Prospective Motion Correction: Is it better?

J. Andrew Derbyshire Functional MRI Core NIMH

Motivation

- MRI is a slow imaging technique
 - Vulnerable to motion during acquisition
 - Motion of 50% pixel size can yield significant artifacts

Motivation

- MRI is a slow imaging technique
 - Vulnerable to motion during acquisition
 - Motion of 50% pixel size can yield significant artifacts (Oliver Speck says it is more like 20%)

Why will motion tracking be important?

- Higher resolution scanning
 - Increased scan time
 - Increase resolution by 2x requires 64x scan time!
 - Increased likelihood of subject motion
 - Smaller motions become significant

Sources of motion

- Physiological
 - Cardiac motion
 - Respiratory
 - Blood flow
 - CSF Flow
 - Swallowing
 - Coughing
 - Sneezing
 - Blinking
 - Peristalsis
- Tremors
- Children

Sources of motion

- Physiological
 - Cardiac motion
 - Respiratory
 - Blood flow
 - CSF Flow
 - Swallowing
 - Coughing
 - Sneezing
 - Blinking
 - Peristalsis
- Tremors
- Children

- Motion types:
 - Fast versus slow
 - Periodic
 - Continuous/sporadic
 - In/through plane
 - Local / global
 - Translation
 - Rotation
 - Expansion/contraction

Sources of motion

- Physiological
 - Cardiac motion
 - Respiratory
 - Blood flow
 - CSF Flow
 - Swallowing
 - Coughing
 - Sneezing
 - Blinking
 - Peristalsis
- Tremors
- Children

- Motion types:
 - Fast versus slow
 - Periodic
 - Continuous/sporadic
 - In/through plane
 - Local / global
 - Translation
 - Rotation
 - Expansion/contraction

Do we need motion correction? ... YES!

- Useful to revisit the MR image acquisition process
 - MR image formation is based on the equation: $\omega = \gamma B$
 - In the main magnetic field, B_0 , we have: $\omega_0 = \gamma B_0$
 - Superimpose a spatial magnetic field gradient,

$$\mathbf{G} = (\mathbf{G}_{x}, \mathbf{G}_{z}, \mathbf{G}_{z})^{\mathsf{T}}$$

then:

$$\omega = \gamma (B_0 + G_x x + G_z y + G_z z)$$

- Useful to revisit the MR image acquisition process
 - MR image formation is based on the equation: $\omega = \gamma B$
 - In the main magnetic field, B_0 , we have: $\omega_0 = \gamma B_0$
 - Superimpose a spatial magnetic field gradient,

$$\mathbf{G} = (\mathbf{G}_{\mathsf{x}}, \mathbf{G}_{\mathsf{z}}, \mathbf{G}_{\mathsf{z}})^{\mathsf{T}}$$

then:

• Consider the green blob of tissue

$$\delta \omega(\mathbf{r}, t) = -\gamma \mathbf{G}(t) \cdot \mathbf{r}$$
$$\delta \theta(\mathbf{r}, t) = -\gamma \int_0^t \mathbf{G}(t') dt' \cdot \mathbf{r}$$

• So, the signal from the whole slice is:

$$S(\mathbf{G}, t) = A \int_{V} \rho(\mathbf{r}) \exp\left[-i \int_{0}^{t} \gamma \mathbf{G}(t') dt' \cdot \mathbf{r}\right] d^{3}\mathbf{r}$$

• Write:

$$\mathbf{k}(t) = \frac{\gamma}{2\pi} \int_0^t \mathbf{G}(t') dt'$$

• To obtain the MRI signal equations

$$S(\mathbf{k}) = \int_{V} \rho(\mathbf{r}) \exp(-i2\pi \mathbf{k} \cdot \mathbf{r}) d^{3}\mathbf{r}$$
$$\rho(\mathbf{r}) = \int_{\mathcal{R}^{3}} S(\mathbf{k}) \exp(i2\pi \mathbf{k} \cdot \mathbf{r}) d^{3}\mathbf{k}$$

MR image acquisition revisited

MR image formation assumes that spins are not moving.

- MRI scans typically comprise multiple repetitions
 - Each repetition of the basic pulse sequence is separated by TR
 - Phase encode steps (or similar)

- Useful to distinguish between motion time-scales:
 - intra-TR : i.e. motion within each measurement
 - inter-TR : i.e. motion across / between measurements

Intra-TR motion and Gradients

- MR image formation is based on the equation: $\omega = \gamma B$
- In the main magnetic field, B_0 , we have: $\omega_0 = \gamma B_0$
- Superimpose a spatial magnetic field gradient,

 $\mathbf{G} = (\mathbf{G}_{\mathsf{x}}, \mathbf{G}_{\mathsf{z}}, \mathbf{G}_{\mathsf{z}})^{\mathsf{T}}$

then:

$$\omega = \gamma G_x x + G_z y + G_z z = \mathbf{G.r}$$

Intra-TR motion and Gradients

• Moving spins: $\mathbf{r}(t) = \sum_{n=0}^{\infty} \frac{1}{n!} \left. \frac{d^n \mathbf{r}}{dt^n} \right|_{t=0} t^n$

$$= \mathbf{r}(0) + \left. \frac{d\mathbf{r}}{dt} \right|_{t=0} t + \frac{1}{2} \left. \frac{d^2 \mathbf{r}}{dt^2} \right|_{t=0} t^2 + \dots$$

 $= \mathbf{r}(0) + \mathbf{v}(0)t + \frac{1}{2}\mathbf{a}(0)t^{2} + \dots,$

• Accumulated phase in presence of gradient:

$$t) = -\gamma \int_{-\infty}^{\infty} \mathbf{G}(t') \cdot \mathbf{r}(t') dt'$$
$$= -\gamma \sum_{n=0}^{\infty} \frac{1}{n!} \left. \frac{d^n \mathbf{r}}{dt^n} \right|_{t=0} \cdot \int_0^t \mathbf{G}(t') t'^n dt'$$
$$= -\gamma \sum_{n=0}^{\infty} \frac{1}{n!} \left. \frac{d^n \mathbf{r}}{dt^n} \right|_{t=0} \cdot \mathbf{m}_n(t)$$

 $\mathbf{m}_n(t) = \int_0^t \mathbf{G}(t') t'^n \, dt'$

In particular, for uniform motion: r(t) = r₀ + v₀t, we have additional phase:

$$\Phi = \mathbf{m}_0 \cdot \mathbf{r}_0 + \mathbf{m}_1 \cdot \mathbf{v}_0$$

where $\mathbf{m_1}$ is the first moment of the gradient waveform.

Intra-TR motion

- Motion within a TR
 - undesired velocity-proportional phase accumulation
 - $\Phi = \mathbf{m}_0 \cdot \mathbf{r}_0 + \mathbf{m}_1 \cdot \mathbf{v}_0$
- For complex / dispersive motions
 - e.g. complex flows, rotational flow, high shear, turbulence
 - multiple velocities present within a single voxel
 - phase cancellation
 - signal dropout

Inter-TR motion

- Motion that varies between TRs will
 - cause phase changes from one TR to the next (gradient m1 effect)
 - possibly cause amplitude changes (e.g.) through plane motion
- This causes modulations of the expected MRI signal in the phase encoding direction, resulting in motion artifacts.
- Artifacts are always in the phase encode direction!
 - independent of the actual direction of motion
- Periodic / pulsatile motions (e.g. blood flow) causes ghosting artifacts

Flow Ghosting

K-Space Description for MR Imaging of Dynamic Objects

MRM 19:422:1993

Qing-San Xiang, R. Mark Henkelman

• Provides an elegant *geometric* description of the flow ghost formation

Motion Correction Strategies

- Non-motion tracking
 - Immobilization
 - Signal averaging
 - Saturation bands
 - Gradient moment nulling
 - short TE
 - k-space trajectory
 - radial
 - spiral

- Motion tracked
 - ECG / respiratory gating
 - View re-ordering (e.g. ROPE)
 - Navigator acquisitions
 - self-navigated
 - propeller
 - Slice tracking
 - MR based
 - Optical
 - Other

In practice, available methods and choices are application dependent

Periodic motion

- Cardiac motion
 - ECG/Plethysmograph/Acoustic cardiac signal
 - Triggering : Wait for trigger, then scan
 - Gating : scan until trigger

Prospective Motion Correction

Track scan-plane with patient motion

- track scan-plane with subject motion
- reduced motion artifacts —

Two steps: ightarrow

- Detecting and measuring the motion —
- Real-time scan plane updating —

Prospective Motion Correction

- Multiple approaches to position measurement are possible
 - MR based navigator echoes
 - MR based external tracking
 - Optical based tracking
 - Other methods
- Imaging scan-plane feedback: similar for all approaches
 - Typically model motion as rigid body
 - Global motion model for whole image

Motion Correction: what is possible?

• MR scanning is performed in k-space

Motion Correction: what is possible?

• MR scanning is performed in k-space

Translation	\longleftrightarrow	Phase roll modulation
Rotation	\longleftrightarrow	Rotation
Stretching	\longleftrightarrow	Compression
Shearing	\longleftrightarrow	Orthogonal shearing

- Rigid body motion
 - Global motion model for whole subject
 - 6 parameters
 - 3 translational
 - 3 rotational

Motion Correction: what is possible?

• MR scanning is performed in k-space

- Rigid body motion
 - Global motion model for whole subject
 - 6 parameters
 - 3 translational
 - 3 rotational
- Non-rigid body motion corrections are very difficult

Rigid body scan plane update

For a Cartesian (phase encoded) sequence, the scan plane update [R, (r, p, s)] is applied as changes to:

- Update to image plane rotation matrix:
 - Defines read, phase and slice directions in terms of magnet X, Y, Z
- Slice/slab selective RF pulse frequency:
 - Translates scan-plane to the new image center in the new slice direction
 - $\omega_{slice} = Yg_{slice} s$
- Readout frequency:
 - Effects FOV shift to the new image center in the new readout direction
 - $\omega_{readout} = Yg_{readout} r$
- Readout phase:
 - Effects FOV shift to the new image center in the new PE direction
 - $\theta = 2\pi (p / FOV_{phase}) PE_{step}$

Rigid body scan plane update

For a Cartesian (phase encoded) sequence, the scan plane update [R, (r, p, s)] is applied as changes to:

- Update to image plane rotation matrix:
 - Defines read, phase and slice directions in terms of magnet X, Y, Z
- Slice/slab selective RF pulse frequency:
 - Translates scan-plane to the new image center in the new slice direction
 - $\omega_{slice} = Yg_{slice} s$
- Readout frequency:
 - Effects FOV shift to the new image center in the new readout direction
 - $\omega_{readout} = Yg_{readout} r$
- Readout phase:
 - Effects FOV shift to the new image center in the new PE direction
 - θ = 2π (p / FOV_{phase}) PE_{step}

Note that no changes to gradient waveforms are required!

Prospective tracking using MR markers

Dynamic Scan-Plane Tracking Using MR Position Monitoring

J. Andrew Derbyshire, PhD • Graham A. Wright, PhD • R. Mark Henkelman, PhD • R. Scott Hinks, PhD

JMRI 8:924, 1998 Patent: US 5947900

• Track scan-plane with patient motion

- Keep ROI in scan-plane
- track scan-plane with surgical instrument
- reduced motion artifacts

MR-based position tracking

- Small RF *locator* coil for identifying position
 - 2mm i.d. solenoidal tuned MR coil
 - Internal spherical sample (doped water)
- MR signal with frequency, ω

Position Measurement

- Gradient echo
 - excite sample and read out signal from RF coil
 - signal at characteristic frequency, ω
- Signal analysis
 - centre frequency provides position: $\omega = \gamma G x$
- Repeat process
 - for G in x, y and z directions to find
 3D position of locator coil

Position Measurement

- Local B0 inhomogeneities:
 - offset frequency: $\omega' = \omega + \Delta \omega$
- Acquire 4 gradient echoes directed tetrahedrally
- Eliminates spurious $\Delta \omega$ term

X Y Z D1 = (1, 1, 1) D2 = (1, -1, -1) D3 = (-1, 1, -1) D4 = (-1, -1, 1)

Scan-plane tracking

- Three or more position markers (e.g. triangle) fixed to subject
 - At least three non-colinear markers are required identify rigid body motion
- Define local co-ordinate system relative to triangle
- Define position & orientation of scan-plane in local co-ordinate system

- Scan-plane tracking:
 - Update rotation matrix
 - Update slice frequency and phase
 - Update readout frequency and phase
 - Update phase encode (per PE line) frequency and phase

Results Phantom study

- Images of standard phantom
- Object moved between successive imaging scans
- Tracking system provides images from the same section of the object

Results Human head

- Transverse images of brain of human volunteer
- Subject requested to move between scans
- Tracking system provides images from the same section of the subject

Prospective tracking using MR markers

- Intra-image scan-plane updates
 - once per full image scan
 - Slow-tracking for GRE type scans, OK for EPI
- Inter-image scan-plane updates OK for small motions
 - B0 non-uniformity changes phase mid scan
 - B1 non-uniformity changes phase mid scan
- Precision
 - Position measurements ~ 0.1mm
 - Rotation/Tilting
 - Slice distance from reference markers
 - Angular amplification of errors.
 - Need triangle to be close to scan-plane of interest
- Time required for MR position measurement (15-20ms)

Wireless RF micro-coils

Magnetic Resonance in Medicine 70:639-647 (2013)

Prospective Motion Correction Using Inductively Coupled Wireless RF Coils

Melvyn B. Ooi,* Murat Aksoy, Julian Maclaren, Ronald D. Watkins, and Roland Bammer

- Inductive coupling with head coil
- Microcoil is de-tuned during RF transmit
- Huge Rx signal enhancement from marker sample in the microcoil

MR based image tracking

PROMO: Real-Time Prospective Motion Correction in MRI Using Image-Based Tracking

Nathan White,¹ Cooper Roddey,² Ajit Shankaranarayanan,³ Eric Han,³ Dan Rettmann,³ Juan Santos,⁴ Josh Kuperman,⁵ and Anders Dale^{2,5*}

MRM 63:91:2010

• 3 orthogonal 2D navigators with Kalman filter based motion estimation

PROMO

Sequence Design:

Spiral tracker:	
3 spiral AQs:	3x 14ms
Flip:	8°
Voxel size:	1cm ³
Reconstruction:	3x 2ms
TR _{spiral-tracker} :	100ms

Repeat J=5 times: 500ms

- Requires time for Navigator AQ, reconstruction and tracking calculations
- Useful for inversion recovery (T_{IR} = ~1100ms)
- Less useful for non magnetization prepared sequences
- Must use low flip angle to avoid spin-history effects during IR time
- Can be compared to other MR super-navigators methods
 - EPI based instead of spiral
 - Orbital navigators
 - Cloverleaf, etc.

PROMO

- Spiral nav images:10mm x 10mm x10mm
- 3x14ms total AQ time for tracking sequences
- 100ms for AQ, recon & tracking calculations etc.

PROMO at NIH

- Multi-echo MP-RAGE implementation (Vinai Roopc)
 - Available on GE 3T scanners (3TA, 3TB, 3TC)
 - Appears to be working well
 - See e.g. their 2014 ISMRM Motion Workshop poster
- MP2-Rage version (Alexandru Avram)
 - Available on 3TC

Prospective tracking using stereo optical system

Prospective Head-Movement Correction for High-Resolution MRI Using an In-Bore Optical Tracking System

Lei Qin,^{1,2} Peter van Gelderen,¹ John Andrew Derbyshire,³ Fenghua Jin,² Jongho Lee,¹ Jacco A. de Zwart,¹ Yang Tao,² and Jeff H. Duyn^{1*}

MRM 62:924:2009

Prospective tracking using stereo optical system

- Additional calibration of camera with MR system required
 - Not required for MR based tracking
- Camera mounted on coil table motion
- Accuracy:
 - 0.1mm translation
 - 0.15° rotation
- Tracking rate: 10Hz

Prospective tracking using stereo optical system

7T GE system 0.2mm x 0.2mm x 3mm

Gradual motion

Kineticor system

• Evaluating system on FMRIF 3TD (Siemens)

MR system calibration patch mounted on bottom of bore

Marker for Moiré phase tracking

Kineticor system

- Evaluating system on FMRIF 3TD (Siemens)
- 3 minute MP-RAGE scan

Motion correction on

Motion correction off

Kineticor system

- The UCL group investigated multiple approaches to marker fixation:
 - Direct-to-skin
 - Nose-clip
 - Glasses
 - Toothclip mounting required
- 32 channel headcoil

Callaghan, Todd: UCL group

Mini Bite-bar

Facial Attachment A

Facial Attachment B

Other systems

Self-encoded marker for optical prospective head motion correction in MRI

Christoph Forman^{a,b,c,*}, Murat Aksoy^a, Joachim Hornegger^{b,c}, Roland Bammer^a

a Department of Radiology, Stanford University, Stanford, CA, USA

^b Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-University, Erlangen-Nuremberg, Martensstrasse 3, 91058 Erlangen, Germany ^c Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany

Quad Detection

The black quads of the pattern are detected in the camera image.

Feature Identification

Using its contour the area of each quad is divided into a 5x5 grid (blue). The embedded code is recognized using binary classification.

Verification

By means of a-priori knowledge about neighboring quads each detected code is verified.

Pose Estimation

The pose of the marker is specified by corners of correct classified quads and their corresponding marker-model coordinates.

Fig. 3. Workflow diagram of the detection algorithm for the self-encoded marker. This algorithm can be divided into quad detection, feature identification, verification, and pose estimation.

Discussion

- Rigid body motion model
 - difficult to generalize to more complex motions types
 - Unable to correct local motion (e.g. tongue, eyes, etc.)
- Latency of scan-plane feedback
 - Tracking calculation
 - Sequence update (MRI pulse sequence frame length)
- Requires specially modified pulse sequence
 - to handle real-time imaging parameter feedback
 - vendors may develop an API to support these concepts
- Fixation of external markers for MR or optical tracking
 - markers on skin can move
 - limited visual FOV of camera with 32-channel head coil etc.
- MR tracking systems usually reduce scanning efficiency
- Optical systems need additional camera/MR calibration
- Verification
 - *PMC* changes the acquisition non-corrected image is not acquired
 - PMC failure often makes the images much worse!

Prospective Motion Correction

• Is it better?

Maybe – at least for applications where it is reasonable to assume rigid body motion

- Given the demands of high (i.e better than 0.5mm isotropic) resolution, we will probably need to use all the available tricks in our MR toolbox.
- A very active area of research at the moment:
 - MRM review article 2012
 - MRM virtual issue
 - ISMRM workshop, 2014

Thanks for your attention