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fMRI is barely used Cllnlcally

can we change this?
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Traditional fMRI analyses
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Functional connectivity

r value
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» Whole-brain organization
« Can use resting-state data




Brain networks

Shen et al., Neurolmage (2013)

268 nodes = 35,778 edges



Individual differences

Group analyses Individual differences




|dentification experiments

Human Connectome Project
» 126 healthy subjects (50 sets of twins)
* Age 22-35 years old

Day 1

Day 2
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|dentification results

Target Database

Rest 2 Rest 2

- . i .

Database
10bie|

ID rate
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Chance: ~0.008

Finn, Shen et al., Nat Neurosci (2015)



Network-based identification

5. Somato-motor

1. Medial frontal

6. Visual |

2. Frontoparietal

7. Visual Il

3. Default mode

8. Visual association

4. Subcortical/cerebellum




Network-based identification
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Localizing individual differences

Biggest differences found in most Anatomical differences also play a (large) role:
evolutionarily recent regions:

Evolutionary Cortical Surface Expansion A Sulcal Depth Variability B Cortical Thickness Variability
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Mueller et al., Neuron (2013)



Individuals account for the most variance!

Group

D
Lol

Individual

relative normalized effect magnitude
0% I . 40%

Individual & Task

Individual & Session
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Gratton et al., Neuron (2018)
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Why is this important?

e |t’s trivial to ID someone based on a structural scan
* Could just be anatomy, other confounds

« How can we prove these differences are meaningful?

BEHAVIOR!



Predicting fluid intelligence

« ability to discern patterns
* independent of learned knowledge
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Predicting fluid intelligence

Subj Matrix Score
Connectome-based

[ ] Predictive Model (CPM)
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Predicting fluid intelligence

Predicted gF
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Predicting other behaviors

Sustained attention Reading ability ADHD, autism symptom severity
_ Reading Network
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Beaty et al., PNAS (2018)

Hsu et al., Soc Cogn Aff Neurosci (2018)

Actual NPI scores

Feng et al., Hum Brain Mapp (2018)




Translational applications

Categorical approach Dimensional approach
*
(p = 0.037)
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Q. Do you need HCP-quality data?
A. Not really

ID is fairly robust even at more standard spatial & temporal resolutions:

Fingerprinting Accuracy

KKI (n=20, NKI (n=23, NKI (n=23, NKI (n=23, ! kb o Niaximum Pormutation
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Airan et al., Hum Brain Mapp (2016) Courtesy of Jason Druzgal

* More nodes - higher identification rate

» Parcellation method (random vs. functional) did not matter

~ Caution: Higher resolution may amplify effects of anatomical diffs/registration error
» Parcellations in the 200-300 node range seem like a good compromise



Q. What about amount of data?
A. Scan duration matters!

Longer acquisitions
are better:

intrasession

* higher reliability within subjects

intersession
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* higher identifiability across subjects

ID rate
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Birn et al., Neurolmage (2013)
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Finn et al., Nat
Neurosci (2015)
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» higher sampling rate (shorter TR) cannot
make up for shorter scan duration

Intraclass Correlation Coefficient
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Airan et al., Hum
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Shah et al., Brain &
Behav (2016)

0% 10% 20% 30% 40% 50%



Q. Does scan condition matter?
A. Yes!

More identifiable
A

More similar
>

Less similar

Less identifiable



Q. Does scan condition matter?
A. Yes!

Rest has become the default condition for FC & individual differences, but tasks may increase signal-to-noise

Replicating identification experiments: Conditions that make subjects look
more similar to one another actually
Target make better databases for identification:
Day 1 Day 2
R1 WM GAM MOT : R2 LAN SOC REL EMO 0.7
1 1.0
R1 0.49 0.41 0.68: (yAN)0.38 0.40
— ' 0.65 |
> WM WNAN 0.34 0.50 0.45
(0] 0.8 _9
o a GAM 0.41 g 0.6
N MOT 062 0.69 0.62 0.43 037 042 3
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EMO 0.63 0.57 0.64 0.69}0.70 0.670.70 043 035 0.4 0.45 05 055
0.0

ChancI;e - 0.001 Mean between-subject correlation (z-score)



Q. Does scan condition matter?
A. Yes!

Rest has become the default condition for FC & individual differences, but tasks may increase signal-to-noise

Conditions that make subjects look
more similar to one another actually
make better databases for identification:

More identifiable

0.7 . N

0.65 ¢

o
o

Less similar More similar
D >

0.55

Mean database ID rate
o
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0.45 ¢

&2
\4 0.4 : : . ‘
0.3 0.35 0.4 0.45 0.5 0.55

Less identifiable Mean between-subject correlation (z-score)




Q. Is rest best?
A. Probably not

Consider naturalistic tasks:

Inscapes: Vanderwal et al., Neurolmage 2015
headspacestudios.org



http://headspacestudios.org/

Q. Is rest best?
A. Probably not

Consider naturalistic tasks:

>~ ID rate is just as good as (if not better than) rest

Session 1 Rest1 Rest2 Ins1 Ins2 Oce1 Oce?2 10
L .
Rest Ocean’s 11
1 0.8
Rest 2 0.71 0.85
- . - Inscapes 1 0.91 0.6
Session 2
Inscapes 2 0.82 0.91 0.4
Oceans1 0.91 0.62
0.2
Oceans2 0.79 0.88 0.88 0.88 §1.00
0.0

Vanderwal et al., Neurolmage (2017)



How to choose behavior
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) y PC4, Surprise Index (SI) PC1, Positivity Index (PI)
Betzel et al., Sci Rep (2017)
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Behavior: Mitigating confounds

Many behaviors/phenotypes are correlated with head motion!

Negatively: Positively:

Subject measures Pearson r

ReadEng (AgeAdj) -0.23 DSM somatic problems (pct) 0.16 . Patlents Of any kl nd move more
ReadEng (Unadj) -0.23 DSM antisocial (raw) 0.16 ° Ch I Id ren move more
Vocabulary (AgeAd)) -0.19 ASR externalizing (raw) 0.16 ¢ Older ad u ItS move more
Dexterity (Unadj) -0.18 DSM somatic problems (raw) 0.16

CardSort (Unadj) -0.18 Tobacco use 7 day 0.18

Dexterity (AgeAdj) -0.18 Diastolic blood pressure 0.18

CardSort (AgeAd)) -0.18 ASR externalizing 0.18

Education -0.17 Tobacco use today 0.2

Fluid intelligence -0.17 Systolic blood pressure 0.23

Spatial orientation -0.17 Weight 0.52

Vocabulary (unadjj) -0.17 Body mass index (BMI) 0.66

Emotion recognition -0.16

Siegel et al., Cerebral Cortex (2016)



Behavior: Mitigating confounds

Many behaviors/phenotypes are correlated with head motion!

Edges significantly related to subject motion
(264-node Power network)

ICA-AROMA
AROMA+GSR

Check correlation in your sample
Consider excluding particularly high-motion

subjects

Choose appropriate preprocessing techniques ‘

Use motion as an explicit covariate

v

v

aCompCor
36P+scrub

v

v

Ciric et al., Neurolmage (2017)



Q. Is rest best?
A. Probably not

Tasks also have purely practical advantages:

> increase subject compliance (i.e., decrease head motion), especially in certain populations

A
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0.0 92 i
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: —] 3 Fosl —— .
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Functional Runs

Huijbers et al., Neurolmage (2017) Vanderwal et al., Neurolmage (2015)



Q. What is the best brain state?
A. Maybe it depends on your behavior

Certain task conditions generate better predictions of behavior: .
Target behavior

gF PicVocab ListSort

0.5
0.7 ;
fMO
r=0.82
0.65 | QAM SEL - 04
2 GAM
< 0.6
% © SOC 0.3
? 3
ccs -
Le §0%7 oc 3 | moT
© S
© —
S 05} 3 | REL 0.2
[} (@)
= ¢'© =
0.45 | ¢ EMO
i 0.1
\ & R1
‘ 0.4 - ' - -
0.3 0.35 0.4 0.45 0.5 0.55
Mean between-subject correlation (z-score) R2 0.0

Less identifiable
n = 716, 10-fold cross-validation
Connectome-based Predictive Modeling (CPM; Shen et al., Nat Protocols 2017)

r (pred,obs)
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Outstanding questions

p
Data acquisition

Populations

« Many individuals lightly
sampled, or few individuals
densely sampled?

« Patients, controls?

« Longitudinal studies?

Imaging
« Scan condition? “Stress test”?
* Function, anatomy, both?

Behavior

 Robust measures?

* Inter- vs intra-subject
variability?

\_

~

-

Data analysis

Strategy

* Functional connectivity?
« Activation?

« Combination?

Specifics

« Parcel boundaries?
Connections between
parcels? Both?

Interpretations &
applications




Individual-specific parcellations

Subject 1 Subject 2 Subject

3 Subject 4
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Gordon et al., Neuron (2017)

Kong et al., Cereb Cortex (2018)



Outstanding questions

-

\_

N
Data acquisition

Populations

* Many individuals lightly sampled,
or few individuals densely
sampled?

« Patients, controls?

* Longitudinal studies?

Imaging

* Multisite studies?

« Scan condition? “Stress test”?
* Function, anatomy, both?

Behavior
 Robust measures?
 Inter- vs intra-subject variability?

)

-

Data analysis

Strategy

* Functional connectivity?
« Activation?

« Combination?

Specifics

« Parcel boundaries?
Connections between
parcels? Both?

Applications &
Interpretations

Mutability

« Development?

« Disease progression?
 Plasticity/training?

Applications
« Translational utility?
* Ethics?




Further reading & open data sets

Selected reviews: Open data sets with brain and behavior:

Prediction as a humanitarian and pragmatic contribution AT\ HUMAN ® uk
from human cognitive neuroscience & :}7\) Connectome .0 am

PROJECT

Gabrieli, Ghosh & Gabrieli, Neuron (2015)

Improving the health of future generations

Building a science of individual differences from fMRI
Dubois & Adolphs, Trends in Cognitive Sciences (2016)

From regions to connections and networks: new bridges
between brain and behavior
Misic & Sporns, Current Opinion in Neurobiology (2016)

Can brain state be manipulated to emphasize individual
differences in functional connectivity?
Finn et al., Neurolmage (2017)

ABIDE ﬁoCKLAN'D
Autism Brain Imaging SAMPLE
Data Exchange

Philadelphia
Neurodevelopmental - CHILD MIND®
Cohort

ab Ga P LE INSTITUTE

GENOTYPES and PHENOTYPES heC]H'hy brain network

Use these on their own or in combination with your
own data to generate or test hypotheses, see if a
finding generalizes, etc
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