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The challenge

* “Impacting the effect of fMRI noise through hardware and acquisition
choices — Implications for controlling false positive rates”
Ward & Polimeni, Neurolmage (in press)

* First sentence of their introduction

* Applied to the intensity fluctuations of a pixel in an fMRI time- series, the term
“noise” is so non-specific and carries such negative connotations that it should
probably be eliminated from the fMRI vocabulary.

* Noise is
* Measurement noise: thermal noise & imperfect image reconstruction

* Temporal-signal-to-noise and Contrast-to-noise

* Undesired signal fluctuations: Breathing, pulsation, head movement, chest
movement, task non-compliance, unmodeled neural effects, unmodeled aspects
of the hemodynamic actual responses



Overview

Preventative scanner health
Peripherals & Participants

Parameters & Pulse Sequences
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QA Scans

NIH Intramural example

* Approximately daily scans for every commonly used head coil on
every scanner

* Parameters that can provide long-term consistency

* Single Echo EPI, no acceleration; 72x72 grid; 37 slices; 3mm?3 voxels;
5-10 min of data per receiver coil

 Save reconstructed & (sometimes) raw data

* Try to automate processing & recording pipeline



Sample QA Plots of Temporal Signal To Noise Ratio

From different scanners From each receiver coil on one scanner
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Images from Vinai Roopchansingh



Regular Results Evaluations

MRIQC: group anatomical report

Summary

e Date and time: 2017-02-05, 12:27.
¢ MRIQC version: 0.9.0-rc2.
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Image from: http://mriqc.readthedocs.io/en/stabIe/reports/group.htmI*“@

MRIQC code: https://github.com/poldracklab/mriqc
MRIQC new web API: https://mrigc.nimh.nih.gov/



Real time observation of motion
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Real time observation of motion
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Real time observation of motion
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Real time correlations as a monitoring tool
Respiration artifacts

respiration(bottom) photoplethysmograph(top)
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Using InstaCorr in AFNI

Image by Ziad Saad: https://afni.nimh.nih.gov/pub/dist/edu/latest/afni handouts/BiasSources RS-FMRI.pdf



https://afni.nimh.nih.gov/pub/dist/edu/latest/afni_handouts/BiasSources_RS-FMRI.pdf

Correlations for artifact monitoring
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Image by Ziad Saad: https://afni.nimh.nih.gov/pub/dist/edu/latest/afni handouts/BiasSources RS-FMRI.pdf



https://afni.nimh.nih.gov/pub/dist/edu/latest/afni_handouts/BiasSources_RS-FMRI.pdf

Correlations for artifact monitoring
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https://afni.nimh.nih.gov/pub/dist/edu/latest/afni_handouts/BiasSources_RS-FMRI.pdf

Peripherals and Participants

* Peripherals
* Respiration, Pulse, Peripheral NIRS
* Eye movement
* Head movement
* Multimodal neural measures: EEG, optical, Galvanic skin response

* Participants
* Head restraints
* Good instructions, training, & feedback
* Good task design & response monitoring



Collect respiration & pulse data

 Removal of physiological noise during post processing is nice
 RETROICOR (Glover, Li, Ress 2000)
* Respiration Volume / Time (RVT) (Birn, Diamond et al 2006)
* Heart rate (Chang, Metzger, et al 2013)

 Knowing what your volunteer is doing is essential
RVT (black). Word/nonword task block design (blue)
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Collect respiration & pulse data

A minor confession
v A Sarraﬂe Task % Change

Present a 200m:s flickering 2 7 [ Voun
“ checkerboard every 18-24s
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Handwerker Gazzaley, et al 2007

The unpublished part
Stimuli presented for 3s, 6s & 12s durations to examine response
scaling across populations
A non-trivial # of volunteers held their breath for whatever the hold duration was
If 1 hadn’t collected respiration data, | would have published a visually appealing
results that was severely confounded by task-locked breath holds
How many fundamental task duration studies recorded respiration traces???



Collect respiration & pulse data
Respiration can really mess up your data
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Collect respiration & pulse data

Respiration can really mess up your data
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Collect respiration & pulse data

* If you want to use post-processing removal methods, make sure respiration
and cardiac traces are connected to MRI acquisition times

* For respiration: To conduct an RVT correction, make sure the response

magnitude doesn’t auto-scale and you now the relationship between chest
movement & signal

e For cardiac: Pulse oximeters are sensitive to finger movement. Take the time

to make sure the oximeter is secure and tell the volunteer to minimize finger
movement during a scan

* Monitor traces before & during scanning




Peripheral near-infrared spectroscopy
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Eve tracking

Correlation between behavioral arousal (eve) index and fMRI

* Correlations to eyelids
open vs closed

* Other studies have shown gaze
to also be an arousal/attention
measure

* This variation my have a neural
origin, but it can still be noise
when unmodeled

monkey S monkey A

R inferior-> superior Chang, Leopold, et at 2016



Head Movement

* Less head motion -> Less need to remove motion in data processing
* Head movement may systematically vary across populations

* Don’t assume the way you saw someone else restrict head movement is the
best way
* “The best” varies by head coil, head size, population
* There are more and more options




Prepare participants
* Take the time to make sure a participant knows what to do
in the MRI and is comfortable
* The more feedback you get in a task, the better you know
what a participant is doing

* For classic “resting state” scans, peripheral measurements are
particularly useful

* Noise IS NOT independent from task design



Head Movement

Experimental design affects head motion
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Experimental
design affects head
motion

Children

Adults

Vanderwal, Kelly, et al 2015

Head Movement

Mean FD (mm)

FDRMS (mm)

2.5+

A. Mean Head Movement

- - il
2.0+ *
1.5+
1.0+
* a2
0.5- %
Rest Inscapes Fantasia
] = 1
0.154 —_—
o
0.104 ©
° L J
o 8
0.054 Sl %
3
9 o0
0.00

Rest Inscapes Oceans

B. Spikes >0.15 mm (FD)

*
I 1

200+ —
w 1504 %
w
S F £
(% 100+ o o
“6 ole e
¥ 504 of®
o". ) % ®
0 T
Rest Inscapes Fantasia
50
401 . o
@ 30
X
& 204 2 o
°
104 ®
3 eglee
o i“ % =2
'1c L 4 L4 L
Rest Inscapes Oceans



Parameters and Pulse Sequences

* Examples of how parameter choices matter
* Preparatory scans matter

* Contrast options

* Motion correction

* Calibration scans



General acquistion goals

* Give thought to the specific priorities of a study
* Response shape sensitivity vs specificity
* Anatomical accuracy
* Robustness against general artifacts
* Robustness against artifacts that can bias a study

* The optimal acquisition options aren’t always obvious.

* What is the best flip angle for an fMRI study?



Optimal flip angle?
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MRI acquisition general parameters

* Voxel size
* Smaller -> Lower SNR
* Smaller -> More anatomical specificity -> Higher TSNR of interest

* TR
* Shorter -> lower SNR, but better temporal resolution and possibly higher TSNR

* Shorter -> Better filtering of high frequency artifacts (if not removed using other
methods)

« Still limited by the speed of the hemodynamic response

» Acceleration (collecting incompletely sampled data sets and estimating
what was missing during reconstruction)
e Sometimes lower SNR
* Makes shorter TRs, smaller voxels, and multi-echo practical
* Potentially less susceptibility dropout & distortion

* Imperfect reconstruction can create or amplify artifacts
* Possibly more sensitivity to BO fluctuations linked to respiratory chest movement



GRAPPA acceleration reconstruction affected by reference scan

higher SNR
corrupted ACS lines

due to motion

conventional

FLASH GRAPPA for fMRI: Talagala et al., 20015 MRM
FLEET GRAPPA for fMRI: Polimeni et al., 2016 MRM .
dual polarity GRAPPA for fMRI: Hoge et al., 2016 MRM Images from Laurentius Huber



Fat ghosts: small signal but large instability

signal with normal fat noise with normal fat signal with ultra strong noise with ultra strong
saturation saturation fat saturation fat saturation

VASO data presented at OHBM 2016. Handwerker, Huber et al



Pulse sequences contrasts
GE-BOLD

VASO

SE-EPI BOLD

diff-weighted
T2-prep

Images from Laurentius Huber
graphical depiction of review articles [Uludag and Blinder 2017] and [Huber et al., 2017]

drawn based on Duvernoy, 1981 Brain Res



CBV-VASO

GE-BOLD-EPI

SE-BOLD-EPI
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CBV-VASO
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functional response
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[Huber et al., ISMRM, 2017]




z-accelerated

3D-EPI1
Poser, 2010
Poser, 2013
Stirnberg, 2017

temporal signal
to noise ratio

Optimal pulse sequence interacts with voxel size/SNR
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Real time motion correction during data collection

MPRAGE anatomical image
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Calibration or Baseline scans

Collecting an additional scan that helps correct for subject-specific systematic variation
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Other examples are simple tasks, enriched gas breathing, baseline CBF, standard deviation of resting scans

Good sanity checks and may be useful
These can take scanner time away from studying the effects of interest, which has limited their popularity

Relatively few clinically interesting studies use them



summary

* Noise from many sources will always exist in fMRI data

* The more you understand noise sources and what
acquisition decisions affect them, the better you can
control for noise in acquisition and correct for noise in
post-processing
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