are Biased

Bias in estimation of distances

N 2\

1. Distances are always positive

o O &6 ©

2. The null hypothesis assumes true distances of zero

3. Measurement noise always leads to non-zero deviations between
both

Distances are overestimated
More generally: this also holds when there is a true distance
Solution: Cross-validation (allows negative distances)



Distance Estimates are Biased

Do we care if distances are overestimated?
- Noif we are only interested in the order (“classical” RSA)
- Yes, if we want to test against 0
- Yes if we want to interpret relative distances
(i.e. distance A = 2x distance B)

Can we get unbiased estimates of the distance?

- Yes, using cross-validation (which allows also negative
distances)



DISTANCE METRICS



Multivariate Noise Normalization

Mahalanobis distance downscales noisy voxels / voxels with
high noise covariance and can improve reliability
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Multivariate Noise Normalization

Multivariate noise normalization recovers true space when
scaled, because also noise variance is scaled
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Multivariate Noise Normalization

Multivariate noise normalization recovers true space when
sampling introduces covariance between voxels
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Multivariate Noise Normalization

Multivariate noise normalization distorts true space when
representational features are really correlated
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CONSIDERATIONS FOR COMPARING
REPRESENTATIONAL DISSIMILARITY
MATRICES



Are Dissimilarities Ratio Scale?

Ratio scale: Dissimilarity of 4 is 2x as much as dissimilarity of 2
- Holds only when features add up linearly to create measured patterns
- Holds only when BOLD response is linear

Ratio-scale justified when
, activation level across
e conditions is similar

BOLD signal

Mean value subtraction does
not fix this!

Rest Normal Difficult
task task

‘ Default is to use rank order correlation coefficient when

comparing RDMs (Spearman’s rho or Kendall’s tau)
Diedrichsen — 2015 RSA workshop



Practical Considerations for RSA

When correlating symmetrical RDMs, only correlate the
lower triangle, always exclude diagonal!
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Ritchie et al (2017) — Neuroimage



Practical Considerations for RSA

When viewing RDMs , both scaled and unscaled versions
might be helpful for illustrative purposes

original distances scaled ranks of distances
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Noise Ceilings: Upper Limit of Model Performance

Are non-perfect model correlations
related to model or are they

© subject 1
related to noise in the data?
@ true model
subject2 @ group mean
Estimate of best any model can do
. subject 3

on the data: Group mean RDM
« Upper bound: Compare each subject to

mean (positively biased because ?'Cg
subject included in mean) z
. Lower bound: Compare each subject to distance 1

mean excluding that subject
(negatively biased because not all data

u SEd) Kriegeskorte et al (2008) — Front Hum Neurosci; Kriegeskorte — 2015 RSA workshop



Summary

- RSA measures the representational content and format of
representations

- Representational dissimilarity matrices can be compared
between brain regions, individuals, species and
measurement modalities

- RSA can be used to test (computational) models of
cognition
- Noise normaization can improve the reliability of RDMs

- Noise ceilings assess whether the model sufficiently
accounts for the data or whether more data is needed



Study Questions

- How does RSA relate to multivariate decoding?

- Imagine you carry out RSA between two regions A and
B and you get a correlation of those two RDMs. Now
repeat this analysis for all comparisons of 10 different
regions. Can you come up with ideas what you can do
with these second-order comparisons?



