NIH fMRI Summer Course Minimizing noise during fMRI acquisition

Daniel Handwerker

June 16, 2017

The challenge

- "Impacting the effect of fMRI noise through hardware and acquisition choices – Implications for controlling false positive rates" Ward & Polimeni, NeuroImage (in press)
- First sentence of their introduction
 - Applied to the intensity fluctuations of a pixel in an fMRI time- series, the term "noise" is so non-specific and carries such negative connotations that it should probably be eliminated from the fMRI vocabulary.
- Noise is
 - Measurement noise: thermal noise & imperfect image reconstruction
 - Temporal-signal-to-noise and Contrast-to-noise
 - Undesired signal fluctuations: Breathing, pulsation, head movement, chest movement, task non-compliance, unmodeled neural effects, unmodeled aspects of the hemodynamic actual responses

Overview

- Preventative scanner health
- Peripherals & Participants
- Parameters & Pulse Sequences

- Regular Quality Assessment (QA) scans
- Regular Overall Evaluation of Results
- Real Time Data Observation

QA Scans NIH Intramural example

- Approximately daily scans for every commonly used head coil on every scanner
- Parameters that can provide long-term consistency
 - Single Echo EPI, no acceleration; 72x72 grid; 37 slices; 3mm³ voxels; 5-10 min of data per receiver coil
- Save reconstructed & (sometimes) raw data
- Try to automate processing & recording pipeline

Sample QA Plots of Temporal Signal To Noise Ratio

Regular Results Evaluations

MRIQC: group anatomical report

Summary

- Date and time: 2017-02-05, 12:27.
- MRIQC version: 0.9.0-rc2.

MRIQC code: https://github.com/poldracklab/mriqc MRIQC new web API: https://mriqc.nimh.nih.gov/

Real time observation of motion

AFNI real time interface

Real time observation of motion

AFNI real time interface

Real time observation of motion

AFNI real time interface

Real time correlations as a monitoring tool Respiration artifacts

Using InstaCorr in AFNI

Image by Ziad Saad: <u>https://afni.nimh.nih.gov/pub/dist/edu/latest/afni_handouts/BiasSources_RS-FMRI.pdf</u>

Correlations for artifact monitoring

Image by Ziad Saad: <u>https://afni.nimh.nih.gov/pub/dist/edu/latest/afni_handouts/BiasSources_RS-FMRI.pdf</u>

Correlations for artifact monitoring

Images by Ziad Saad: <u>https://afni.nimh.nih.gov/pub/dist/edu/latest/afni_handouts/BiasSources_RS-FMRI.pdf</u>

- Peripherals
 - Respiration, Pulse, Peripheral NIRS
 - Eye movement
 - Head movement
 - Multimodal neural measures: EEG, optical, Galvanic skin response
- Participants
 - Head restraints
 - Good instructions, training, & feedback
 - Good task design & response monitoring

Collect respiration & pulse data

- Removal of physiological noise during post processing is nice
 - RETROICOR (Glover, Li, Ress 2000)
 - Respiration Volume / Time (RVT) (Birn, Diamond et al 2006)
 - Heart rate (Chang, Metzger, et al 2013)
- Knowing what your volunteer is doing is essential RVT (black). Word/nonword task block design (blue)

Collect respiration & pulse data

Present a 200ms flickering checkerboard every 18-24s

Volunteers press a button and move their eyes

Handwerker, Gazzaley, et al 2007

The unpublished part

- Stimuli presented for 3s, 6s & 12s durations to examine response scaling across populations
- A non-trivial # of volunteers held their breath for whatever the hold duration was
- If I hadn't collected respiration data, I would have published a visually appealing results that was severely confounded by task-locked breath holds
- How many fundamental task duration studies recorded respiration traces???

Collect respiration & pulse data Respiration can really mess up your data

Collect respiration & pulse data

- If you want to use post-processing removal methods, make sure respiration and cardiac traces are connected to MRI acquisition times
- For respiration: To conduct an RVT correction, make sure the response magnitude doesn't auto-scale and you now the relationship between chest movement & signal
- For cardiac: Pulse oximeters are sensitive to finger movement. Take the time to make sure the oximeter is secure and tell the volunteer to minimize finger movement during a scan
- Monitor traces before & during scanning

Peripheral near-infrared spectroscopy

Tong, Hocke, et al 2012

Peripherals and Participants

Eye tracking

- Correlations to eyelids open vs closed
- Other studies have shown gaze to also be an arousal/attention measure
- This variation my have a neural origin, but it can still be noise when unmodeled

Chang, Leopold, et at 2016

Head Movement

- Less head motion -> Less need to remove motion in data processing
- Head movement may systematically vary across populations
- Don't assume the way you saw someone else restrict head movement is the best way
 - "The best" varies by head coil, head size, population
 - There are more and more options

Prepare participants

- Take the time to make sure a participant knows what to do in the MRI and is comfortable
- The more feedback you get in a task, the better you know what a participant is doing
 - For classic "resting state" scans, peripheral measurements are particularly useful
- Noise IS NOT independent from task design

Head Movement

Experimental design affects head motion

Huijbers, Van Dijk, et al 2017

- Examples of how parameter choices matter
- Preparatory scans matter
- Contrast options
- Motion correction
- Calibration scans

General acquistion goals

- Give thought to the specific priorities of a study
 - Response shape sensitivity vs specificity
 - Anatomical accuracy
 - Robustness against general artifacts
 - Robustness against artifacts that can bias a study
- The optimal acquisition options aren't always obvious.
 - What is the best flip angle for an fMRI study?

MRI acquisition general parameters

- Voxel size
 - Smaller -> Lower SNR
 - Smaller -> More anatomical specificity -> Higher TSNR of interest
- TR
 - Shorter -> lower SNR, but better temporal resolution and possibly higher TSNR
 - Shorter -> Better filtering of high frequency artifacts (if not removed using other methods)
 - Still limited by the speed of the hemodynamic response
- Acceleration (collecting incompletely sampled data sets and estimating what was missing during reconstruction)
 - Sometimes lower SNR
 - Makes shorter TRs, smaller voxels, and multi-echo practical
 - Potentially less susceptibility dropout & distortion
 - Imperfect reconstruction can create or amplify artifacts
 - Possibly more sensitivity to B0 fluctuations linked to respiratory chest movement

GRAPPA acceleration reconstruction affected by reference scan

higher SNR

corrupted ACS lines due to motion

FLASH GRAPPA for fMRI: Talagala et al., 20015 MRM FLEET GRAPPA for fMRI: Polimeni et al., 2016 MRM dual polarity GRAPPA for fMRI: Hoge et al., 2016 MRM

Images from Laurentius Huber

Fat ghosts: small signal but large instability

VASO data presented at OHBM 2016. Handwerker, Huber et al

Pulse sequences contrasts

Images from Laurentius Huber graphical depiction of review articles [Uludaĝ and Blinder 2017] and [Huber et al., 2017] drawn based on Duvernoy, 1981 Brain Res

Images from Laurientius Huber [Huber et al., ISMRM, 2017]

Images from Laurientius Huber

[Huber et al., ISMRM, 2017]

3D-EPI

Optimal pulse sequence interacts with voxel size/SNR

Images from Laurientius Huber

Real time motion correction during data collection

MPRAGE anatomical image

Without PROMO

With PROMO

Calibration or Baseline scans

Collecting an additional scan that helps correct for subject-specific systematic variation

- Other examples are simple tasks, enriched gas breathing, baseline CBF, standard deviation of resting scans
- Good sanity checks and may be useful
- These can take scanner time away from studying the effects of interest, which has limited their popularity
- Relatively few clinically interesting studies use them

Summary

- Noise from many sources will always exist in fMRI data
- The more you understand noise sources and what acquisition decisions affect them, the better you can control for noise in acquisition and correct for noise in post-processing

Acknowledgements

Laurentius Huber Ben Inglis Vinai Roopchansingh Bob Cox Peter Bandettini