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Many paths to better fMRI 

• Many discussions of improving fMRI focus on scan duration and sample size
• Even when within & between subject variation is discussed, it’s often presented as something we 

have limited control over

Ooi et al “MRI economics: Balancing sample size & scan duration in BWAS”
https://www.biorxiv.org/content/10.1101/2024.02.16.580448v1 

Following earlier work by Marek et al 2022, Nature
Xu et al. Nature Methods 2023



Data quality also matters!

A 10% improvement in contrast-to-noise could mean a statistical power of 0.8 is possible with 63 vs 80 subjects



Why I’m interested in multi-echo fMRI

• I want fMRI to directly help people
• Clinically useful scans require better data
• For population studies, better data → lower sample size

• Multi-echo is not the only path to better data
but it already helps and has the potential to address key road bocks 
towards better data



Overview

• Intro to multi-echo fMRI
•Multi-echo fMRI for noise removal
• A few examples of how multi-echo can help
• Considerations for acquisition
• tedana multi-echo software & community
• “TE-dependent analysis of multi-echo fMRI with tedana”

JOSS 2021
• How to contribute

Talks with pdfs and links to recordings: https://fmrif.nimh.nih.gov/index.php/SummerCourse
Recordings: https://www.youtube.com/@nimhcmn
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What is multi-echo fMRI? Echo 1
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fMRI response magnitudes by echo time

In addition, inflow effects may lead to a high signal
change3–6 so that activation is found in large vessels
which may be located distant from initial neuronal
activity (in the range of several millimeters up to
centimeters, e.g. the sagittal sinus). Due to additional
influences, which can be physiological and anatomical in
nature, functional activation shows a large intra- and an
even larger inter-subject variability. As a consequence, a
simple threshold strategy is not reasonable and additional
information is needed for characterization of the under-
lying source of activation.

Multi-echo experiments can provide a valuable tool to
quantify inflow related effects by calculating T2* and I0-
maps and thus enabling separation of inflow and BOLD
effects.12,13 Fortunately, besides enhanced sensitivity14

multi-echo experiments also provide information about
the signal change !S vs echo time. This signal change can
be specific for a particular vascular environment (e.g.
single big vessel vs vessel network) as suggested by
theoretical models15,16 and confirmed by multi-echo
experiments.2,8,17–22

We have shown already that exploratory data analysis
(EDA) methods such as fuzzy clustering23 (FCA) can
help to differentiate activation based on the amplitude of
functional signal changes as no explicit knowledge about
the amplitude of !S is necessary.18,21 FCA can help to
extract unknown signal changes for validation of vascular
models as, according to the BOLD models mentioned
above, the signal evolution during increasing TE might be

quite complex as it is depending on vessel size and
orientation, blood oxygenation, and intra- and extra-
vascular components. In this study we want to demon-
strate that this is possible without increasing
measurement time using a fast single-shot multi-echo
protocol and by statistical verification of the resulting
separation of activated regions. In addition, the compari-
son with a single-exponential model provides further
information for characterizing the underlying vascular
sources.

!"#$%&"'( ")* !$#+,*(

Data sets of eight healthy subjects were examined in this
study. Images were acquired with a multiple gradient-
echo, single-shot spiral imaging sequence implemented
on a 3 T Medspec S300 scanner (Bruker Medical,
Ettlingen, Germany). Five adjacent axial slices covering
the primary motor cortex were sampled at echo times
ranging from 5 to 180 ms with an echo spacing of 25 ms,
a repetition time (TR) of 3 s and a nominal spatial
resolution of 4 ! 4 ! 4 mm3. One task period for
functional imaging consisted of right-hand self-paced
finger-to-thumb movements performed for 30 s. Three
task periods were each preceded by a resting period
without a task. This block was followed by an additional
resting period at the end resulting in a total of 70 time
instances (see Fig. 1). Further technical details about data
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Average across active voxels in a finger tapping task at 3T

Barth et al NMR Biomed 2001, p484



S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Signal in voxel x, at time point t, measured at echo time TE

Captures local fluctuations in field 
inhomogeneity (including BOLD)

Captures local fluctuations due to T1 
changes (e.g., inflow) and HW instabilities

+ Noise

A bit of physics & math

• More math: Javier Gonzalez-Castillo’s multi-echo fMRI talk from this series in 2018: 
https://www.youtube.com/watch?v=83bavs4rlUg (Thank you Javier for some slides)

• Appendix A of Olafsson, Kundu et al NeuroImage 2015
• https://me-ica.github.io/multi-echo-data-analysis/content/TE_Dependence.html
• Implementation in tedana: https://github.com/ME-ICA/tedana/blob/main/tedana/metrics/dependence.py

Echo time 
dependence

𝑅!∗ =
1
𝑇!∗



We have Ne pseudo-concurrent measurements
Combine them to reduce uncorrelated white noise present in each individual measurement

Ŝ(x, t) = S x, t,TEn( )
n=1

N

∑ ⋅wv TEn( )

wv TEn( ) = TEne
−TEn T2,v

*

TEn ⋅e
−TEn T2,v

*

n∑

• Weighted average of echoes skewed towards T2
*

• Reduces thermal (measurement) noise and weights towards T2
* signal

• Recovers signal in some dropout regions
• Straightforward math & reliable improvements
• Automatically calculated in AFNI, fMRIPrep, and tedana

Posse et al., MRM 1999 
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T2
* is the curve of the decay across echoes

The BOLD signal is a T2
* change

S0 is a change in the TE=0 intercept. 

Taylor Salo: https://me-ica.github.io/multi-echo-data-analysis/content/Signal_Decay.html

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE



Separating S0 from T2
* signal

Echo 1

Echo 2

Echo 3

Echo 1

Echo 2

Echo 3

Demeaned Time Series
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S0 vs T2
*

• S0 changes over time
• Head motion (Power, PNAS, 2018)
• Slow signal drift (Evans, NeuroImage 2015)
• Overt speech (Gilmore, Front in Neuro, 2022)

• Phase shifts from respiration (looks like head motion)
• Most scanner artifacts

• T2
* changes over time
• Deoxyhemoglobin concentration (BOLD)

• Neurovascular coupling
• Respiratory and Cardiac blood volume and blood oxygenation changes

• Ghosting & signal leakage of MRI artifacts that contain T2* changes

It would be VERY useful if we could remove the S0 fluctuations and just look at T2
* 



Multi-echo gives us info to distinguish T2
* and S0

What we measure with single-echo fMRI

Taylor Salo: https://me-ica.github.io/multi-echo-data-analysis/content/Signal_Decay.html

What we measure with multi-echo fMRI



• ICA based: MEICA (Kundu 2012 & 2013) →              
   (DuPre, Salo, et al, JOSS, 2011) 
• Paradigm Free Mapping (Caballero-Gaudes, NeuroImage, 2019)
• Other methods: tedana.readthedocs.io/en/stable/multi-

echo.html#other-software-that-uses-multi-echo-fmri

Denoising methods to reduce S0 fluctuations

14



MEICA or tedana denoising
Multi-echo fMRI
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Components →

Com
ponents →

Hand waving explanation of ICA

Ylipaavalniemi, Variability of Independent Components in functional Magnetic Resonance Imaging. Available from: 
https://www.researchgate.net/figure/Spatial-ICA-of-fMRI-data-The-rows-of-the-data-matrix-X-and-sources-matrix-S-are_fig3_267419506

Why bother with ICA?

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Solving for 2 variables
≥3 measurements

ICA is targeted 
signal averaging
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Kappa (κ) = 210
Rho (ρ) = 10

Kundu et al., NeuroImage 2012

Identifying components unlikely to contain T2
*
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each voxel and echo



Kappa (κ) = 32
Rho (ρ) = 81

Kundu et al., NeuroImage 2012

Identifying components unlikely to contain T2
*
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maps show that ME-ICA de-noising, without band pass filtering, re-
veals greater functional connectivity to gray matter clusters than
de-noising with standard noise regressors and band pass filtering.
Axial views of R2 maps for insula and hippocampus connectivity
show that the de-noising methods produce similar connectivity pat-
terns proximal to the seed, but ME-ICA de-noising exposes greater
long distance correlation. With ME-ICA de-noising, the insula shows
greater correlation to premotor and cingulate regions, hippocampus
shows greater correlation to premotor and sensory regions, and
brainstem shows greater correlation to frontal and parietal regions.
T-maps show that T-statistics are much higher for correlation with
ME-ICA de-noising than for correlation with standard de-noising
and band pass filtering.

Application to group level correlation maps

Group-level connectivity was evaluated using one-sample T-tests
of the individual-level correlation maps from standard and ME-ICA
based de-noising. Unthresholded group T-maps for hippocampus
and brainstem connectivity are shown in Fig. 8 for ME-ICA and stan-
dard de-noising. The group T-maps based on low κ de-noising
showed much higher T-statistics for connected regions than the
group T-maps based on standard de-noising. This indicated that (Z-
transformed) correlation coefficients based on ME-ICA were more
consistent across subjects than Z-transformed correlation coefficients
based on standard de-noising. Comparing Figs. 7 and 8 shows that for
maps based on ME-ICA de-noising, the regions of higher group T-

Fig. 4. For a representative subject, κ score vs (a) ICA rank (variance explained), and (b) rank by κ (κ spectrum). The κ spectrum, is an L-curve with two distinct regimes: high κ
(κ>20) and low κ (κb20), with low κ components on a linear tail. (c) κ spectra for 8 subjects. (d) First 12 ME-ICA components ranked by κ for a representative subject. Each
panel shows the time course and thresholded ΔR2* map. Components are annotated with κ-score, ρ-score, and ICA component number. All high κ components are clearly functional
networks.

1765P. Kundu et al. / NeuroImage 60 (2012) 1759–1770

Kundu et al., NeuroImage 2012
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1765P. Kundu et al. / NeuroImage 60 (2012) 1759–1770Example retained components



Fig. 5. For a representative subject, ρ score vs (a) ICA rank (variance explained), and (b) ρ rank (ρ spectrum). The ρ spectrum, like the k-spectrum, is an L-curve with two distinct
regimes: high ρ (appx. ρ>20) and a linear tail with low ρ (appx. ρb20). (c) ρ spectra for 8 subjects. (d) First 8 ME-ICA components ranked by ρ for a representative subject. Each
panel shows the time course and thresholded % ΔS0 map. Components are annotated with κ-score, ρ-score, and ICA component number. All high ρ components are clearly artifacts.

Fig. 6. Components with κ scores near κ thresholds are correlated to low-frequency RVT time courses. Components are annotated with κ score, ρ score, and ICA component number.
TE-dependence maps for ΔR2* and ΔS0 models show high ΔR2* localized to non-gray matter regions.

1766 P. Kundu et al. / NeuroImage 60 (2012) 1759–1770

Kundu et al., NeuroImage 2012

Example rejected components



ICA component report in tedana

https://me-ica.github.io/ohbm-2023-multiecho/tedana/tedana_results_minimal_five-echo/tedana_report.html



The default decision process is a bit more… quirky

https://tedana.readthedocs.io/en/stable/included_decision_trees.html



Deciding what/how to reject is not a solved problem

• Benefits of this method don’t show every improvement that’s possible 
with multi-echo data
• Room for people to innovate
• Tedana software now includes multiple ”decision trees” and tools for 

anyone to design their own.
https://tedana.readthedocs.io/en/stable/building_decision_trees.html



Evaluating Contrast-to-noise changes from multi-echo fMRI
Experimental Design

• 2 Volunteers, 9 sessions, 103 runs each, 9 hours of data per person
• GE MR750, 3T, 32 channel coil

• EPI: 3.5mm3, 3 echoes, TE=15.4, 29.7, & 44.0ms FA=75°, TR = 2s, 33 slices
• 5.5 minutes, 161 volumes (150 volumes used in each run)

Foveal letter vs number task with 4 trials per block
Identical task design: Gonzalez-Castillo PNAS; 2012; 109;5487

Optimal Combination & Denoising processed with: bitbucket.org/BenGutierrez/me-ica

Empirical evaluations of multi-echo fMRI methods



Lateral Geniculate Nucleus (LGN) Responses
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Contrast-to-Noise By Run
CNR Comparison for Volunteer 1

CNR Comparison for Volunteer 2

Regions of 
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Optimally Combined/Echo 2
Denoised/Optimally Combined
Mean

Volunteer 1: Calcarine Sulcus

Contrast-to-Noise By Run
CNR Comparison for Volunteer 1

CNR Comparison for Volunteer 2

CNR % Improvement Between Preprocessing Methods

Denoised/Echo 2
Optimally Combined/Echo 2
Denoised/Optimally Combined
Mean

Volunteer 1: Calcarine Sulcus

Denoised/Echo 2
Optimally Combined/Echo 2
Denoised/Optimally Combined
Mean

Volunteer 1: LGN

Denoised/Echo 2
Optimally Combined/Echo 2
Denoised/Optimally Combined
Mean

Volunteer 2: LGN

Denoised/Echo 2
Optimally Combined/Echo 2
Denoised/Optimally Combined
Mean

Volunteer 2: Calcarine Sulcus

Denoised/Echo 2
Optimally Combined/Echo 2
Denoised/Optimally Combined
Mean



• Optimal Combination reliably improves CNR over single echo

• Denoising can be similar, much better, or worse than the optimal combination

• More to understand & improve on denoising methods

• Use denoising, but don’t assume everything worked perfectly

• Limits of presented data

• Awesome volunteers: <1.5mm max head motion in all but 2/206 runs

• Single, stable scanner with a regular Quality Assurance testing

• Benefits of denoising may be greater with more noise to potentially remove 

Take home message from this study



Music listening task

• 3T multi-echo fMRI. Standard spacing & cardiac gated
• 5 participants
• Several tasks including block design 40s music listening, 20s rest, 5X
Gonzalez-Castillo, J. et al. Evaluation of multi-echo ICA denoising for task 
based fMRI studies: Block designs, rapid event-related designs, and 
cardiac-gated fMRI. Neuroimage 2016

Inferior Colliculus



Reliably for functional connectivity

“In four densely sampled individual humans, just 10 min of multi-echo data yielded better test-
retest reliability than 30 min of single-echo data in independent datasets.”

Spatial correlations between voxel as see for full run vs shorter runs

Lynch et al Cell Reports 2020 “Rapid Precision Functional Mapping of Individuals using multi-echo fMRI”



Growth of multi-echo fMRI usage
• Neurocognitive aging data release with behavioral, structural, and multi-echo 

functional MRI measures
• N=181 younger, 120 older

• Cambridge Centre for Ageing Neuroscience (Cam-CAN)
• N=649    

• Heart rate variability biofeedback training and emotion regulation
• N=193

• Le Petit Prince
• N=112

• Multi-echo Cambridge
• N=89

• Evidence supporting a time-limited hippocampal role in retrieving autobiographical 
memories
• N=40

https://tedana.readthedocs.io/en/stable/multi-echo.html#datasets



• Common question: Multi-echo fMRI or a short TR?

• Better question: How many echoes for how short a TR?

Acquisition Considerations
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TR variation for multi-echo vs single-echo

Collected on a Siemens Prisma 3T MRI 
Siemens OS VD11

CMRR Multiband pulse sequence
64 channel head coil

3mm3 voxels 42-44 slices
cortex & cerebellum coverage

3 vs 1 echo for:

Inslice Acceleration = 2: 40-50% TR cost

Inslice Acceleration = 3: ~14% TR cost

Inslice Acceleration = 4: ~-1% TR cost

Collecting
1 echo
3 echoes
4 echoes

Acquisition Considerations



• Cost of acquiring multi-echo can be balanced with a combination of:
  acceleration↑, voxel size ↑, slices↓, & TR ↑

• More CNR from “optimal combination” of echoes should balance lower SNR from acceleration↑

• https://tedana.readthedocs.io/en/stable/multi-echo.html#acquiring-multi-echo-data

• Recommendations

• If a scientific Q requires pushing the limits of small voxels or short TRs, multi-echo might not be practical

• Planning a single-use data set: Consider multi-echo

• You should see modest benefits with optimal combination

• Denoising should help, but might require more effort

• Planning a longer-term project with goals of data re-use: Strongly consider multi-echo

• Immediate benefits, and larger longer-term benefits are likely

• Development of additional ways to use multi-echo fMRI is likely

Thinking through an acquisition plan
Acquisition Considerations



Echo Planar Time-resolved Imaging (EPITI)

Dong et al https://www.biorxiv.org/content/10.1101/2024.01.24.577002v1

• EPITI sequences are designed to evenly span different fractions of k-space over time
• Allows for a running average of images centered at close echo times
• NOTE: Identical data contributes to multiple echoes



Software & Community
• Tedana started in May 2018 by 

Elizabeth DuPre to advance MEICA by 
Prantik Kundu
• Processing code
• Multi-echo education
• Approx 31 contributors and counting
• Monthly developer calls, a periodic 

newsletter, active issue board & code 
updates

Code: 
https://github.com/me-ica/tedana
Documentation: 
https://tedana.readthedocs.io



Command line program



Results Viewer



Multi-echo
Jupyter Book!

Work-in-progress by
Taylor Salo, software 
engineering, U Penn

Jupyter Books have both the 
code to generate figures and the 

text in one place



Discussions are open



Support for new 
contributors



neurostars
message 
board for 

users



More contributors are welcome!

• Code contributions
• New ideas for data processing and visualization
• Documentation & education
• Questions that can help us identify gaps in the code or documentation
• Shared datasets to help with validation
• Processing your datasets to us test code

Software & Community
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