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▪ study of computer programs that learn to predict something 

▪ learn from data, without being told how to do it explicitly

▪ “statistics, reinvented poorly from first principles”

▪ “statistics, but it works for real problems”  

what is machine learning?

[Arthur Samuel, 1959]

[assorted trash talking

heard over the years]

classification

regression

clustering

“is this structural image of a

patient or a control? why?”

“can we predict participant

characteristics from the image?”

“are there subgroups of

patients with similar images?”structural MRI
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science is about questions, not methods

▪ description

 “Are observations explainable in terms of a few (latent) variables?”

▪ prediction

 “Is the evolution of an outcome variable predictable from 
observations (or latent variables estimated from them)? How?”

▪ causality and control

 “How would intervening on some variables affect others?”

▪ mechanism or computation

 “How does an input get transformed to produce the observations?"
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linear regression from a

machine learning viewpoint

[adapted from slides by Russ Poldrack] 
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once upon a time there was a sample...

is reaction time (RT) related to age?
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is RT related to age?
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is RT related to age?

RT = b0 + b1*age + emodel:
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is RT related to age?
parameters in the population

RT = b0 + b1*age + emodel:
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is RT related to age?

best=(X’X)-1X’y

parameters in the population

parameters estimated

from the sample with

normal equations

RT = b0 + b1*age + emodel:

b0 = 402.91 
^

b1 = 0.18
^



10

is RT related to age?

null hypothesis: b1 = 0
alternative:  b1 ≠ 0
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is RT related to age?

null hypothesis: b1 = 0
alternative:  b1 ≠ 0

how likely is the parameter 
estimate (b1 = 0.18) if the
null hypothesis is true?

^
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is RT related to age?

null hypothesis: b1 = 0
alternative:  b1 ≠ 0

how likely is the parameter 
estimate (b1 = 0.18) if the
null hypothesis is true?

^

t = 6.49 

p-value < 0.001 

𝑅2 = 0.75
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what can we conclude?

▪ from this sample

▪ p < 0.001 – reject null hypothesis that ”RT is unrelated to age”

▪ 𝑅2 - age accounts for 75% of variance in RT

▪ 95% confidence interval

▪ the test does not tell us

▪ how well we can predict RT from age in the population

▪ whether this is the right model (or at least better than others)

▪ whether or how age causes reaction time (or vice versa)

b1 = 0.18
^ 0.1193

0.2370
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what happens with a new sample?

draw a new sample from

the same population

compute the 𝑅2 using

parameters estimated

in the original sample

𝑅2 = 0.65 (new sample)

𝑅2 = 0.75 (original sample)
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what happens with a new sample?

draw 100 new samples

using model parameters

estimated from the

original sample,

average 𝑅2 = 0.71

an estimate of how good

the original model would

be on any new sample
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description vs prediction perspectives

estimating model parameters:

▪ description: describe variable relations in terms of few parameters

▪ prediction: learn about to model variable relation from training sample

evaluating the model

▪ description: goodness of fit, for limited model complexirty

▪ prediction: apply the model to a test sample not used in learning the model
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but what if you cannot get more data?

there are two samples inside your sample... 

entire

sample

training

sample

test

sample

regression

model 1

test

sample

training

sample

𝑅2 on test sample 1 𝑅2 on test sample 2

average 𝑅2

regression

model 2
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cross-validation

k-fold cross-validation:

▪ split into k folds

▪ train on k-1, test on the left out, iterate

▪ calculate average prediction measure across all k folds
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leave-one-out cross-validation

leave out the first data point, fit model to the others
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leave-one-out cross-validation

leave out the second data point, fit model to the others



21

leave-one-out cross-validation

leave out the third data point, fit model to the others
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leave-one-out cross-validation

leave-one-out 
R2 = 0.67

original sample
R2 = 0.75

mean of 100
new samples
R2 = 0.71 

all leave-one-out regression lines
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cross-validation

k-fold cross-validation:

▪ split into k folds

▪ train on k-1, test on the left out, iterate

▪ calculate average prediction measure across all k folds

considerations:

▪ key assumption: models in different folds are very similar

▪ typical schemes are 10-fold or leave-one-out (more expensive, other issues)

▪ can be conservative and high variance, especially for small samples

▪ mistakes are easier to make than with separate train/test samples

▪ recommended reading:

 “Assessing and tuning brain decoders: cross-validation, caveats, and guidelines”

 Varoquaux et al. 2017
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model complexity

as model complexity goes up,

we can always fit the training data better
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model complexity

polynomials of higher degree

fit the training data better...

... but they do worse on

test data (overfitting)
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model complexity

if the relationship in the population

were more complicated, a line would

be too simple (underfitting)...

... but cross-validation can 

show us a reasonable 

model complexity!
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"All models are wrong, but some are useful.”

George Box
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▪ generalization: ability to make predictions about new data

▪ a model that generalizes well

▪ shows that there is information in the data about a prediction target

▪ can be dissected to understand how the prediction can be made

but what does this have to do with brains?

what is machine learning, redux
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case study: tools vs buildings

▪ subjects read concrete nouns in 2 categories

▪ words name either tool or building types

▪ trial:

see a word

think about properties, use, visualize 

blank 

▪ average images around response peak

 to get one labelled image per trial

 (84 trials in 6 runs)

3 seconds

8 seconds

tools

[data from Rob Mason and Marcel Just, CCBI, CMU]
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case study: tools vs buildings

voxels (features)

tools

class label

example
…

average trial image

training data (42)

test data (42)

labels

labels

…
…
…

…

…
…

run 1
run 3
run 5

run 2
run 4
run 6
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case study: tools vs buildings
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tools

class label

example
…
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training data (42)

test data (42)

labels

labels

…
…
…

…

…
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run 5
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case study: tools vs buildings

voxels (features)

tools

class label

example
…

average trial image

training data (42)

test data (42)

labels

labels

…
…
…

…

…
…

run 1
run 3
run 5

run 2
run 4
run 6

classifier
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case study: tools vs buildings
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case study: tools vs buildings
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case study: tools vs buildings

voxels (features)

tools

class label

example
…

average trial image

training data (42)

test data (42)

labels

labels

…
…
…

…

…
…

run 1
run 3
run 5

run 2
run 4
run 6

classifier

classifier

predicted
labels

vs

accuracy estimate = 0.82
(#correct/42)
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what is inside

the grey box?
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inside the grey box

tools1

tools2

tools3 buildings1

buildings2

buildings3

voxel 2

vo
xe

l 1
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inside the grey box

tools1

tools2

tools3 buildings1

buildings2

buildings3

voxel 2

vo
xe

l 1 ?
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inside the grey box

tools1

tools2

tools3 buildings1

buildings2

buildings3

voxel 2

vo
xe

l 1 DING!
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inside the grey box

simplest function is no function at all: “nearest neighbour”

▪ implicit example similarity/distance measure 

▪ can use more points in decision (k-nearest ...)

tools1

tools2

tools3 buildings1

buildings2

buildings3

voxel 2

vo
xe

l 1
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inside the grey box

tools1

tools2

tools3 buildings1

buildings2

buildings3

voxel 2

vo
xe

l 1
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inside the grey box

tools1

tools2

tools3 buildings1

buildings2

buildings3

voxel 2

vo
xe

l 1

linear discriminant
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inside the grey box

tools1

tools2

tools3 buildings1

buildings2

buildings3

voxel 2

vo
xe

l 1

linear discriminant A
linear discriminant B

▪ there are many possible linear discriminants

▪ LDA, logistic regression, linear SVM, ...
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inside the grey box

If
otherwise

tools 
buildings

...voxel 2voxel 1 voxel n

+ + + ++ > 0

classifier weights (linear Support Vector Machine)

+ weights pull towards tools- weights pull towards buildings

weight1
x

weight2 
x

weight n
x

weight0

decision value / label probability
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inside the grey box – nonlinear classifiers

SVMs

 new features are (implicitly)

 determined by a kernel

voxel 1 voxel 2

quadratic SVM voxel 1 voxel 2

voxel 1 voxel 2
voxel 1 x

voxel 2

tools vs buildings

tools vs buildingsneural networks:

 new features are learned,

 and features of features,...

linear on a transformed feature space!

“Improving the Interpretability of fMRI Decoding using

 Deep Neural Networks and Adversarial Robustness”

McClure et al. 2023
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how do we test a

classification result?
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how do we test predictions?

null hypothesis:

 “classifier learnt nothing”            “predicts randomly” 

...

tools
tools
buildings

buildings
buildings
tools

...

true labels

tools
buildings
buildings

tools
buildings
tools

...

predicted labels

error

error

accuracy:
 #correct

 out of

 #test
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how do we test predictions?

null hypothesis: classifier learned nothing

▪ X = #correct

▪ P(X|null is true) is binomial(#test,0.5)

▪ p-value is P(X >= result to test|null is true)

many caveats:

▪  accuracy is an estimate

▪  few examples  very uncertain

▪  many examples                      easy to be significant

▪  must correct for multiple comparisons

distribution under null

(0.05 p-value cut-off)



49

▪ a classifier answers one question, but often needs help...

▪ restrict voxels by

▪ space  (e.g. anatomical ROI, a priori ROI, etc)

▪ time  (e.g. different points in a trial)

▪ behaviour (e.g. selective for a condition, consistent across them)

feature and example selection
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feature selection
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feature selection
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▪ a classifier answers one question, but often needs help...

▪ restrict voxels by

▪ space  (e.g. anatomical ROI, a priori ROI, etc)

▪ time  (e.g. different points in a trial)

▪ behaviour (e.g. selective for a condition, consistent across them)

▪ restrict examples by

▪ experiment phase (e.g. study versus free recall blocks)

▪ trials (e.g. successful or not)

feature and example selection
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structural MRI

what about other modalities?

diffusion MRI

resting state fMRI

▪ count tracts passing through each region

▪ derive structural connectivity matrix

▪ create average time series per region

▪ calculate correlation between them

▪ derive functional connectivity matrix

#regions 

#regions 

#r
e

gi
o

n
s 

#r
e

gi
o

n
s 

▪ group voxels into a brain region (parcellation)

▪ create a surface model (triangle mesh)
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what about other modalities?

▪ gray matter volume

▪ cortical thickness

▪ surface area

▪ covariance of measures between regions

▪ reduce connectivity to region pairs or networks

▪ matrices => graphs => graph-theory measures

▪ dynamic versions (over time windows)

#regions 

#regions 

#r
e

gi
o

n
s 

#r
e

gi
o

n
s 

#regions 

#regions 

#r
e

gi
o

n
s 
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▪ problems to solve

▪ classification: patients vs controls, treatment or disease outcome, ...

▪ regression: symptom intensity, time to symptoms, subject characteristics

▪ clustering: patient groups

▪ feature selection

▪ region-of-interest or network restriction 

▪ t-test for individual matrix entries (within training set)

▪ other issues

▪ interpreting classifier weights (aggregate by ROI is typical)

▪ combining modalities  (all together, meta-classifier, ...)

what about other modalities?
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science is about questions, not methods

▪ description

 “Are observations explainable in terms of a few (latent) variables?”

▪ prediction

 “Is the evolution of an outcome variable predictable from 
observations (or latent variables estimated from them)? How?”

▪ causality and control

 “How would intervening on some variables affect others?”

▪ mechanism or computation

 “How does an input get transformed to produce the observations?"
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Thank you!
(questions?)

(or email francisco.pereira@nih.gov later)
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▪ small sample sizes 

▪ significant but small effect

▪ class imbalance

▪ p-hacking

▪ circularity / double-dipping

▪ reporting training set results

potential issues
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▪ small sample sizes

▪ low power is still an issue, even with a separate test set

▪ suggestion: require power analysis (past effect sizes may be optimistic...)

▪ significant but small effect

▪ what does 60% accuracy mean?

▪ suggestion: error analysis (is there a pattern to errors?)

▪ class imbalance

▪ if one class is more frequent than other, null model is not valid

▪ suggestions: (under|over)sample class, nonparametric null

potential issues
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▪ small sample sizes 

▪ significant but small effect

▪ class imbalance

▪ p-hacking

▪ circularity / double-dipping

▪ reporting training set results

potential issues
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p-hacking

▪ try many things, report a single one -> optimistic bias

▪ suggestion:

▪ make method decisions on sample 1, test on sample 2

▪ consider doing a pre-registration before sample 2

potential issues
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circularity / double-dipping

▪ using train+test data to make decisions (e.g. feature selection)

▪ in the limit, can give you a result where there is none at all

▪ suggestion:

 always redo the analysis with permuted labels, a few times 

 (if results are better than random, there is something wrong)

potential issues
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reporting training set results

▪ vastly optimistic bias (especially for small datasets)

▪ suggestion: be wary of very high accuracy claims...

potential issues
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science is about questions, not methods

▪ description

 “Are observations explainable in terms of a few (latent) variables?”

▪ prediction

 “Is the evolution of an outcome variable predictable from 
observations (or latent variables estimated from them)? How?”

▪ causality and control

 “How would intervening on some variables affect others?”

▪ mechanism or computation

 “How does an input get transformed to produce the observations?"
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Thank you!
(questions?)

(or email francisco.pereira@nih.gov later)
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