The basic fMRI study all elements to consider

Daniel Handwerker

Section on Functional Imaging Methods
National Institute of Mental Health

The basic fMRI study

PROJECTION OF THE RETINA ON SUPERIOR COLLICULUS OF CATS*

JULIA T. APTER
Wilmer Ophthalmological Institute, Johns Hopkins Hospital and University,
Baltimore, Maryland

(Received for publication February 12, 1945)

Introduction

ANATOMICAL INVESTIGATIONS of the retinal fibers of normal fish and amphibia to determine whether there is a systematic projection of the retina on the optic tectum have given conclusive results in some animals and inconclusive results in others. A systematic projection of retinal quadrants on the tectum has been shown to be present in *Leusiscus rutilus* (15), *Amblystoma*

"Neural correlates" publications in 2001

- Neural correlates of driving.
- Neural correlates of conscious self-regulation of emotion.
- Neural correlates of change detection and change blindness.
- Neural correlates of attention and working memory deficits in HIV patients.
- Neural correlates of verbal memory encoding during semantic and structural processing tasks.
- Neural correlates of emotions in psychiatric patients in the light of functional neuroimaging findings.
- Neural correlates of traumatic memories in posttraumatic stress disorder: a functional MRI investigation.
- Neural correlates of dual task interference can be dissociated from those of study.
- Neural correlates of person familiarity. A functional magnetic resonance imaginations.
- Neural correlates of response inhibition for behavioral regulation in humans magnetic resonance imaging.
- Neural correlates of formal thought disorder in schizophrenia: preliminary fir magnetic resonance imaging study.

Goals of this talk

Learn the key phases of fMRI study design and analysis

Understand the types of decisions that researchers need to make in each phase

Not the goals of this talk

Learn best options for each phase of a study

Explain all fMRI study designs and analysis methods

Cannot cover details of all fMRI studies

Task fMRI: Each voxel fit to a predefined model

Visual temporal frequency preference shows a distinct cortical architecture using fMRI

Yuhui Chai ^{a,*}, Daniel A. Handwerker ^a, Sean Marrett ^b, Javier Gonzalez-Castillo ^a, Elisha P. Merriam ^c, Andrew Hall ^a, Peter J. Molfese ^a, Peter A. Bandettini ^{a,b}

Task fMRI with <1mm³ resolution

Topographical and laminar distribution of audiovisual processing within human planum temporale

Yuhui Chai ^{a,*}, Tina T. Liu ^b, Sean Marrett ^c, Linqing Li ^c, Arman Khojandi ^a, Daniel A. Handwerker ^a, Arjen Alink ^d, Lars Muckli ^e, Peter A. Bandettini ^{a,c}

Task & Rest with whole brain connectivity measures

Manifold learning for fMRI time-varying functional connectivity

Javier Gonzalez-Castillo^{1*}, Isabel S. Fernandez¹, Ka Chun Lam², Daniel A. Handwerker¹, Francisco Pereira² and Peter A. Bandettini^{1,3}

Resting fMRI: Correlations between predefined regions

Theta-burst TMS to the posterior superior temporal sulcus decreases resting-state fMRI connectivity across the face processing network 3

In Special Collection: CogNet

Daniel A. Handwerker ☑ ⑤, Geena lanni, Benjamin Gutierrez, Vinai Roopchansingh, Javier Gonzalez-Castillo ⑤, Gang Chen,
Peter A. Bandettini ⑥, Leslie G. Ungerleider ⑥, David Pitcher ☑

Task fMRI with multi-voxel pattern analyses

A Unifying Model for Discordant and Concordant Results in Human Neuroimaging Studies of Facial Viewpoint Selectivity

©Cambria Revsine,^{1,2} ©Javier Gonzalez-Castillo,³ ©Elisha P. Merriam,¹ ©Peter A. Bandettini,^{3,4} and ©Fernando M. Ramírez^{1,3}

Movie viewing (naturalistic) fMRI with correlations across people

Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging

Emily S. Finn ^{a,*}, Enrico Glerean ^b, Arman Y. Khojandi ^a, Dylan Nielson ^c, Peter J. Molfese ^a, Daniel A. Handwerker ^a, Peter A. Bandettini ^a

The basic fMRI study

Quality

Data collection protocol

decinetry - Common		
Slice group	1	
Slices	48	
Dist. factor	0 %	
Position	L0.0 A29.8	
Orientation	T > C-30.0	
Phase enc. dir.	A >> P	
FoV read	216 mm	
FoV phase	100.0 %	
Slice thickness	2.50 mm	
TR	1500 ms	
Multi-slice mode	Interleaved	
Series	Interleaved	
Multi-band accel. factor	3	

Data analysis & **Data** Interpretation collection

Communication

Data ► 100 runs at 3T ^ CHANGES ■ README @ dataset_description.json participants.tsv task-checkerboard_events.json

■ sub-003 ∨

task-checkerboard_events.tsv

The basic fMRI study (existing data)

ld**eata**fy

Scientific questions & study design

tSNR

Piloting Data protections

Slice group	1
Slices	48
Dist. factor	0 %
Position	L0.0 A29.8
Orientation	T > C-30.0
Phase enc. dir.	A >> P
FoV read	216 mm
FoV phase	100.0 %
Slice thickness	2.50 mm
TR	1500 ms
Multi-slice mode	Interleaved
Series	Interleaved
Multi-band accel. factor	3

Data analysis &

■ sub-003 ∨

UALITY ASSURANCE

Scientific Questions & Study Design What to collect?

- What types of data have the potential to accurately and effectively answer your scientific question?
- Task? Movie? Rest?
 - Task design, which movies, what type of "rest"
- Structural MRIs? Calibration measures?
- Simultaneous acquisitions: Pulse, Respiration, EEG, eye tracking, participant responses, ...
- Who to scan?
 - Lots of data from fewer people? A large population?
 Across populations? Within-person changes?

Don't neglect peripheral measurements!

A breathless cautionary tale

Present a 200ms flickering checkerboard every 18-24s

Volunteers press a button and move their eyes

Handwerker, Gazzaley, et al 2007

The unpublished part

- Stimuli presented for 3s, 6s & 12s durations
- A non-trivial # of volunteers held their breath for the stimulus duration
- No respiration data →
 Visually appealing results →
 Misinterpreted results

See also: Birn, Murphy, et al, NeuroImage 2009

Scientific Questions & Study Design Study Level Questions

- Number of participants & amount of data / participants
 - Looking for individual-level effects?
 - Looking for consistent group effects?
 - Looking for behavioral/fMRI response variation across participants?
 - Looking for diagnostic or treatment relevant markers?
- Power analyses are important
- Power analyses can be over-emphasized and over-simplified
 - Making sure each dataset is high quality will improve results more than increasing sampling size or focusing on statical thresholding methods.

Scientific Questions & Study Design fMRI acquisition parameters

- No universally best parameters
- Never copy parameters from another study without understanding why they made their choices
- The question drives the study design. What matters?
 - Brain coverage
 - Dropout
 - Distortion
 - Temporal Signal-To-Noise Ratio (TSNR)
 - Head motion sensitivity

Scientific Questions & Study Design fMRI acquisition parameters

TR (speed of scanning)

- Finer temporal resolution
- More volumes over the same time
- More noise per volume
- Acceleration to get faster TRs potentially makes more artifacts
- Possibly less brain coverage and larger voxels

Scientific Questions & Study Design fMRI acquisition parameters

- Smaller voxels can give more spatial precision
- More noise
- Slower

Huber, Neurolmage 2018

Scientific Questions & Study Design Other fMRI acquisition parameters

- Acceleration methods
- Multi-echo fMRI
- Non-BOLD contrasts
- 2D vs 3D
- Flip angle

A (mildly provocative) case study

There is no such thing as "gold standard data"
Arbitrary volunteer from the original Human Connectome Project

Arbitrary volunteer from ABIDE

A (mildly provocative) case study

There is no such thing as "gold standard data"
Arbitrary volunteer from the original Human Connectome Project

Context and applications matter

- Successful Research using HCP data
 - ROIs that average across multiple small voxels
 - Correlation or task studies that summarize data across time
 - Averages across the large population
- HCP weaknesses
 - Studies that fully take advantage of the short TR and smallish voxel size
 - Brain-wide association studies that require robust signal in individuals' data
- Note: This is a broad & not completely fair generalization.
- Take home message
 - Great data for one application, might not be great for all applications
 - Identify and view data quality metrics relevant to your application

Piloting

- Comparing options for potential study designs
- Collecting data to make sure design decisions are working as expected
- Making sure acquisition workflow works with real people
- Decide how to log key information, store, and process data
- Start to make a Quality Assurance (QA) workflow

Piloting

- Do not use scanning parameters just because they worked for someone else
- Do not use scanning parameters just because they worked for someone else
- If you're not an expert in MRI physics, things you did not consider might affect data quality.

Alternate geometries for a 9-channel head coil

If you are an expert in MRI physics, you're even more likely to collect pilot data

Data Collection Protocol

- Checklists and workflows for both regulations, safely, and experimental needs
- What to save?
- Ways to organize data in ways that facilitate future sharing
 - Consistent structure across individuals both for: data, information explaining the data, scanning notes, & results
 - Making analysis workflows that your future self will understand
- Quality Assurance steps to run during and soon after each acquisition

Questions for a study protocol

Priority	Context & Examples	
	General	
Which voxels have usable data?	Voxel-wise data quality & coverage*	
Are locations of voxels accurately defined?	Distortion & alignment to anatomy & templates*	
Define context	Scientific questions & study priorities affect what is or is not good quality data	
During study planning		
QC measures to support study goals	Particularly for study-specific QC priorities, this is a good time to seek expert advice	
Operation procedures to decrease acquisition errors	Good procedures are critical for making sure data are accessible and consistently documented	
Additional measures to collect	Experimenter notes, behavior logs, respiratory & cardiac traces	
Organization & sharing QC measures	Inaccessible information is not useful	
Piloting acquisition & processing	Evaluate and improve a QC protocol as part of study piloting	
Durir	g Acquisition	
Real-time monitoring of severe image	Observing problems during acquisition can give time to	
distortions, head motion, task non- compliance	recollect data or fix problems for the current or future scans	
Monitor peripheral measures	Respiration, cardiac, eye tracking	
Soon after ac	quisition or download	
Expected data are all present and properly documented	Missing, duplicated, or corrupted files, incomplete runs.* For MRI data, behavioral logs, and peripheral measurements	
Data consistency & documented parameters match data	Consistent MRI field of view, contrast, orientation, number of runs, & run lengths match documentation*+	
Documentation on QC during acquisition or	No documentation means there are undocumented	
pre-sharing exists	problems	
Data plausibly useful for study goals	Regions of interest should have full coverage. No substantive temporal artifacts that affect connectivity measures	
Atypical brain structures, acquisition artifacts, drop out, and distortion	May still be fine`, but might require altered processing. AFNI's instacorr can be useful for assessment	

During and after processing		
Scripts ran properly	Expected logs, QC metrics, & outputs created*	
Appropriate voxels retained or removed	Voxels with good SNR in brain are within mask and	
Appropriate voxets retained or removed	voxels outside of brain are removed.*	
Voxels lost to dropout or field of view	Check that similar voxels are retained across the	
Toxets tost to diopout of ficta of them	population*	
Consistent measures of temporal signal-to-	Sessions with non-trivially lower TSNR or different	
noise and intrinsic spatial smoothness	smoothness can be a warning sign of other problems*	
across population		
Automatically removed data	Number of censored volumed and DOF lost from noise	
	regression, temporal filtering, & censoring*	
Artifacts like ghosting, phase wrapping, or	Instacorr is useful for checking if the temporal signal	
leakage	from an article is folding over into other brain regions	
Partially-thresholded activation maps	Are areas with the largest model fits in anatomically	
	plausible patterns inside the brain?*	
Task correlated head motion or breathing	Not commonly checked and can bias results.* (AFNI	
	automatically checks motion, but not breathing.)	
Skull properly masked for anatomical &	Can cause problems with alignment. Part of report from	
functional data	AFNI's SSwarper	
Intensity inhomogeneity	Brighter signal on the surface can be expected, but can	
	cause problems with masking and alignment*	
Good anatomical to functional alignment &	Can be a serious hidden problem if one just looks at	
alignment across days/runs	group maps. ⁺	
Left & right hemispheres flipped between	More common than it should be & requires excluding	
anatomical & functional data	data unless the true left/right can be determined*	
	git out to dotoit mod	
Good anatomical to anatomical alignment	Often correctable and causes problems if not	
across participants	corrected ⁺	
Group coverage across population	A summation of aligned functional masks highlights	
	brain areas missing in part of the population⁺	
Processed peripheral data are good	Plausible behavioral timing files, good peak detection in	
	respiratory & cardiac traces	

Questions
Not a
checklist

Teves et al "The art and science of using quality control to understand and improve fMRI data" Front. Neurosci. (2023) https://doi.org/10.3389/fnins.2023.1100544

Data Collection!

- If planning was done well, then data collection follows a script
- Pay attention to when you go off-script and if the plan needs to change
- QA soon after each acquisition
 - Identify fixable problems before a lot of data are collected
 - Identify data anomalies or unexpected variations that might skew or hide key results
- All datasets have problems
 - Not checking → Incorrect or misleading interpretations of results
 - Checking → Fewer unknown problems

AFNI automatic QC Report after processing data

Brain regions without fMRI data

O.71L 0.71L 18.29R

Head motion & censored volumes

Statistical Maps

QA: Full study coverage map

Coverage differs between studies: "Sufficient" coverage is study-specific

Teves et al. Front. Neurosci. (2023) https://doi.org/10.3389/fnins.2023.1100544

Analysis and interpretation

Cannot cover even a fraction of fMRI analysis methods

- Make sure analysis scripts fail in clear ways
- Save intermediate processing data
- Look at your data!
- Track provenance (how processed data were created)

Taylor et al "Highlight results, don't hide them..."

Neurolmage 2023

Taylor et al "Highlight results, don't hide them..."

Neurolmage 2023

Communication

- It is easier to share code and data if it's set up with sharing in mind
 - Write code that you can share with your future self
- If you share data, share quality assessment measures!

Take home messages

- Make time to think through choices at every step of a study
- Quality Assessment is a critical part of every study
- No one is an expert in every step of every neuroimaging study
 - Behavioral psychology
 - Clinical Medicine
 - Neuroanatomy
 - MRI physics
 - Statistics
 - Software Development
 - Scientific Communication
- Learning what you don't know and who to ask is almost as important and what you do know.