What does it mean to understand the brain?

Eric Wong, MD PhD UC San Diego

A Little Background

- I am an MRI physicist
- Worked in the early 1990s on tools for fMRI

• From 1995, worked on MRI tools for fMRI, diffusion, and fast imaging, with a primary focus on developing MRI based perfusion imaging methods using ASL.

Vascular Territories

Venous Territories

Blood Oxygenation

Opportunities for application of new technologies to fMRI

- Parallel imaging -> escape from k-space
- Constrained or model based reconstruction such as Compressed Sensing
- A lot of fMRI data is evaluated as parcels or networks
- Typical whole brain fMRI:
 - A million voxels
 - 100K gray matter voxels
 - 100-500 parcels or networks

Direct Mapping of Functional Networks

Current Projects

- Direct fMRI Mapping of Functional Parcels/Networks
- Functional Parcellation
- Data Driven Dynamic Whole Brain Model
- Nanodevice Mediated Functional Imaging

What For?

- What do people do with fMRI data?
 - Correlate tasks with local brain activity
 - Map connectivity
 - Identify networks
 - Look for changes with disease
- How does this help us understand the brain?

What does it mean to understand the brain?

Working definition: To understand the brain is to discover the algorithms by which it stores and processes information.

Is understanding cells and circuits and scaling up to the human brain a plausible approach?

From The Human Brain Project Framework Partnership Agreement:

- Develop a multi-scale theory of the brain, creating a synthesis between top-down and data-driven bottom-up approaches.
- Identify bridges linking the multiple temporal and spatial scales implicated in brain activity and in the signals captured by imaging and other technologies.

Machine Learning

- We have been trying to deconstruct and reconstruct intelligence for a long time
- Watson:

Deep Blue and AlphaGo have similar architectures

Google Car

╋

Artificial Neural Network

Expert System

What is our capacity for describing things algorithmically?

100µm (!)

Unfortunate Conclusions

- An expert system contains about as much brain power as a fly
- The human brain has many orders of magnitude more complexity than it is capable of understanding in a compact algorithmic way.

Unfortunate Conclusions (cont'd)

- If we had signals from our billions of neurons and trillions of synapses, we could simulate a brain but still could not understand it.
- The concept of 'scaling up' from neurons to brains, for the purpose of understanding our brains algorithmically, contains an inherent barrier, and that barrier lies at only thousands of neurons.

This is consistent with:

- The fact that highly expert humans in Chess/Go/Jeopardy do not understand what their computer counterparts are doing with only a few thousand simulated neurons, even though we know all the weights and responses.
- The fact that most activities that we become expert at involve 1% formal specific instruction and 99% practice.

I'm wrong if:

- Somebody figures out how to effectively transform trillions of weights into a dramatically smaller dimensional space to make them humanly understandable.
- The brain is modular and can be broken down into units that can be separately understood, and integrated.
- The analogy to artificial neural networks is a bad one.

Re-examine 'Understanding'

Complete algorithmic understanding

Mechanistic or phenomenological understanding

Intuitive understanding

Grand Challenges: Play to our Strengths

Summary

- Spanning spatial scales may not be a useful core concept in the quest to understand the brain
- Proposed Grand Challenges:
 - Microscale: Memory and Learning
 - Macroscale: Functional Organization