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• Compute	static	So and	T2* Maps
• Compute	voxel-wise	time-series	of	So (Non-BOLD)	and	T2*	(BOLD)
• Combine	echoes	to	improve	SNR/spatially	equalize	functional	contrast
• Echo	Time	Dependence	Analysis

vME-ICA	Denoising

• ME-ICA	Pipeline
• ME-ICA	Outputs
• ME-ICA	Web	Reporting	Tool

vME-ICA	Applications



Where	to	go	for	additional	informaiton…



Single-Echo	fMRI	(a.k.a.	Your	regular	fMRI)

Time	[s]

…

One	Time	series	
per	voxel	(x)

…

Time	[s]

S(
x 1
,t)

TR
…



Multi-Echo	fMRI
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Now	you	have	Ne	(e.g.,	3)	Time	series	per	voxel,	one	per	echo	time	(TEn):

• No	SAR	cost,	as	there	are	not	additional	excitation	pulses.
• Slight	lost	in	temporal	resolution	to	fit	the	third	echo.
• Slight	lost	in	spatial	resolution	to	make	sure	you	have	signal	in	last	

echo.
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Multi-Echo	fMRI	(II)
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Signal	Model

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Signal	in	voxel	x,	at	time	point	t,	measured	at	echo	time	TE

Captures	local	fluctuations	in	field	
inhomogeneity	(including	BOLD)

So x, t( ) = So x( )+ΔSo x, t( )

ΔSo x, t( ) << So x( ),∀x

Captures	local	fluctuations	due	to	T1	
changes	(e.g.,	inflow)	and	HW	instabilities

R2
* x, t( ) = R2* x( )+ΔR2* x, t( )

ΔR2
* x, t( ) << R2* x( ),∀x

+	Noise
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How	to	Compute	Spatial	Maps	of	So and	T2*

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

So x, t( ) = So x( )+ΔSo x, t( )

R2
* x, t( ) = R2* x( )+ΔR2* x, t( )

By	definition,	the	average	across	time	of	ΔSo(x,t) and	ΔR2*(x,t) are	zero,	
and	then	it	follows	that	the	average	signal	across	time	for	a	given	voxel	
(x)	and	echo	time	(TE)	is:	

S x,TE( ) = So x( ) ⋅e−R2
* x( )⋅TE

log S x,TE1( )( ) = −R2* x( ) ⋅TE1 + log So x( )( )
log S x,TE2( )( ) = −R2* x( ) ⋅TE2 + log So x( )( )
log S x,TE3( )( ) = −R2* x( ) ⋅TE3 + log So x( )( )
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Linear	
system	of	
equations	for	
3	echoes

log S x,TE( )( ) = log So x( ) ⋅e−R2
* x( )⋅TE( )

log S x,TE( )( ) = −R2* x( ) ⋅TE + log So x( )( )
y(x,TE)						=				a(x)	*	TE		+					b(x)



Static	So	Map	(s0v.nii) Static	T2* Map	(t2sv.nii)

How	to	Compute	Spatial	Maps	of	So and	T2*
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How	to	Compute	Time	series	of	ΔSo and	ΔR2
*	fluctuations

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

So x, t( ) = So x( )+ΔSo x, t( )

R2
* x, t( ) = R2* x( )+ΔR2* x, t( )

S x,TE( ) = So x( ) ⋅e−R2
* x( )⋅TE

Using	a	first	order	Taylor	expansion	for	the	exponential	term: e−ΔR2
* x,t( )⋅TE ≈ 1−ΔR2

* x, t( ) ⋅TE( )

S x, t,TE( ) = So x( )+ΔSo x, t( )"
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S x, t,TE( ) ≈ S x,TE( ) 1−ΔR2* x, t( ) ⋅TE +
ΔSo x, t( )
So x( )
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Δρ x, t( ) = ΔSo x, t( ) So x( )
Δκ x, t( ) = ΔR2* x, t( ) ⋅TE
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→ S x, t,TE( ) ≈ S(x,TE) ⋅ 1+Δρ x, t( )− TE
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S x, t,TE( )− S(x,TE) ≈ S(x,TE) Δρ x, t( )− TE
TE

Δκ x, t( )
$

%&
'

()
(6)



S(x,t,TE2) ΔSo(x,t) ΔR2*(x,t)

How	to	Compute	Time	series	of	ΔSo and	ΔR2
*	fluctuations



Motion	Correction	&	Smoothing	(6mm)
No	Filtering	|	No	Detrending

Raw	Data ΔSo ΔR2*

How	to	Compute	Time	series	of	ΔSo and	ΔR2
*	fluctuations
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Combination	of	Multi-Echo	Time	series

1. Simple	Summation

Ŝ(x, t) = S x, t,TEn( )
n=1

N

∑ • Noisy	data	at	longer	echoes	reduce	the	overall	gain	in	
sensitivity.

We	have	Ne pseudo-concurrent	measurementsà why	not	simply	combine	them	to	
reduce	uncorrelated	white	noise	present	in	each	individual	measurement?

2. Weighted	Summation

Ŝ(x, t) = S x, t,TEn( )
n=1

N

∑ ⋅wv TEn( )

wv TEn( ) = TEne
−TEn T2,v

*

TEn ⋅e
−TEn T2,v

*

n∑

• Helps to spatially maximize CNR and also to recover
some signal level in regions affected by drop-out.

Posse	et	al.,	MRM	1999	
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SINGLE	ECHO OPTIMALLY	COMBINED
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1. Simple	Summation

Ŝ(x, t) = S x, t,TEn( )
n=1

N

∑ • Noisy	data	at	longer	echoes	reduce	the	overall	gain	in	
sensitivity.

We	have	Ne pseudo-concurrent	measurements,	why	not	simply	combine	them	to	reduce	
uncorrelated	white	noise	present	in	each	individual	measurement.

2. Weighted	Summation

Ŝ(x, t) = S x, t,TEn( )
n=1

N

∑ ⋅wv TEn( )

wv TEn( ) = TEne
−TEn T2,v

*

TEn ⋅e
−TEn T2,v

*

n∑

• Optimizes CNR compared to Single Echo.
• Helps to spatially maximize CNR, by helping recover

some signal in regions with large drop-outs at
regular single echo acquisitions.

Posse	et	al.,	MRM	1999	
TS
N
R

0

Combination	of	Multi-Echo	Time	series

SINGLE	ECHO OPTIMALLY	COMBINED
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Echo	Time	(TE)	Dependence	Analysis

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

according to these p-values. Furthermore, these F-values can be averaged,
weighted by total signal power

αυ ¼
Xn

i

ΔS2TEi ; ð4Þ

where i is the TE index, n is the total number of echoes, andΔSTEi is the co-
efficient of the reference function and the time course at TEi. This produces
two summary statistics, κ and ρ,

κ ¼

Pm

υ
αυFυ;ΔR

$
2

Pm

υ
αυ

ð4aÞ

ρ ¼

Pm

υ
αυFυ;ΔS0

Pm

υ
αυ

ð4bÞ

where v is the voxel index,m is the number of voxels in the brain. κ and ρ
reflect the goodness of fit to ΔR2* and ΔS0 models respectively and
convey a representative F value for the voxels with the largest signal

changes. F-values are weighted by signal power so that κ and ρ are less
representative of F-values for the small component signal changes,
which are more affected by ICA estimation error. κ and ρ are used to
rank how well components of linear models (here corresponding to ICA
component time courses) agree with signal changes described by ΔR2*
and ΔS0 signal models.

Methods

Subjects

Nine right-handed healthy volunteers participated in the study
(7 males, 2 females). Informed consent was obtained under an
approved National Institute of Mental Health protocol.

Data acquisition

Imaging was performed on a General Electric (GE) 3 Tesla Signa
HDx MRI scanner (Waukesha, WI). The scanner's body coil was
used for RF transmission, and an 8-channel receive-only head coil
(GE, Waukesha, WI) was used for signal reception. High-order shim-
ming was performed to minimize field inhomogeneity.

Anatomical images were acquired using a T1-weighted MPRAGE se-
quence (FOV 240mm, 224×224 in-plane resolution, TI 725 ms, SENSE

Fig. 1. Shown are three echo simulations of BOLD (R2* change) and non-BOLD (S0 change) signals as a function of echo time (TE). The left column shows how the signal evolves for
non-BOLD effects and the right column shows how the signal evolves for BOLD effects. The top row shows the signal during state x (no activation) and state y (activation). This top
row demonstrates how the decay curves between rest and activation change in a different manner depending on if there is a change in (a) S0 or (b) R2*. The middle row shows the
difference (y−x) signal for (c) change in S0, and (d) change in R2*. The bottom row shows the percent signal change (y−x)/0.5(x+y) for (e) change in S0, and (f) change in R2*.

1761P. Kundu et al. / NeuroImage 60 (2012) 1759–1770

Echo	Time

S(
x,
t,T
E)

Let’s	assume	that	a	given	voxel	(x)	and	time	(t)	….	So(x,t)=5000	and	T2*(x,t)=30ms

Kundu et	al.,	NeuroImage 2012
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where v is the voxel index,m is the number of voxels in the brain. κ and ρ
reflect the goodness of fit to ΔR2* and ΔS0 models respectively and
convey a representative F value for the voxels with the largest signal

changes. F-values are weighted by signal power so that κ and ρ are less
representative of F-values for the small component signal changes,
which are more affected by ICA estimation error. κ and ρ are used to
rank how well components of linear models (here corresponding to ICA
component time courses) agree with signal changes described by ΔR2*
and ΔS0 signal models.

Methods

Subjects

Nine right-handed healthy volunteers participated in the study
(7 males, 2 females). Informed consent was obtained under an
approved National Institute of Mental Health protocol.

Data acquisition

Imaging was performed on a General Electric (GE) 3 Tesla Signa
HDx MRI scanner (Waukesha, WI). The scanner's body coil was
used for RF transmission, and an 8-channel receive-only head coil
(GE, Waukesha, WI) was used for signal reception. High-order shim-
ming was performed to minimize field inhomogeneity.

Anatomical images were acquired using a T1-weighted MPRAGE se-
quence (FOV 240mm, 224×224 in-plane resolution, TI 725 ms, SENSE

Fig. 1. Shown are three echo simulations of BOLD (R2* change) and non-BOLD (S0 change) signals as a function of echo time (TE). The left column shows how the signal evolves for
non-BOLD effects and the right column shows how the signal evolves for BOLD effects. The top row shows the signal during state x (no activation) and state y (activation). This top
row demonstrates how the decay curves between rest and activation change in a different manner depending on if there is a change in (a) S0 or (b) R2*. The middle row shows the
difference (y−x) signal for (c) change in S0, and (d) change in R2*. The bottom row shows the percent signal change (y−x)/0.5(x+y) for (e) change in S0, and (f) change in R2*.

1761P. Kundu et al. / NeuroImage 60 (2012) 1759–1770S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Echo	Time

S(
x,
t,T

E)

Let’s	assume	now,	that	a	local	change	in	oxygenation	happens	(T2* effect)

Kundu et	al.,	NeuroImage 2012

Echo	Time	(TE)	Dependence	Analysis
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where v is the voxel index,m is the number of voxels in the brain. κ and ρ
reflect the goodness of fit to ΔR2* and ΔS0 models respectively and
convey a representative F value for the voxels with the largest signal

changes. F-values are weighted by signal power so that κ and ρ are less
representative of F-values for the small component signal changes,
which are more affected by ICA estimation error. κ and ρ are used to
rank how well components of linear models (here corresponding to ICA
component time courses) agree with signal changes described by ΔR2*
and ΔS0 signal models.

Methods

Subjects

Nine right-handed healthy volunteers participated in the study
(7 males, 2 females). Informed consent was obtained under an
approved National Institute of Mental Health protocol.

Data acquisition

Imaging was performed on a General Electric (GE) 3 Tesla Signa
HDx MRI scanner (Waukesha, WI). The scanner's body coil was
used for RF transmission, and an 8-channel receive-only head coil
(GE, Waukesha, WI) was used for signal reception. High-order shim-
ming was performed to minimize field inhomogeneity.

Anatomical images were acquired using a T1-weighted MPRAGE se-
quence (FOV 240mm, 224×224 in-plane resolution, TI 725 ms, SENSE

Fig. 1. Shown are three echo simulations of BOLD (R2* change) and non-BOLD (S0 change) signals as a function of echo time (TE). The left column shows how the signal evolves for
non-BOLD effects and the right column shows how the signal evolves for BOLD effects. The top row shows the signal during state x (no activation) and state y (activation). This top
row demonstrates how the decay curves between rest and activation change in a different manner depending on if there is a change in (a) S0 or (b) R2*. The middle row shows the
difference (y−x) signal for (c) change in S0, and (d) change in R2*. The bottom row shows the percent signal change (y−x)/0.5(x+y) for (e) change in S0, and (f) change in R2*.

1761P. Kundu et al. / NeuroImage 60 (2012) 1759–1770

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Echo	Time

ΔS
(x
,T
E)

We	could	then	use	the	difference	between	two	curves	to	examine	which	is	the	optimal	TE	
to	maximize	BOLD	contrast

Kundu et	al.,	NeuroImage 2012

Echo	Time	(TE)	Dependence	Analysis
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ming was performed to minimize field inhomogeneity.

Anatomical images were acquired using a T1-weighted MPRAGE se-
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1761P. Kundu et al. / NeuroImage 60 (2012) 1759–1770

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Echo	Time

ΔS
(x
,T
E)
/S
(x
,t,
TE
)

Most	importantly	for	our	discussion,	for	T2* signal	changes,	there	is	a	linear	relationship	
between	echo	time	and	measured	signal	(in	terms	of	signal	percent	change)

Kundu et	al.,	NeuroImage 2012

Echo	Time	(TE)	Dependence	Analysis



S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Kundu et	al.,	NeuroImage 2012

Changes	in	R2*	scale	
linearly	with	echo	

time

Let’s	now	examine	what	happens	when	there	
is	a	change	in	So (T1	effect)

Echo	Time

S(
x,
t,T
E)

S(
x,
t,T
E)

ΔS
(x
,T
E)

ΔS
(x
,T
E)
/S
(x
,t,
TE
)
Echo	Time	(TE)	Dependence	Analysis



S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Kundu et	al.,	NeuroImage 2012

This	time	the	difference	between	both	curves	
looks	very	different

Echo	Time

ΔS
(x
,T
E)

Changes	in	R2*	scale	
linearly	with	echo	

time
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Echo	Time	(TE)	Dependence	Analysis



S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Kundu et	al.,	NeuroImage 2012

In	term	of	signal	percent	change,	changes	in	
So	have	a	flat	dependence	with	echo	time
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Echo	Time	(TE)	Dependence	Analysis



S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Kundu et	al.,	NeuroImage 2012

In	term	of	signal	percent	change,	changes	in	
So	have	a	flat	dependence	with	echo	time
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Changes	in	So	show	a	
flat	dependence	with	

echo	time

Echo	Time	(TE)	Dependence	Analysis



[4] Compute Avg. Metric for each model

Kundu et	al.,	NeuroImage 2012

TE1

TE2

TE3

[1]	Voxel-wise	Fit	against	all	TEs

[2]	Voxel-wise	Goodness	of	Fit	to	R2*	Model
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TIMESERIES	OF	INTEREST

Task	Paradigm

κ = zv
2F

v,R2
*

AllVoxels
∑ zv

2

AllVoxels
∑ = 98.41

ρ = zv
2Fv,So

AllVoxels
∑ zv

2

AllVoxels
∑ = 26.02

[3]	Voxel-wise	Goodness	of	Fit	to	S0 Model

FSo

Echo	Time	(TE)	Dependence	Analysis
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vME-ICA	Denoising

• ME-ICA	Pipeline
• ME-ICA	Outputs
• ME-ICA	Web	Reporting	Tool

vME-ICA	Applications



ME-ICA	Denoising:	Introduction

FSL	Documentation:	http://fsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdf

ΔR2*	scale	
linearly	with	TE

ΔS
(x
,T
E)
/S
(x
,t,
TE
) ΔSo	 has	no	TE	

dependence

TE
-D
EP

EN
DE

N
CE

	
M
O
DE

L

M
U
LT
I-E

CH
O
	

DA
TA

SE
T

TE1

TE2

TE3

TIMESERIES	OF	INTEREST

ICA	Representative	
Timeseries

x

space

com
ponents

spatial 
maps

tim
e

space

FMRI data =

components

tim
e 

courses

tim
e

EDA techniques for FMRI
• are mostly multivariate

• often provide a multivariate linear decomposition:  

Data is represented as a 2D matrix and 
decomposed into factor matrices (or modes)
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maps show that ME-ICA de-noising, without band pass filtering, re-
veals greater functional connectivity to gray matter clusters than
de-noising with standard noise regressors and band pass filtering.
Axial views of R2 maps for insula and hippocampus connectivity
show that the de-noising methods produce similar connectivity pat-
terns proximal to the seed, but ME-ICA de-noising exposes greater
long distance correlation. With ME-ICA de-noising, the insula shows
greater correlation to premotor and cingulate regions, hippocampus
shows greater correlation to premotor and sensory regions, and
brainstem shows greater correlation to frontal and parietal regions.
T-maps show that T-statistics are much higher for correlation with
ME-ICA de-noising than for correlation with standard de-noising
and band pass filtering.

Application to group level correlation maps

Group-level connectivity was evaluated using one-sample T-tests
of the individual-level correlation maps from standard and ME-ICA
based de-noising. Unthresholded group T-maps for hippocampus
and brainstem connectivity are shown in Fig. 8 for ME-ICA and stan-
dard de-noising. The group T-maps based on low κ de-noising
showed much higher T-statistics for connected regions than the
group T-maps based on standard de-noising. This indicated that (Z-
transformed) correlation coefficients based on ME-ICA were more
consistent across subjects than Z-transformed correlation coefficients
based on standard de-noising. Comparing Figs. 7 and 8 shows that for
maps based on ME-ICA de-noising, the regions of higher group T-

Fig. 4. For a representative subject, κ score vs (a) ICA rank (variance explained), and (b) rank by κ (κ spectrum). The κ spectrum, is an L-curve with two distinct regimes: high κ
(κ>20) and low κ (κb20), with low κ components on a linear tail. (c) κ spectra for 8 subjects. (d) First 12 ME-ICA components ranked by κ for a representative subject. Each
panel shows the time course and thresholded ΔR2* map. Components are annotated with κ-score, ρ-score, and ICA component number. All high κ components are clearly functional
networks.
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Fig. 5. For a representative subject, ρ score vs (a) ICA rank (variance explained), and (b) ρ rank (ρ spectrum). The ρ spectrum, like the k-spectrum, is an L-curve with two distinct
regimes: high ρ (appx. ρ>20) and a linear tail with low ρ (appx. ρb20). (c) ρ spectra for 8 subjects. (d) First 8 ME-ICA components ranked by ρ for a representative subject. Each
panel shows the time course and thresholded % ΔS0 map. Components are annotated with κ-score, ρ-score, and ICA component number. All high ρ components are clearly artifacts.

Fig. 6. Components with κ scores near κ thresholds are correlated to low-frequency RVT time courses. Components are annotated with κ score, ρ score, and ICA component number.
TE-dependence maps for ΔR2* and ΔS0 models show high ΔR2* localized to non-gray matter regions.

1766 P. Kundu et al. / NeuroImage 60 (2012) 1759–1770

Kundu et	al.,	NeuroImage 2012
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Kundu et	al.,	NeuroImage 2017
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ME-ICA	Denoising:	Pipeline

Kundu et	al.,	NeuroImage 2012
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ME-ICA	Denoising:	Pipeline

Kundu et	al.,	NeuroImage 2012;	Kundu et	al.	2013	PNAS;	Olafsson et	al.	NeuroImage 2015

• Uses	PCA	Decomposition	(orthogonality).
• Yet,	estimation	of	model	order	(Ncomp)	is	not	based	on	variance,	

but	on	κ	and	ρ	thresholds.
• κthr =	f(κelbow,	κdaw)	;	Default	κdaw =	10
• ρthr =	f(ρelbow,	ρdaw)	;	Default	ρdaw =	1
• SELECTION	RULE:	κ	>	κthr are	kept
• SELECTION	RULE:	ρ	>	ρthr are	kept

• Uses	fast-ICA	algorithm	(spatial	independence).
• Component	Characterization	includes:

• Variance	Explained
• κ	(“BOLD	likeliness”)
• ρ	(“Non-BOLD	likeliness”)
• Nvoxels that	significantly	fit	the	So model
• Nvoxels that	significantly	fit	the	R2* model
• Spatial	overlap	(D)	between	ICA	map	and	FR2* map
• Spatial	overlap	(D)	between	ICA	map	and	FSo map
• Other…

If	κc <	ρcà Discard	c

If	Nso,c <	NR2,c	à Discard	c

If	Dso,c <	DR2,c	à Discard	c
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ACCEPTED IGNORED MID-κ REJECTED

Denoised	Time	series



ME-ICA	Denoising:	Primary	Inputs	/	Outputs

q T2*	Static	Map:																																																						t2v.nii
q So	Static	Map:																																																								s0v.nii
q Optimally	Combined	time	series:																							ts_OC.nii
q Denoised	time	series:																																											dn_ts_OC.nii
q Spatial	Maps	for	all	ICA	components:																betas_OC.nii
q Spatial	Maps	for	Accepted	Components	only:	betas_hik_OC.nii
q Time	series	for	all	PCA	Components:																	mepca_mix.1D
q Time	series	for	all	ICA	Components:																		meica_mix.1D
q Summary	of	ICA	Decomposition:																								comp_table.txt

q List	of	accepted	components
q List	of	rejected	components
q List	of	Mid-k	components
q List	of	ignored	components
q Kappa	and	Rho	values	for	all	components
q Total	Variance	Explained	by	the	ICA	decomposition

ME-ICA	Software	available	with	AFNI:	http://afni.nimh.nih.gov/afni
Latest	experimental	versions		(P.	Kundu)	available	at:	https://bitbucket.org/prantikk/me-ica.git

q Minimum:	fMRI	Datasets	for	all	echoes,	echo	times
q Extras:								Anatomical,	Pre-processing	options,	kdaw,	rdaw,	IN
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ME-ICA	Denoising:	Web	Reporting	Tool

(Ben	Gutierrez)	available	at:	https://github.com/BenGutierrez/Meica_Report



Agenda

vWHAT	IS	MULTI-ECHO	(ME)	FMRI

vWHAT	CAN	YOU	DO	WITH	ME	TIMESERIES

• Compute	static	So and	T2* Maps
• Compute	voxel-wise	time-series	of	So (Non-BOLD)	and	T2*	(BOLD)
• Combine	echoes	to	improve	SNR/spatially	equalize	functional	contrast
• Echo	Time	Dependence	Analysis

vME-ICA	Denoising

• ME-ICA	Pipeline
• ME-ICA	Outputs
• ME-ICA	Web	Reporting	Tool

vME-ICA	Applications



Suitability	for	ultra-high	field	fMRI	animal	studies

Kundu et	al.,	NeuroImage 2014
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Separate	BOLD-like	Slow	Fluctuations	from	Scanner	Drift

Evans	et	al.,	NeuroImage 2015



Evans	et	al.,	NeuroImage 2015

Separate	BOLD-like	Slow	Fluctuations	from	Scanner	Drift
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Separate	BOLD-like	Slow	Fluctuations	from	Scanner	Drift



Evans	et	al.,	NeuroImage 2015

Separate	BOLD-like	Slow	Fluctuations	from	Scanner	Drift



Alternative	Approach	for	Brainstem	Imaging:	Gated	fMRI	+	ME-ICA

Brooks	et	al.	2014



Alternative	Approach	for	Brainstem	Imaging:	Gated	fMRI	+	ME-ICA

Gonzalez-Castillo	et	al.	NeuroImage 2016

Component	TS

ΔTR



Alternative	Approach	for	Brainstem	Imaging:	Gated	fMRI	+	ME-ICA

Gonzalez-Castillo	et	al.	NeuroImage 2016
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ME+ICA	for	Rapid	Event	Related	fMRI

Gonzalez-Castillo	et	al.	NeuroImage 2016
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Multi-Echo	&	Simultaneous	Multi-Slice	(MESMS)

Olafsson et	al.,	NeuroImage 2015

Non-BOLD	Component:	Vascular	Pulsation Non-BOLD	Component:	MSS	Artifact

Number	of	BOLD-like	components	significantly	larger	for	MESMS
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Conclusions

Kundu et	al.,	NeuroImage 2012

q Multi-echo	fMRI	allows	to	capture	additional	information	with	minimal	costs	in	terms	of	
temporal	and	spatial	resolution.

q Such	additional	information	can	be	used	to:
q Increase	CNR	in	drop-out	regions	(e.g.,	Optimal	Combination	of	Echoes).
q Automatically	separate	BOLD-like	from	Non-BOLD-like	components	(ME-ICA).

q ME-ICA	is	a	promising	denoising	methodology	that	combines	ICA		with	TE-Dependence	
Analysis:
q Will	not	clean	every	single	artifact	in	the	data.
q Still	under	development.
q Can	substantially	improve	the	SNR	of	the	data	à Quality	of	the	results.

ME-fMRI											=														ACCEPTED +															REJECTED

= +
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