What's Next for fMRI?

Peter A. Bandettini, Ph.D.

Section on Functional Imaging Methods Laboratory of Brain and Cognition http://fim.nimh.nih.gov

&

Functional MRI Facility

http://fmrif.nimh.nih.gov

Lecture Number	Dav	Date	Time	Location	Topic Please Click on link to view Video	Lecturer
1	Friday	6/2/17	2:00 PM	Bldg 40, Rm 1201/3	Introduction to Course & A history of fMRI and Neuroimaging	Peter Bandettini
2				Bldg 49, Rm 1A51/9		Peter Bandettini
3	Wednesday	6/7/17	2:00 PM	Bldg 49, Rm 1A51/9		Renzo Huber
4	Friday	6/9/17	2:00 PM	Bldg 49, Rm 1A51/9	fMRI and MRI at the NIH	Sean Marrett
5	Monday	6/12/17	12:00 PM	Bldg 35, Rm 610	Basics of MRI	Vinai Roopchansingh
6	Wednesday	6/14/17	2:00 PM	Bldg 49, Rm 1A51/9	Advanced MRI and fMRI Acquisition Methods	Andy Debyshire
7	Monday	6/19/17	2:00 PM	Bldg 49, Rm 1A51/9	Minimizing noise during fMRI acquisition	Dan Handwerker
8	Monday	6/19/17	4:00 PM	Bldg 49, Rm 1A51/9		Dan Handwerker
9				Bldg 49, Rm 1A51/9		Richard Coppola
10	Friday	6/23/17	2:00 PM	Bldg 49, Rm 1A51/9	Approaches to functional activity mapping during natural viewing	Brian Russ
11				Bldg 49, Rm 1A51/9		Pascal Sati
12	Friday				Human Spectroscopy Introduction and Glutamate Spectroscopy at 77	
13	Monday			Bldg 49, Rm 1A51/9		Bob Cox
14	Wednesday				The AFNI - based Functional and Anatomical Connectivity Platform	Paul Taylor
15	Friday			Bldg 49, Rm 1A51/9		Adam Thomas
16				Bldg 49, Rm 1A51/9		Peter van Gelderen
17	· · · · · · · · · · · · · · · · · · ·			Bldg 40, Rm 1201/3		Catie Chang
18				Bldg 40, Rm 1201/3		Steve Gotts
19				Bldg 49, Rm 1A51/9		Dzung Pham
20	Wednesday	7/19/17	2:00 PM	Bldg 40, Rm 1201/3	Positron Emission Tomography (PET)	Bob Innis
21	Friday	7/21/17	2:00 PM	Bldg 49, Rm 1A51/9	Perfusion Imaging	Lalith Talagala
22	Monday	7/24/17	2:00 PM	Bldg 40, Rm 1201/3	Neuromodulation methods	Bruce Luber
23				Bldg 40, Rm 1201/3		Jen Evans
24	Friday	7/28/17	2:00 PM	Bldg 40, Rm 1201/3	EEG/fMRI and the study of Language	Peter Molfese
25	Monday	7/31/17	2:00 PM	Bldg 40, Rm 1201/3	EEG/fMRI and Neurofeedback	Silvina Horovitz
26	Wednesday	8/2/17	2:00 PM	Bldg 40, Rm 1201/3	<u>Quantitative MRI</u>	Govind Bhagavatheeshwaran
27	Friday	8/4/17	2:00 PM	Bldg 40, Rm 1201/3	The physics of neuromodulation	Zhi Deng and Tom Radman
28				Bldg 40, Rm 1201/3		Javier Gonzalez-Castillo
29				Bldg 40, Rm 1201/3		Javier Gonzalez-Castillo
30	Friday	8/11/17	2:00 PM	Bldg 49, Rm 1A51/9	Machine Learning and fMRI	Javier Gonzalez-Castillo
31	Monday	8/14/17	2:00 PM	Bldg 40, Rm 1201/3	Depression and Multimodal Neuroimaging	Allison Nugent
32	Tuesday	8/15/17	2:00 PM	Bldg 40, Rm 1201/3	Statistics of fMRI	Gang Chen
33	Wednesday	8/16/17	2:00 PM	Bldg 49, Rm 1A51/9	Multivariate pattern analysis and brain decoding	Martin Hebart
34	Friday	8/18/17	2:00 PM	Bldg 49, Rm 1A51/9	Imaging Changes in Brain Anatomy	Cibu Thomas
35	Monday	8/21/17	2:00 PM	Bldg 40, Rm 1201/3	Anatomical and Functional Neuroimaging in Animal Models	Cecil Yen
36					Genetics and Neuroimaging: How to analyze imaging data and SNPs	Yin Yao
37	Friday	8/25/17	2:00 PM	Bldg 40, Rm 1201/3	Imaging Stroke and Traumatic Brain Injury	Lawrence Latour
38	Monday	8/28/17	2:00 PM	WebX	Neuromodulation applications	Sarah Hollingsworth Lisanby
39				Bldg 40, Rm 1201/3		Joelle Sarlls
40				Bldg 40, Rm 1201/3		Carlo Pierpaoli
41	Friday			Bldg 40, Rm 1201/3		Peter Bandettini

Where are we now after 26 years? What has improved...

- Technology is more sophisticated, powerful, and stable
- Image quality and temporal stability have improved
- FMRI is generally easier to implement
- More standardization in acquisition, processing, and display
- Multivariate decoding, encoding, pattern effect mapping, machine learning, cross subject correlation, and dynamic resting state connectivity analyses have opened up new insights and directions.
- Artifacts are more easily identified and removed
- Underlying neuronal correlates of fMRI are better established
- Number of groups working with fMRI have increased
- **Research applications have increased**
- Resting state fMRI has exploded
- Large pooled datasets have catalyzed meta-analysis, transparency, new methods, and biomarker discovery
- Individual assessment in fMRI is growing
- Highest resolution and fastest speed (per volume) have increased
- Standard resolution used has increased
- More high field scanners
- More multimodal integration

Where are we now after 26 years? What has not improved...

- Still struggling with subject motion and breathing
- Temporal SNR still limited by physiologic fluctuations
- Still struggling with HRF: spatially variable BOLD latency & magnitude
- Spatial resolution of fMRI has reached a theoretical limit due to hemodynamics.
- FMRI is still not used clinically
- Vendors still have not put many resources into fMRI
- Scanners are still loud and confining
- MRI is still extremely expensive
- Still using 2.5 mm³ voxels for most studies
- We don't understand "connectivity" as inferred by correlation
- We don't understand source of resting state or biologic purpose that resting state serves
- Shimming is still an issue
- Db/dt limit is still an issue

Where are we going?

- Increased clinical impact as we equate fMRI measures with individual behavior and physiology
- Increased vendor attention and cutting edge products.
- More detail and potentially a qualitative jump as column, layer, and pattern effect mapping grow: connectivity and activation mapping
- Improved noise characterization and removal
- Computational models will have an increased role
- Insights into fMRI mechanisms through animal models and multimodal assessment
- Standardized Parcellation for single subject comparisons
- Increase in well curated naturalistic task data. Naturalistic task database?
- Growth in real time fMRI and neurofeedback
- Reintroduction in local gradient coils.
- Increased embedded contrast (fingerprinting) sequences
- Explosion of deep learning on all things MRI and fMRI
- Growth in neuromodulation studies
- Increased longitudinal databases for predictive biomarkers discovery
- **RF** coils: more elements, smaller, embedded?
- Re-analysis of old data
- New MRI technology will permeate fMRI: compressed sensing, fingerprinting, etc..

Ultimate fMRI limits?

- Sub mm functional resolution for whole brain
- Simultaneous flow, BOLD, volume with multi-echo will be standard
- Hemodynamic latency spread issue will have effective calibration
- Motion and breathing is solvable
- Cross vendor, scanner, upgrade calibration is solvable
- Layer specific cross subject registration better layer analysis pipeline
- Detailed cross subject functional registration will be more common
- Shimming is solvable
- Quantitative baseline fMRI- based metabolic rate mapping
- Individual subject fMRI-based "stress-test" will be standard in clinic
- Standardized processing pipelines for clinical use and for large databases
- Real time fMRI for therapy
- Silent fMRI sequences or better noise cancellation
- Cryogen-free scanners up to 7T
- Massive cross disease, cross modality databases
- Longitudinal databases
- Studies using naturalistic paradigms will rapidly grow
- There will grow a tension between deep learning approaches and standard processing.
- Other contrasts? Neuronal current, CMRO₂, elastography, pH, diffusion
- Basis and purpose of resting state signal will be solved.
- Time series will contain only fMRI signal and thermal noise physiologic fluctuations will be solved.
- Correlation as it relates to connectivity will be determined to be a bigger issue than currently thought

What could change everything?

- **Room temperature superconductors**
- New robust direct neuronal contrast mechanism is discovered
- One powerful and unique clinical application of fMRI
- Any proof that MRI is either therapeutic or dangerous
- Proof that layer dependent fMRI can discern causality
- Breakthrough in function-specific contrast agents (labelled agents or nano-particles)

Technology

Magnet RF Coils Gradients Pulse Sequences

Methodology

Paradigm Design Pre and Post Processing Subject Interface Data Display and Comparison

Increases Decreases Dynamics Locations Fluctuations

Interpretation

Neuroscience Physiology Genetics Clinical (diagnosis, prediction, therapy) Lie Detection Military Marketing Entertainment

Thank you!

- Attendees
- Speakers
- Roark Maccado & Dorian Van Tassell

We welcome any suggestions for next year....

bandettini@nih.gov

The End Iso Est