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A Little Background
• I am an MRI physicist
• Worked in the early 1990s on tools for fMRI

• From 1995, worked on MRI tools for fMRI, diffusion, and 
fast imaging, with a primary focus on developing MRI 
based perfusion imaging methods using ASL.
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FIG. 8. a: VSEAN, b: QUIXOTIC, and f: TRUST images at eTE ¼ 20 ms, acquired under normoxic conditions on subjects 1–4 (top to
bottom, TRUST data only on subjects 3 and 4); c: Scatter plots showing the pixel-wise comparison of T2s measured from Gray Matter
ROI for each subject; d: representative ROIs of Gray Matter and Sagittal Sinus used in analysis; e: comparison of means and standard
deviations of T2 values measured using VSEAN and QUIXOTIC with the unity line shown diagonally, and the standard deviations of
VSEAN T2 shown horizontally and QUIXOTIC vertically.
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Opportunities for application of new 
technologies to fMRI

• Parallel imaging -> escape from k-space
• Constrained or model based reconstruction such as 

Compressed Sensing
• A lot of fMRI data is evaluated as parcels or networks
• Typical whole brain fMRI:

• A million voxels
Ø 100K gray matter voxels
Ø 100-500 parcels or networks
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ARTICLE RESEARCH

To generate the complete parcellation of 180 areas and area 
 complexes in each hemisphere, we adopted a systematic, objective, and 
quantitative approach (see the gradient-based parcellation approach 
section in the Methods and in Supplementary Methods 5.1–5.3). Our 
major criteria, met in nearly all cases, included: (i) spatially overlapping 
gradient ‘ridges’ between each pair of areas for at least two  independent 
areal feature maps; (ii) similar gradient ridges present in roughly cor-
responding locations in both hemispheres; (iii) gradients that were not 
correlated with artefacts; and (iv) robust and statistically significant 
cross-border differences in the feature maps. Another consideration 
(but not a requirement) was whether published evidence exists for a 
boundary in an approximately corresponding location. Studies with 
publicly available parcellations registered onto atlas surfaces4 were 
directly compared with our data; however, most regions required 
indirect comparisons with published figures (for example, Fig. 1h). 

Initial areal boundaries meeting these criteria were delineated by two 
neuroanatomists (authors M.F.G. and D.C.V.E.).

In a second computational stage, the path of each manually drawn 
border was optimized algorithmically using gradients of the most 
informative feature maps selected by the neuroanatomists (those with 
visually obvious gradients and differences across the border). These 
feature maps were confirmed to have robust and statistically significant 
differences across the final border. The semi-automated gradient-based 
parcellation approach is further described in Supplementary Methods 
5.1–5.3), and the entire semi-automated process is illustrated for area 
V1 in Supplementary Neuroanatomical Results 1; other sections of this 
document describe and illustrate the information used to delineate and 
the literature used to name all 180 cortical areas.

Figure 3 shows the multi-modal cortical parcellation in the left 
and right hemispheres on inflated and flattened surfaces, with areal 

Figure 2 | Parcellation of exemplar area 55b using multi-modal 
information. The border of 55b is indicated by a white or black outline. 
a, Myelin map. b, Group average beta map from the LANGUAGE Story 
versus Baseline task contrast. c, d, Functional connectivity correlation 
maps from a seed in area PSL (white sphere, arrow) (c) and a seed in 
area LIPv (white sphere, arrow) (d). e, Gradient magnitude of the myelin 
map shown in a. f, Gradient magnitude of the LANGUAGE Story versus 

Baseline task contrast shown in b. g, Mean gradient magnitude of the 
functional connectivity dense connectome (see section on modalities for 
parcellation in the Methods). h, A dorsal schematic view of the prefrontal 
cortex as parcellated in ref. 22, in which shading indicates the amount 
of myelin found using histological stains of cortical grey matter. Data at 
http://balsa.wustl.edu/Qv4P.

The HCP’s multi-modal cortical parcellation (HCP_MMP1.0)
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Figure 3 | The HCP’s multi-modal parcellation, version 1.0 (HCP_
MMP1.0). The 180 areas delineated and identified in both left and right 
hemispheres are displayed on inflated and flattened cortical surfaces. Black 
outlines indicate areal borders. Colours indicate the extent to which the 
areas are associated in the resting state with auditory (red), somatosensory 

(green), visual (blue), task positive (towards white), or task negative 
(towards black) groups of areas (see Supplementary Methods 5.4).  
The legend on the bottom right illustrates the 3D colour space used  
in the figure. Data at http://balsa.wustl.edu/WN56.
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Figure 3 | The HCP’s multi-modal parcellation, version 1.0 (HCP_
MMP1.0). The 180 areas delineated and identified in both left and right 
hemispheres are displayed on inflated and flattened cortical surfaces. Black 
outlines indicate areal borders. Colours indicate the extent to which the 
areas are associated in the resting state with auditory (red), somatosensory 

(green), visual (blue), task positive (towards white), or task negative 
(towards black) groups of areas (see Supplementary Methods 5.4).  
The legend on the bottom right illustrates the 3D colour space used  
in the figure. Data at http://balsa.wustl.edu/WN56.
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Figure 3 | The HCP’s multi-modal parcellation, version 1.0 (HCP_
MMP1.0). The 180 areas delineated and identified in both left and right 
hemispheres are displayed on inflated and flattened cortical surfaces. Black 
outlines indicate areal borders. Colours indicate the extent to which the 
areas are associated in the resting state with auditory (red), somatosensory 

(green), visual (blue), task positive (towards white), or task negative 
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The legend on the bottom right illustrates the 3D colour space used  
in the figure. Data at http://balsa.wustl.edu/WN56.
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Current Projects

• Direct fMRI Mapping of Functional 
Parcels/Networks

• Functional Parcellation
• Data Driven Dynamic Whole Brain Model
• Nanodevice Mediated Functional Imaging



What For?

• What do people do with fMRI data?
• Correlate tasks with local brain activity
• Map connectivity
• Identify networks
• Look for changes with disease

• How does this help us understand the 
brain?



Bottom Up Top Down?

Electrophysiology
Optogenetics

fMRI
EEG/MEG

What does it mean to understand the brain?

Working definition: To understand the brain is to discover 
the algorithms by which it stores and processes information.



From The Human Brain Project Framework Partnership 
Agreement:
• Develop a multi-scale theory of the brain, creating a synthesis 

between top-down and data-driven bottom-up approaches. 
• Identify bridges linking the multiple temporal and spatial scales 

implicated in brain activity and in the signals captured by 
imaging and other technologies. 

Is understanding cells and circuits and scaling up 
to the human brain a plausible approach?



• We have been trying to deconstruct and reconstruct intelligence for a long time
• Watson:

Machine Learning

Expert System
(algorithmic description)

Artificial Neural Network
(???)

Deep Blue and AlphaGo have similar architectures



Google Car

Expert System

Artificial 
Neural 

Network
+



What is our capacity
for describing things algorithmically?

100µm (!)



Unfortunate Conclusions

• An expert system contains about as much 
brain power as a fly

• The human brain has many orders of 
magnitude more complexity than it is 
capable of understanding in a compact 
algorithmic way.



Unfortunate Conclusions (cont’d)

• If we had signals from our billions of neurons 
and trillions of synapses, we could simulate a 
brain but still could not understand it. 
• The concept of ‘scaling up’ from neurons to 

brains, for the purpose of understanding 
our brains algorithmically, contains an 
inherent barrier, and that barrier lies at only 
thousands of neurons.



This is consistent with:

• Somebody figures out how to effectively transform trillions 
of weights into a dramatically smaller dimensional space to 
make them humanly understandable.

• The brain is modular and can be broken down into units 
that can be separately understood, and integrated.

• The analogy to artificial neural networks is a bad one.

I’m wrong if:

• The fact that highly expert humans in Chess/Go/Jeopardy 
do not understand what their computer counterparts are 
doing with only a few thousand simulated neurons, even 
though we know all the weights and responses.

• The fact that most activities that we become expert at 
involve 1% formal specific instruction and 99% practice.



Re-examine ‘Understanding’

Complete 
algorithmic 

understanding
Mechanistic or 

phenomenological 
understanding Intuitive 

understanding



Grand Challenges: Play to our Strengths

Memory
Learning

Functional
Organization
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Pharmaceutical
Genetic

interventions

Network-
opathies

not associated with FC does not induce freezing. Yet another group of
mice (EYFP) were injected with AAV9-TRE-EYFP and underwent
identical habituation, training, and testing sessions as the Exp group.
The proportion of cells expressing EYFP was comparable to that seen
in the Exp group expressing ChR2–EYFP (Supplementary Fig. 7).
However, the EYFP group did not show increased post-training freez-
ing (Fig. 3c). This result rules out the possibility that increased freezing
in the Exp group was due to any non-specific effects of post-training
optical stimulation.

The light-induced freezing levels of the Exp group were relatively
low (,15%) compared with those typically reported from exposure to
a conditioned context (,60%)3. One possibility is that light activation
of background-activity-induced ChR2–EYFP (Fig. 2b) interfered with
the expression of the specific fear memory. We confirmed that limiting
the off-Dox period from 2 days to 1 day reduced the background
expression of ChR2–EYFP by at least twofold (compare Sup-
plementary Fig. 8a home cage with Fig. 2h home cage). A group of
mice (Exp-1day) that went through the same design outlined in Fig. 1c
but with this modification showed greater freezing levels (,25%)
during the light-on epoch of test sessions compared to the Exp group
(Fig. 3d, f). Another possible factor contributing to the modest light-
induced freezing in the Exp group may be the limited number of cells
optically stimulated. To test this possibility, we bilaterally injected a
group of mice (Exp-Bi) with AAV9-TRE-ChR2-EYFP and bilaterally
implanted optical fibres targeting the DG, and then subjected these
mice to the same scheme as that shown in Fig. 1c. During the light-on
epochs of the test sessions, the Exp-Bi group exhibited levels of freezing
(,35%) that were almost as high as those induced by the conditioned
context (Fig. 3e, f, Supplementary Fig. 9 and Supplementary Movies).

We next examined whether the light-induced fear memory recall was
context-specific. First, to test whether two different contexts activate

similar or distinct populations of DG cells, we took the mice off Dox
for 2 days and then exposed them to a novel context (context C, an
open field) to label the active DG cells with ChR2–EYFP. After being
put back on Dox, the mice were fear-conditioned in a different context
(context B) and killed 1.5 h later (Fig. 4a). The expression of ChR2–
EYFP was used to identify cells previously activated in context C
whereas endogenous c-Fos was used to identify cells recently activated
in context B. Immunohistochemical analyses revealed a chance level of
overlap between ChR2–EYFP-positive and c-Fos-positive cells, sug-
gesting that two independent DG cell populations were recruited for
the representation of the two distinct contexts (Fig. 4b–g). To test the
context specificity of light-induced recall of a fear memory, we sub-
jected a new group of mice (an open field fear-conditioned group; OF-
FC) to habituation sessions in context A, followed by 2 days off Dox
and exposure to context C to label neurons active in context C with
ChR2–EYFP. Next, we put the mice back on Dox and performed FC in
context B (Fig. 4h). These mice were then placed back in context A and
tested for light-induced freezing. Light failed to evoke an increase in
freezing responses (Fig. 4i). Similarly low levels of freezing were
observed in another group of mice (FC-OF) in which FC in context
B while on Dox preceded exposure to context C while off Dox
(Supplementary Fig. 10). Together, these results indicate that light
reactivation of cells labelled in context C did not induce fear memory
recall associated with context B.

C
hR

2+
c-

Fo
s

c-
Fo

s

C
hR

2

P
er

ce
nt

ag
e 

of
 

D
A

P
I+

 c
el

ls

  10
  8

  4
  6

  2
   0

O
bs

er
ve

d

i

   Habituation               Exposure          FC   Testing
   Context A                Context C  Context B     Context A

5 days           2 day   1 day   1 day         5 days

Doxycycline      No doxycycline            Doxycycline

    55 daydayyss

h

e

b c

d

a

Exposure FC

2 days    1 day      1 day

 No doxycycline Doxycycline

Context C Context B

Doxycycline

f g

Ex
pe

ct
ed

  1.0
  0.8
  0.6
  0.4
  0.2

   0

N.S

  5

10

15

20

Fr
ee

zi
ng

 (%
)

OF-FC
N.S

Off On
  0
  5
10
15
20

Test
Habituation

  0
Off On Off On

P
er

ce
nt

ag
e 

of
 

D
A

P
I+

 c
el

ls

Figure 4 | Labelling and stimulation of independent DG cell populations.
a, c-fos-tTA mice injected with AAV9-TRE-ChR2-EYFP were taken off Dox
and exposed to context C to label activated cells with ChR2–EYFP (yellow),
then put back on Dox and trained with FC in context B to activate endogenous
c-Fos (red). b–e, Representative images of DG from these mice are shown.
b, ChR2–EYFP-labelled cells activated in context C. c, c-Fos-labelled cells
activated in context B. d, Nuclear marker DAPI. e, Merge. The white and red
circles show examples of ChR2–EYFP-positive and c-Fos-positive cells,
respectively. The c-Fos-positive cells in e appear yellow because they express
both endogenous c-Fos (red) and the nuclear-localized c-fos-shEGFP (green)
(see Fig. 1 legend). f, Percentage of ChR2–EYFP-positive, endogenous c-Fos-
positive, and double-positive cells among total cells (DAPI1) (n 5 5). g, The
observed percentage of double-positive cells is the same as what would be
expected if the two cell populations were independent (that is, a product of the
observed percentage of ChR2–EYFP single-positive and c-Fos single-positive
cells). h, Behaviour setup for mice exposed to an open field in context C while
off Dox and subsequently fear-conditioned in context B while on Dox (OF-FC).
i, OF-FC mice (n 5 5) do not show increased light-induced freezing. N.S., not
significant. Panels b–e are at 380 magnification. Scale bar in b, 10mm. Error
bars show mean 6 s.e.m.
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Figure 3 | Optical stimulation of engram-bearing cells induces post-
training freezing. a, c-fos-tTA mice injected with AAV9-TRE-ChR2-EYFP
and trained with FC (Exp group) showed increased freezing during 3-min light-
on epochs. Freezing for each epoch represents 5-day average (Supplementary
Fig. 5a, g). Freezing levels for the two light-off and light-on epochs are further
averaged in the inset (n 5 12, F1,22 5 37.98, ***P , 0.001). b, Mice trained
similarly to the conditions in a but without foot shock (NS group) did not show
increased light-induced freezing (n 5 12). N.S., not significant. c, Mice injected
with AAV9-TRE-EYFP and trained with FC (EYFP group) did not show
increased light-induced freezing (n 5 12). d, Mice trained similarly to the
conditions in a but kept off Dox for 1 day before FC training (Exp-1day group)
showed greater freezing during test light-on epochs compared to Exp group
(n 5 5, F1,8 5 38.26, ***P , 0.001). e, Mice trained similarly to the conditions
in a but bilaterally injected with AAV9-TRE-ChR2-EYFP and implanted with
optical fibres (Exp-Bi group) showed even higher levels of freezing during test
light-on epochs (n 5 6, F1,10 5 85.14, ***P , 0.001). f, Summary of freezing
levels of the five groups during test light-on epochs (F4,42 5 37.62, *P , 0.05;
***P , 0.001). Error bars show mean 6 s.e.m.
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Summary

• Spanning spatial scales may not be a useful 
core concept in the quest to understand the 
brain

• Proposed Grand Challenges:
• Microscale: Memory and Learning
• Macroscale: Functional Organization


