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Topic

Introduction to Course & A history of fMRI and Neuroimaging
fMRI Limits, Paradigms, and Processing

fMRI methods and applications at high field and high resolution
fMRI and MRI at the NIH

Basics of MRI and how to identify artifacts

Advanced MRI and fMRI Acquisition Methods

Minimizing noise during fMRI acquisition

What's neuronal and what's not in fMRI
Magnetoencephalography (MEG)

Approaches to functional activity mapping during natural viewing
No Lecture

Studying CNS diseases with advanced MRI

Human Spectroscopy Introduction and Glutamate Spectroscopy at 7T
AFNI plus SUMA: analyzing your data

The AFNI - based Functional and Anatomical Connectivity Platform
fMRI Data Sharing

T1 Contrast, MPRAGE and MT

Resting State fMRI

Reliability vs Validity in Resting State fMRI

MRI Brain Segmentation Algorithms

Positron Emission Tomography (PET)

Perfusion Imaging

Neuromodulation methods

EEG/fMRI and Pharmacologic fMRI

EEG/fMRI and the study of Language

EEG/fMRI and Neurofeedback

Quantitative MRI

Neuromodulation applications

The physics of neuromodulation

Machine Learning and fMRI

Multi-echo EPI for task-based and resting-state fMRI

Dynamic Resting State fMRI

Depression and Multimodal Neuroimaging

Statistics of fMRI

Multivariate pattern analysis and brain decoding

Imaging Changes in Brain Anatomy

Anatomical and Functional Neuroimaging in Animal Models
Genetics and Neuroimaging: How to analyze imaging data and SNPs
Imaging Stroke and Traumatic Brain Injury

Diffusion MRI

What you can and cannot do with diffusion MRI

The future of fMRI & Course Conclusion
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A Brief History of Neuroimaging & fMRI

Peter A. Bandettini, Ph.D.

Section on Functional Imaging Methods
Laboratory of Brain and Cognition
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1861 Paul Broca:

His patient, Leborgne, could only produce ‘“tan.”




1874: Carl Wernicke

His patients could not understand or produce
meaningful speech but could articulate words.

Carl Wernicke

Wernicke's area

Broca A Wernicke

'. ekl L g ) \
T A &_{ \<- o o P /

Approximate location of Wernicke's area
highlighted in grey
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1895: Roentgen discovers x-rays and their utility
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Early 1900’s: Phneumoencephalography

CSF drained from the brain to enhance contrast in x-rays




1927: Antonio Egas Moniz - first Arteriogram

... also invented the lobotomy

strontium and lithium bromide contrast agent



1960, William Oldendorf patented an electronically
based device that could capture image slices
continuously through a solid object

N

197 1: Hounsfield
implemented the first CT
scanner




MRI: Magnetic Resonance Imaging

Sir Peter Mansfield and Paul Lauterbur, Winners of the
Nobel Prize for Medicine, 2003



Lauterbur's Contribution: Projectional NMR Tomography

Paul Lauterbur (1909-2007), a chemist working at the State University of New York at Stony Brook,
published the first true MR image in Nature in March, 1973. His experimental setup involved two 1-mm-
diameter tubes filled with water placed in an 1.4T magnet. Applying magnetic field gradients rotated
successively by 45°, he was able to obtain four different 1-dimensional projections of the NMR signal.
These data were then mathematically "back-projected" to form a 2-dimensional tomographic image.
Because the result depended on the combined effects of two magnetic fields, Lauterbur named his
technique "zeugmatography" after the Greek word, zeugma, meaning "that which is used for joining."
Shortly thereafter, Lauterbur produced crude images of his first living subject: a tiny clam.

4

: . o 2 Proton nuclear magnetic resonance zeugmatogram of the
Fig.1 Relationship between a three-dimensional object, its two- object described in the text, using four relative orientations of
dimensional projection along the Y-axis, and four one-dimen- object and gradients as diagrammed in Fig. 1.
sional projections at 45° intervals in the XZ-plane. The arrows

indicate the gradient directions.



Mansfield's Contribution: Use of a field gradient for slice selection

Also in 1973, Peter Mansfield (b. 1933), a
physicist working at the University of

te) Nottingham, demonstrated how a linear field
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From Mansfield (1973). Five peaks corresponding
to five stacked blocks of solid camphor.

gradient could be used to localize the NMR
signal on a slice-by-slice basis. Mansfield's
experimental setup involved stacking multiple 1-
mm-thick sheets of solid camphor into the bore
of an NMR spectrometer. Applying a magnetic
field gradient perpendicular to the sheets,

Mansfield measured the transient NMR signal response to an applied RF-pulse. Interference peaks
similar to those seen in x-ray diffraction were observed, which when inverse Fourier transformed

revealed discrete layers of the camphor sample.

Later in the decade, Mansfield and his collaborator, Andrew Maudsley, further refined this method into a
line-scan technique, producing the first image of a human body part, a finger, in 1977.

Spin |
density |
plx) :
i Gy
z Az
| x ¥
y dy

—— g

Line-scan technique, selectively irradiating a narrow strip with
an isolated slice of magnetization.

Image of human finger from Mansfield and Maudsley
(1977) using line-scan technique obtained at 0.35T in 23
minutes. The white oval is marrow within the phalanx and

the dark bands are tendons.



Damadian's Contribution: Vision of a human-sized scanner to detect disease

While Lauterbur and Mansfield were basic scientists,
Raymond V. Damadian (b. 1936) was a physician, an
Associate Professor of Medicine at the State University of New
York - Brooklyn (Downstate). He looked at NMR from a
different and original perspective — as a phenomenon that
might be used to probe the body and diagnose human
disease. In one of his landmark early papers (Science, 1971)
Damadian demonstrated that cancer cells had longer T1 and
T2 values than normal cells. In 1972 he filed a US patent
application for an apparatus and method to detect cancer in
tissue. Although the details of exactly how this 'apparatus”
would produce images were not included in the application,
Raymond V. Damadian Damadian and his team set out to build such a device which
was named "Indomitable." By mid-summer, 1977, the first
whole-body MR images were being produced, including the
famous one shown below of his assistant's chest.

NUCLEAR INOUCTION
Amﬂll’sﬁ 8 DISPLAY

Damadian's 1972 patent application

Assistant Larry Min;off in Indomitable



Damadian used a "sensitive point"
method for spatial localization of the
NMR signal. This was based on a
saddle-shaped magnetic field where only
a small volume at the center matched the
resonance frequency of the RF pulse.
The patient's body was physically moved

in a rectangular pattern until signals from

all pixels were obtained. First whole body image (Minkoff's chest), obtained July, 1977. It
required nearly 5 hours to produce.

Damadian called his imaging method "field-focused NMR" or FONAR. This became the name of his
company, the first to manufacture clinical MR scanners commercially. It was soon recognized that the
field-focused method was far too slow and clumsy for routine clinical imaging, and so it was abandoned
in favor of the methods of Lauterbur and Mansfield in subsequent versions of the scanner.

When the 2003 Nobel Prizes for Medicine were announced, Damadian considered it a personal
injustice that he was excluded. He placed full-page ads in several large world newspapers urging the
Nobel committee to change its mind. The decision stood.



V*T°E

X-ray/
Radiography

Ultrasound

Radionuclide

Optical laser

Thermography

Medical imaging (ICD-9-CM V3 87-88, ICD-10-PCS B, CPT 70010-79999) [hide]

Medical:

2D
Industrial:
Medical:

3D/ XCT
Industrial:

Pneumoencephalography - Dental radiography - Sialography - Myelography + CXR
(Bronchography) - AXR - KUB - DXA/DXR -

Upper gastrointestinal series/Small-bowel follow-through/Lower gastrointestinal series -
Cholangiography/Cholecystography - Mammography - Pyelogram - Cystography - Arthrogram -
Hysterosalpingography - Skeletal survey - Angiography (Angiocardiography - Aortography) -
Venography + Lymphogram

Radiographic testing

CT pulmonary angiogram - Computed tomography of the heart -

Computed tomography of the abdomen and pelvis (Virtual colonoscopy) - CT angiography -
Computed tomography of the head - Quantitative computed tomography -

Spiral computed tomography - High resolution CT - Whole body imaging (Full-body CT scan) -
X-ray microtomography - Electron beam tomography

Industrial computed tomography

Other  Fluoroscopy * X-ray motion analysis

MRI of the brain - MR neurography - Cardiac MRI/Cardiac MRI perfusion - MR angiography + MR cholangiopancreatography -
Breast MRI - Functional MRI - Diffusion MRI - Synthetic MRI

Echocardiography - Doppler echocardiography (TTE - TEE) - Intravascular - Gynecologic - Obstetric - Echoencephalography -
Transcranial Doppler - Abdominal ultrasonography - Transrectal - Breast ultrasound - Transscrotal ultrasound -

Carotid ultrasonography - Contrast-enhanced - 3D ultrasound - Endoscopic ultrasound - Emergency ultrasound (FAST -
Pre-hospital ultrasound) - Duplex

Cholescintigraphy + Scintimammography - Ventilation/perfusion scan - Radionuclide ventriculography -
Radionuclide angiography - Radioisotope renography - Sestamibi parathyroid scintigraphy -
2D/ scintigraphy g jioactive iodine uptake test - Bone scintigraphy - Immunoscintigraphy - Dacryoscintigraphy

Full body: Octreotide scan - Gallium 67 scan - Indium-111 WBC scan

SPECT (gamma ray: Myocardial perfusion imaging)

3D/ECT

PET (positron):  Brain PET - Cardiac PET - PET mammaography - PET-CT

Optical tomography (Optical coherence tomography) - Confocal microscopy + Endomicroscopy

non-contact thermography - contact thermography - dynamic angiothermography

Categories: Radiology | Medical imaging | Inverse problems | Multidimensional signal processing | Signal processing

| Tomography
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1880’s: Angelo Mosso’s balance
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“On the Regulation of the Blood-Supply of the Brain”

C.S. Roy and C. S. Sherrington, J Physiol. 1890 Jan;
11(1-2): [85]-108, 158-7-158-17.

...measured cerebral pressure and brain position
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ha s WPT PIN o


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1514242/

1960’s to 70’s: Xenon inhalation -
radiation detection at the surface of brain

Niels A. Lassen, David H. Ingvar, Erik Skinhgj, "Brain
Function and Blood Flow", Scientific American,
239(4):50-59, 1978 October

SCIENTIFIC
AMERICAN

SPEAKING activates three centers in each hemisphere: the mouth- ty between the two hemispheres can be seen in these averaged images
tongue-larynx area of the somatosensory and motor cortex, the sup- from ni i i in the right i (right) the mouth-
plementary motor area and the auditory cortex. Differences in activi- tongue-larynx area is less distinct and coalesces with auditory cortex.

: READING SILENTLY AND READING ALOUD involve differ- the mouth area and the auditory cortex. The left hemisphere is shown

BRAIN FUNCTION AND BLOOD FLOW $1.50 ent patterns of activity in the cortex. Reading silently (/eff) activates in both cases, but similar results have been obtained from the right
four areas: the visual association area, the frontal eye field, the sup- hemisphere. Adding the primary visual cortex, which is not reached

plementary motor area and Broca’s speech center in the lower part by the radioactive isotope, the act of reading aloud calls for simulta-

er / 97 é’ of the frontal lobe. Reading aloud (right) activates two more centers: neous activity in seven discrete cortical centers in each hemisphere,

© 1978 SCIENTIFIC AMERICAN, INC
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1973: Michael Ter-

Pogossian, Edward

Hoffman, and Micahale
Phelps - First Human

PET scanner

Coincidence Detection

Isotope | half- Maximum Positron range || Production
life positron in water method
(min) | energy (MeV) (FWHM in
mm)

e 20.3 0.96 1.1 cyclotron
13N 9.97 1.19 14 cyclotron

150 2.03 1.70 1.5 cyclotron

18 109.8 0.64 1.0 cyclotron
68G4a 67.8 1.89 1.7 generator
82Rp 1.26 3.15 1.7 generator

Y I'wo anti-parallel 511 kel
photons produced
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Figure 1. Positron emission and annihilation.
Isotope distribution

Annihilation event coincidence events

Figure 2. Coincidence detection in a PET camera.
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1973: Michael Ter-Pogossian, Edward
Hoffman, and Micahale Phelps - First
Human PET scanner
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Hearing words Seeing words

Speaking words Generating verbs

Positron emission tomographic studies of the cortical anatomy of single-
word processing. Petersen, S.E. et al. Nature. 1988; 331: 585-589
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From the electrical nature of brain signals ...

1875: R.C. measured currents inbetween the cortical

surface and the skull, in dogs and monkeys Richard Caton
1842 - 1926

1924: H.B. first EEG in humans, description of alpha and
beta waves
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http://www.slideshare.net/nikhilprerana/meg-final



About 50 years later ...
Brian-
David
Josephson

1968: first (noisy) measure of a magnetic brain signal [cohen, science 68]

1970: James Zimmerman invents the
‘Superconducting quantum interference device’ (SQUID)

1972. first (1 sensor) MEG recording based on SQUID

http://www.slideshare.net/nikhilprerana/meg-final
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neurotransmitters concepts, issues, and future
76 Diffusion, Confusion and functional Denis LeBihan challenges
MRI 93 The future of ultra-high field MRI and Jeff Duyn
fMRI for study of the human brain
77 The serendipitous discovery of the Randy Buckner 94 Seeing patterns through the Niko Kriegeskorte &
brain's default network hemodynamic veil - the future of Elia Formisano
New Paradigm Designs 78 The emergence of doing "nothing" as Mark Lowe pattern-information fMRI
a viable paradigm design. 95 The future of fMRI connectivity Steve Smith
79 Event-related fMRI in Cognition Scott Huettel
80 The development of event-related Tom Liu 96 The future of fMRI in clinical Ed Bullmore
fMRI designs medicine
81 Targeting the functional properties Rafi Malach 97 Future trends in Neuroimaging: Uri Hasson
of cortical neurons using fMR- neuronaprocesses as expressed
adaptation within real-life social contexts
82 Studying the freely-behaving brain Elanor Maguire 98 The future of fMRI with perfusion Geoff Aguirre
with fMRI imaging
83 The mixed blocked and event-related Joseph Dubis &
design Steven Petersen 99 The future of fMRI and genetics Andreas Meyer-
84 Development of orthogonal task Susan Courtney research Lindenberg
designs in fMRI studies of higher 100 The future of functionally related Heidi Johansen-
cognition: the NIMH experience structural change assessment Berg
85 A history of randomized task designs Vince Clark 101 The future of the human David van Essen &
in fMRI connectome Kamil Ugurbil
102 The future of susceptibility contrast | Jurgen Reichenbach
86 The development and use of phase Steve Engel for assessment of anatomy and
encoded functional MRI designs function
Education 87 The Evolution and current challenges Bob Savoy 103 fMRI at 20: Has it changed the Bruce Rosen
in the teaching of functional MRI and world?

functional brain imaging




metabolic imaging (NAA)

Functional Magnetic Resonance Imaging in
Medicine and Physiology

CHriT T. W. MOONEN, PETER C. M. VAN ZIJL, JOSEPH A. FRANK,
DeN1s L BiHAN, EDWIN D. BECKER

(1990) Science, 250, 53-61.
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How it all came together...

Five Key Factors For The
Emergence of Functional MRI

. Magnetic properties of red blood cells

2. Activation related hemodynamic changes
3. Spatial scale of brain activation

4. Echo Planar Imaging

5. Prevalence of MRI scanners
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Magnetic Properties of Blood

L. Pauling, C. D. Coryell, Proc.Natl.Acad. Sci. USA 22,210-216, 1936.
K.R.Thulborn, J. C.Waterton, et al., Biochim. Biophys.Acta. 714:265-270, 1982.
S. Ogawa, T. M. Lee, A. R. Kay, D.W.Tank, Proc. Natl.Acad. Sci. USA 87, 9868-9872, 1 990.

Turner, R,, Lebihan, D., Moonen, C. T. W,, Despres, D. & Frank, J. Magnetic Resonance in Medicine, 22, 159-166,
1991.

oxygenated

deoxygenated =SF——=

red blood cells



BOLD contrast investigation started in 1936...or even 1845,

CHEMISTRY: PAULING AND CORYELL Proc. N. A. S.

THE MAGNETIC PROPERTIES AND STRUCTURE OF
HEMOGLOBIN, OXYHEMOGLOBIN AND
CARBONMONOX YHEMOGLOBIN

By Linus PAULING AND CHARLES D. CORYELL

GATES CHEMICAL LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY

Communicated March 19, 1936

Over ninety years ago, on November 8, 1845, Michael Faraday in-
vestigated the magnetic properties of dried blood and made a note “Must
try recent fluid blood.” If he had determined the magnetic susceptibilities
of arterial and venous blood, he would have found them to differ by a
large amount (as much as twenty per cent for completely oxygenated and
completely deoxygenated blood); this discovery without doubt would
have excited much interest and would have influenced appreciably the
course of research on blood and hemoglobin.!

Continuing our investigations of the magnetic properties and structure
of hemoglobin and related substances,? we have found oxyhemoglobin and
carbonmonoxyhemoglobin to contain no unpaired electrons, and ferro-
hemoglobin (hemoglobin itself) to contain four unpaired electrons per
heme. The description of our experiments and the interpretation and
discussion of the results are given below.




Riochimica et Biophysica Acta, 714 (1982) 265-270 265
Elsevier Biomedical Press

BBA 20122

OXYGENATION DEPENDENCE OF THE TRANSVERSE RELAXATION TIME OF WATER
PROTONS IN WHOLE BLOOD AT HIGH FIELD

KEITH R. THULBORN, JOHN C. WATERTON *, PAUL M. MATTHEWS and GEORGE K. RADDA l
Department of Biochemistry, University of Oxford, Soutl: Parks Road, Oxford OX1 3QU (UK )

(Received August 4th, 1981)

Key words: Oxygenation dependence; Transverse relaxation time; Water proton; High field NMR, (Whole blood)

At high and medium magnetic field, the transverse NMR relaxation rate (T;') of water protons in blood is deter-
mined predominantly by the oxygenation state of haemoglobin. 7' depends quadratically on the field strength
and on the proportion of haemoglobin that is deoxygenated. Deoxygenation increases the volume magnetic sus-
ceptibility within the erythrocytes and thus creates local field gradients around these cells.From volume suscep-
tibility measurements and the dependence of T;! on the pulse rate in the Carr-Purcell-Meiboom-Gill experiment,
we show that the increase in T;' with increasing blood deoxygenation arises from diffusion of water through
these field gradients.



Oxygenation Changes T2

Biochimica et Biophysica Acta, 714 (1982) 265-270 | V
Elsevier Biomedical Press \

BBA 20122

OXYGENATION DEPENDENCE OF THE TRANSVERSE RELAXATION TIME OF WATER
PROTONS IN WHOLE BLOOD AT HIGH FIELD

KEITH R. THULBORN, JOHN C. WATERTON *, PAUL M. MATTHEWS and GEORGE K. RADDA

Department of Biochemistry, University of Oxford, South Parks Road, Oxford 0X1 3QU (UK.)
A

(Received August 4th, 1981) R2 effect is due to bulk susceptibility
and not dipole-dipole interaction
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..Six years later...

Oxygenation-Sensitive Contrast in Magnetic Resonance Image
of Rodent Brain at High Magnetic Fields

SELOGawa, TSO-MING LEE, ASHA S. NAYAK,® AND PAUL GGLYNN

AT&T Bell Laboraiories, Murray Hill, New Jersey 07074

Received November 30, 1988, accepted June 20, 1989

At high magnetic fields (7 and 8.4 T), water proton magnetic resonance images of
tiraing of live mice and rats under pentoharbital anesthetization have been measured by
a gracient ccho pulse sequence with a spanal resolution of 63 % 65-um pixel size and
TO-pm slice thickness, The contrast in these images depicts anatomical details of the
hrain by numerous dark lines of various sizes. These lines are absent in the imape taken
by the usual span echo sequence. They represent the blood vessels in the image slice and
appear when the deoxyhemoglobin content in the red cells increases. This contrast is
maost profounced in an anoxy brain bul not present in a brain with diamagnetic oxy or
carbon monoxide hemoglobin, The local field induced by the magnetic susceptibility
change in the blood due 10 the paramagnetic deoxvhemoglobin causes the intra voxel
dephasing of the water signals of the blood and the surrounding tissue, This oxypena-
tion-dependent contrast is appreciable in high field images with high spatial resolution,
= I Academes Pross, [ns:




in vitro

100% oxygenated blood

b
100% O,

0% oxygenated blood

d
.

S. Ogawa, T.-M. Lee, A. S. Nayak, P. Glynn, Magn. Reson. Med, 14, 68-78 (1990)
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MAGNETIC RESONANCE IN MEDICINE 22, 139166 {1991}

Echo-Planar Time Course MRI of Cat Brain Oxygenation Changes

ROBERT TURNER,* 't DENIS LE BIHAN, CHRIT T. W. MOONEN,§
DARYL DESPRES,§ AND JOSEPH FRANK ]

* Laboratory of Cardiac Energetics, $ Diagnostic Radiology Departement, and §1In Vive NMR Research
Center, National Institutes of Health, Bethesda, Maryland 20892

Received June 25, 1991: revised August 7, 1991

When deoxygenated, blood behaves as an effective susceptibility contrast agent, Changes
In brain oxygenation can be monitored using gradient-echo echo-planar imaging. With
this technique, difference 1mages also demonstrate that blood oxygenation is increased
during periods of recovery from respiratory challenge. © 1991 Academic Press, Inc.
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Ogawa predicted fMRI but got the sign wrong...

“...we expect this oxygenation-sensitive contrast
could be used to monitor regional oxygen usages in
the brain. When some region in a brain is much more
active than other regions, the active region could
show darker lines in the image because of the
increased level of deoxyhemoglobin resulting from
higher oxygen consumption.”

“Therefore, in addition to the anatomy of the brain,
one aspect of its physiology can be studied by the
MRI of water”

Oxygenation-Sensitive Contrast in Magnetic Resonance Image of Rodent Brain
at High Magnetic Fields, Seiji Ogawa, Tso-Ming Lee, Asha S. Nayak, and Paul
Glynn.Magnetic Resonance in Medicine 14, 68-78 (1990).



Five Key Factors For The
Emergence of Functional MRI

I. Magnetic properties of red blood cells

2. Activation related hemodynamic changes
3. Spatial scale of brain activation

4. Echo Planar Imaging

5. Prevalence of MRI scanners



The First Functional MRI Results (MGH)

Susceptibility Contrast agent bolus injection and time
series collection of T2 - weighted images
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The First Functional MRI Results (MGH)

Susceptibility Contrast agent bolus injection and time
series collection of T2 - weighted images




The MGH Gang




FESTING STATE STIMILATED STATE Proc. Natl. Acad. Sci. USA
Vol. 83, pp. 1140-1144, February 1986
Neurobiology
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Focal physiological uncoupling of cerebral blood flow and oxidative
metabolism during somatosensory stimulation in human subjects
(positron emission tomography)

PETER T. Fox*'# AND MaRrcus E. RaICHLE*t

*Department of Neurology and N 1 | Surgery (N ), tDepartment of Radiology (Radiation Sciences), and The McDonnell Center for Studies of
Higher Brain Function, Washington Umversuy School of Medlcme St. Louis, MO 63110

Communicated by Oliver H. Lowry, October 7, 1985
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i b FiG. 1. Physiological uncoupling of
LANIMIN G8) AL/NINES O5) brain blood flow and metabolism. (Lef?)

: Resting-state measurements. (Right) Stim-
ulated-state measurements (unilateral
vibrotactile stimulation of the fingers). All
images are from a single subject’s scanning
session and pass through the same brain
plane. Color scales are linear with the
maxima set at a fixed multiple (1.6) of the
global average, to facilitate visual compar-
isons (16). During specific somatosensory
stimulation a marked focal increase in
CBF (29% of mean, nine subjects, three
trials per subject) was produced in the
M contralateral sensorimotor cortex. The ob-
- ER ¥, served increase in the CMRo, was much
smaller (5% of mean, nine subjects, three
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nificance. This physiological uncoupling of
CBF and CMRo, flow produced a highly
significant decrease in the local OEF

(—19% of mean), indicating that tissue Po,
(and probably pH) rose during stimulation.
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as contralateral/ipsilateral ratios (see text
and Tables 1-4), the disparity between
blood flow and metabolism was evident
from the raw data and was not dependent
on a particular strategy of analysis.
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Cerebral Tissue Activation

Local Vasodilatation

Increase in Cerebral Blood Oxygen Delivery Exceeds
Flow and Volume Metabolic Need

Increase in Capillary and Venous Blood Oxygenation

Deoxy-hemoglobin: paramagnetic

Decrease in Deoxy-hemoglobin Oxy-hemoglobin: diamagnetic

Decrease in susceptibility-related Increase in T2 and T2%
intravoxel dephasing

Local Signal Increase in T2 and T2% - weighted sequences
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K. K. Kwong, et al, (1992) “Dynamic magnetic
resonance imaging of human brain activity

during primary sensory stimulation.” Proc.
Natl. Acad. Sci. USA. 89, 5675-5679.
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Multi-shot results at 4T, U. Minnesota.
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S. Ogawa, et al., (1992) “Intrinsic
signal changes accompanying sensory
stimulation: functional brain mapping
with magnetic resonance imaging.”
Proc. Natl. Acad. Sci. USA. 89,
5951-5955.
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gradient-echo
TE
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Single Shot Echo Planar Imaging (EPI)
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First Fast Imaging Approaches

I. MGH: ANMR retrofitted resonant gradient
system with EPI

2. Minnesota: Standard gradients with Multi-
shot with navigator echoes

3. MCW: local low-inductance gradient coil with
EPI



What preceded the results from the Medical College of Wisconsin...

MAGNETIC RESONANCE IN MEDICINE 21, 39-48 (1991)

Coil Optimization for MRI by Conjugate Gradient Descent

ERIC C. WONG,* A. JESMANOWICZ, AND JAMES S. HYDE

Biophysics Section, Department of Radiology, Medical College of Wisconsin,
Milwaukee, Wisconsin 53226

Received Apnl 30, 1990; revised June 29, 1990



Local head gradient coils: Window(s) of oppor"runn‘y
Eric C. Wong
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Fig. 1 GUI for gradient descent gradient coil design tool. The design shown is one octant of the X gradient coil
designed and built in August 1991. The program was written in Objective C and ran on a NeXT Cube computer.

NeuroImage, Volume 62, Issue 2, 2012, 660 - 664

http://dx.doi.org/10.1016/j.neuroimage.2012.01.025
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Initially could only do one slice...

2.5cm!

TR = 2 sec
TE =50 ms
One slice

In plane 3.75 x 3.75



One little known fact...

We didn’t even need a gradient coil:

EPI at 5mm x 5mm X 5mm was quite possible
using 100 amp gradient amplifiers and the
whole body gradient coils...

Every scanner in the worid in 1991 could have
performed EPIl-based fMRI at perfectly
reasonable resolution.
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P. A. Bandettini, et al., (1992)
“Time course EPT of human brain T
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Magn. Reson. Med 25, 390-397.
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Trying to figure out the
basic mechanism.
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Difference Signal

The first event-related studies.
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“Dynamic mapping of the human

visual cortex by high-speed
maghetic resonance imaging.”

Proc. Natl. Acad. Sci. USA 89:

11069-11073.
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1992..Perfusion using Arterial Spin Labeling

MAGKNETIC RESOMANCE IN MEECINE 23, 3745 ( 1992)

Perfusion Imaging

Jorw A, DETRE,* + JOHN 5. LEIGH,* DONALD 5. WiILLIAMS, §
AND ALAN P. KORETSKY §4

* Metabolie Magnerk Resonanee Nesearch Center and Deparrment of Biochemigiry and Biophysics,
Universily of Penvissivamia Sohoad of Medicine, Philadelohia, Peanepdvania T804, amd
Y Piteshurgh NMR Center for Riomedioa! Research and § Departoremt of Biologion Svéiences,
Carmegie Mellom University. Prisshurek, Pesnayhamale 15213

Recrived Juby 2. 190k revised January 3, 1951

Meaparement of bssse perfision s impomant for the functional asscssencmt of organs
in vieg, Here we repart the e af 'H NME imaging to penerate perfusion maps 16 the rat
brazn at 4.7 T, Blood water flowing to the beain is sateraied in the neck region with a shice-
selective siuration imaging sequence, cresling an endogenous tracer bn the form of prox-
imally sturated spins. Because proton T timex are relatively long, particularly at hagh
fichl strengths, saturated spins exchange with bulk water in ihe brain and a seady state is
cresled where the regional conceriration of saturated spins 18 destermined by the regional
hlpod fiow and regional T, . Dhstal sduration applied equidisantly outade e brasm stroes
as & controd for effocts of the saturation pulses. Average cerchral blood Sow in normacapaic
rat hrain under halothane anesthesia was determined o be 105 + Vo ce- 100 g ™" = min ™'
(mean = SEM, m = 1), in gond agreemend with values reported i the literature, and was
sensitive 1o increases in aredal pOO;, This wehneque allows regional perfsion maps o
e measured mominvasively, with the resolution of "H MR, arxl should be readaly apphcabie
o human ssdbzs. & 1992 Acslemic Pres, Inc.



1992..Perfusion using Arterial Spin Labeling

Proc. Natl. Acad. Sci. USA
Vol. 89, pp. 212-216, January 1992
Biophysics

Magnetic resonance imaging of perfusion using spin inversion of
arterial water
(cerebral blood flow /adiabatic fast passage/hypercarbia/rat brain/cold injury)

DoNALD S. WiLLIAMS*, JOHN A. DETRE'!, JouN S. LEiGHT, AND ALAN P. KORETSKY*$

*Pittsburgh Nuclear Magnetic Resonance Center for Biomedical Research, and $Department of Biological Sciences, Carnegie Mellon University, Pittsburgh,
PA 15213; and *Metabolic Magnetic Resonance Research Center, Department of Radiology, and *Department of Neurology, University of Pennsylvania
School of Medicine, Philadelphia, PA 19104

Communicated by Mildred Cohn, September 19, 1991

FiG. 5. Comparison of con-
ventional MRI and perfusion im-
aging of a rat brain subjected to
a regional cold injury. (A) Con-
ventional T,-weighted image
(TE = 60 ms, TR = 2 s). The
injured region shows up as hy-
perintensity due to a longer T>.
(B) Perfusion image of the same
slice. The grey scale is from 0 to
6 ml'g " min~'. The injured re-
gion is dark due to low flow.

F1G.2. (A)Coronal image of a rat head. The resonance planes for
radiofrequency used for spin inversion by AFP for control and
inversion images are indicated by 1 and 3, respectively, and plane 2
is the detection plane. (B) Control transverse image from the detec-
tion plane (plane 2 in A). (C) Difference image between control and
inversion images. (D) Tyupp image.
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A proposed acronym...

The earliest successful

magnetic resonance functional neuroimaging (MRFN) Bstudies

with BOLD contrast were made using a grad ersion O 10-Ppramdr 1maging
(EPI). The EPI technique, proposed by Mansfield in 1977 (4), allows the capture of a
complete MR image in under 100 ms. Thus most motions in the body are frozen and
motion artifact rarely appears. EPI relies on a very rapidly switched magnetic field
gradient of large amplitude, and a fast data capture rate. Since these features were
not considered necessary by most manufacturers of commercial MR systems until
recently, the technique has been available only in a few pioneering laboratories.
The technique normally uses a full 90 degree rf pulse for spin excitation, and hence
provides a comparatively high single-shot signal/noise ratio (SNR), considering the
large receiver bandwidth required. For brain imaging, with equal voxel size, an EPI
image with 40 ms acquisition time has been found to have the same SNR as a FLASH
image with optimized bandwidth taking 2 seconds to acquire. Faster FLASH images
will have a poorer SNR than EPI. Low flip-angle variants of EPI (5) can of course
provide much higher values of SNR/unit time, though this sacrifices SNR in each



Functional Mapping of the Human Visual Cortex at 4
and 1.5 Tesla Using Deoxygenation Contrast EPI

R. Turner, P. Jezzard, H. Wen, K. K. Kwong, D. Le Bihan, T. Zeffiro, R. S. Balaban

MRM 29:277-279 (1993)

percentoge change

200

time / seconds

FIG. 2. Plot of fractional change in 4 T (squares) and 1.5 T (tri-
angles) EPI image intensity versus time in the eight-voxel regions
of interest in the visual cortex shown in Fig. 1, for a volunteer
experiencing alternate 30-s periods of rest and photic stimulation.
Details of acquisition for the 4 and 1.5 T data are described in the
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Five Key Factors For The
Emergence of Functional MRI

I. Magnetic properties of red blood cells

2. Activation related hemodynamic changes
3. Spatial scale of brain activation

4. Echo Planar Imaging

5. Prevalence of MRI scanners
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Visual Cortex Organization
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Ocular Dominance Column Mapping

Menon, R. S., S. Ogawa, et al. (1997). ] Neurophysiol 77(5): 2780-7.
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Orientation Columns in Human V1
as Revealed by fMRI at 7T
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Multi-sensory integration

M.S. Beauchamp et al.,
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Functional Neuroimaging Techniques
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Five Key Factors For The
Emergence of Functional MRI

I. Magnetic properties of red blood cells

2. Activation related hemodynamic changes
3. Spatial scale of brain activation

4. Echo Planar Imaging

5. Prevalence of MRI scanners
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MRI vs. fMRI

MRI fMRI

high resolution
(I mm)

one image

many images
(e.g., every 2 sec for 5 mins)
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Approximate EPI Timeline

1976-84 P. Mansfield conceives of EPI

1989 EPI of humans emerges on a handful of scanners
3x3x3-10 mm3

1989 ANMR retrofitted with GE scanners for EPI

1991 Home built head gradient coils perform EPI

1996 EPI is standard on clinical scanners

2000 Gradient performance continues to increase

2002 Parallel imaging allows for higher resolution EPI

2006 1.5 x 1.5 x 1.5 mm?3 single shot EPI possible

2009 At 7T sub - mm single shot EPI for fMRI is possible



Imaging System Components
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Emergence of Functional MRI

I. Magnetic properties of red blood cells

2. Activation related hemodynamic changes
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How it all came together...

Five Key Factors For The
Emergence of Functional MRI

. Magnetic properties of red blood cells

2. Activation related hemodynamic changes
3. Spatial scale of brain activation

4. Echo Planar Imaging

5. Prevalence of MRI scanners
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Brief History of Brain Imaging

2.

3.

Lesion-based Mapping.

Anatomic Imaging.

Hemodynamic and Metabolic Imaging.
Electrophysiologic Imaging

Functional MRI



Parametric manipulation of brain activation demonstrated that BOLD contrast approximately followed the level of brain activation: visual
system (Kwong et al., 1992), auditory system (Binder et al., 1994), and motor system (Rao et al., 1996).

The use of continuous variation of visual stimuli parameters as a function of time was proven a powerful method for fMRI-based
retinotopy: (Engel et al., 1994, Deyoe et al., 1994, Sereno et al., 1995).

Event-related fMRI was first demonstrated (Blamire et al., 1992).
Application of event-related fMRI to cognitive activation was shown (Buckner et al., 1996, McCarthy et al., 1997).
Development of mixed event-related and block designs was put forward: (Donaldson et al., 2002).

Paradigms were demonstrated in which the activation timing of multiple brain systems timing was orthogonal, allowing multiple
conditions to be cleanly extracted from a single run (Courtney et al., 1997).

I
High resolution maps were created: For spatial resolution: ocular dominance columns (Menon et al., 1997, Cheng et al., 2001) and cortical
layer activation maps were created (Logothetis et al., 2002).

Extraction of information at high spatial frequencies within regions of activation was demonstrated (Haxby et al., 2001).

I
For temporal resolution: Timings from ms to hundreds of ms were extracted (Ogawa et al., 2000, Menon et al., 1998, Henson et al., 2002,
Beligowan et al., 2003).

The development of “deconvolution” methods allowed for rapid presentation of stimuli (Dale and Buckner, 1997).
|

Early BOLD contrast models were put forward: (Ogawa et al., 1993, Buxton and Frank, 1997).

More sophisticated models were published that more fully integrated the latest data on hemodynamic and metabolic changes (Buxton et
al., 2004).

I

The development of “clustered volume” acquisition was put forth as a method to avoid scanner noise artifacts: (Edmister et al., 1999).
I

The findings of functionally related resting state correlations: (Biswal et al., 1995) and regions that consistently show deactivation (Binder

et al,, 1999, Raichle et al., 2001) were described.
|

Observation of the pre-undershoot in fMRI (Hennig et al., 1997, Menon et al., 1995, Hu et al., 1997) and correlation with optical imaging
was reported (Malonek and Grinvald, 1996).

I
Simultaneous use of fMRI and direct electrophysiological recording in non-human primate brain during visual stimulation elucidated the
relationship between fMRI and BOLD contrast. (Logothetis et al., 2001). Simultaneous electrophysiological recordings in animal models
revealed a correlation between negative signal changes and decreased neuronal activity (Shmuel et al., 2002). Simultaneous
electrophysiological recordings in animal models provided evidence that inhibitory input could cause an increase in cerebral blood flow
(Matheiesen et al., 1998).



