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Talk Outline

2"d-order statistics of fMRI signal

— 15t order: mean

— 2" order: variance; power spectrum; auto-correlation

The relation between ongoing and evoked activity

— How to assess

— An example of overwhelming negative interaction in fMRI

Trajectory-based processing

— A more parsimonious and realistic model

Similar observations in electrophysiology




Subject #1, right motor cortex (RMC), resting-state
4 TMRI runs, 190 volumes each, TR = 2.16 sec, total scan time ~27 min
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Subject #1, right motor cortex (RMC), visual detection task (8o trials total)
4 TMRI runs, 190 volumes each, TR = 2.16 sec, total scan time ~27 min
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fMRI signal temporal power spectra
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If o < B <1, autocorrelation
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Scale invariance; scale-free;

f(Ax) =4 )"Hf(x)

Temporal domain: Scale-free dynamics;
Spatial domain: Fractals
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Power-law exponent differentiates between brain networks and
correlates with metabolism
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Time-domain scaling analysis
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Scale-invariance:

f()LX) =4 )"Hf(x)

If o<1,
Hurst exponent
H=oq;

Goodness-of-fit test
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Hurst exponent reproduces results from power-law exponent
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Power-law exponent decreases during task
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Widespread changes in scaling behavior during task
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Potential clinical applications - Chronic back pain

Healthy controls

Patients
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Potential clinical applications

Trait anxiety Alzheimer’s Disease
Smaller H = higher anxiety Larger H—-AD

Brain being constantly activated? Not as efficient in online
information processing?
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Interim Summarg

2"d-order statistics of fMRI signal (variance; power-
law exponent; autocorrelation)

Differentiates between brain networks
Correlates with brain metabolism

Reduced variance and temporal memory/redundancy
during task performance

Mean-and-variance stationary; contains an optimal
dynamic range




Talk Outline

2"d-order statistics of fMRI signal

The relation between ongoing and evoked activity

— How to assess

— An example of overwhelming negative interaction in fMRI

Trajectory-based processing

— A more parsimonious and realistic model
Similar observations in electrophysiology

Potential clinical applications




Signal + Noise (Linear SuPerPosition)
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Optical imaging in cat

Kenet et al., Nature 2003




Signal + Noise (Linear Superposition)

Trial-averaging:
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General Linear Model:
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What if linear superposition is not correct?
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The literature is conflicted!

Supporting linear superposition:

c Dlvnantr!ics Off tgngL:ing QICtiyi:)YI:'t “In spite of the large variability, evoked

xplanation of the Large Variabili S : -

5' Evoked Cortical Fgesponses y responses in single trials could be pre.:dlcted by
linear summation of the deterministic

Amos Arieli, Alexander Sterkin, Amiram Grinvald, Ad Aertsen*
response and the preceding ongoing activity.”
Science 1996

Voltage-sensitive dye in anesthetized cats (visual cortex)

Coherent spontaneous activity “coherent spontaneous fluctuations in human
accounts for trial-to-trial variability brain activity account for a significant fraction of

in human evoked brain responses the variability in measured event-related BOLD
Michael D Fox!, Abraham Z Sayder, Jefrey M Zacks™® & responses... spontaneous and task-related activity

Marcus E Raichle! 4> are linearly superimposed in the human brain.”
Nature Neuroscience, 2006

fMRI in human subjects watching movies




Not squaring so well with linear superposition...

Interaction of sensory responses with spontaneous
depolarization in layer 2/3 barrel cortex

Carl C. H. Petersen*'*, Thomas T. G. Hahn*, Mayank Mehta$", Amiram Grinvald!, and Bert Sakmann*

PNAS, 2003
Voltage-sensitive dye in anesthetized and awake rats (barrel cortex)

time (ms)
“Surprisingly, unlike in the anesthetized cat... here we find that both sensory-evoked
postsynaptic potentials (PSPs) and sensory-evoked action potentials (APs) are
suppressed by (higher) ongoing spontaneous activity.”

Spontaneous local variations in ongoing neural
activity bias perceptual decisions

Guido Hesselmann®*57, Christian A. Kelll, Evelyn Egert*$, and Andreas Kleinschmidtt*$

PNAS, 2008
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fMRI in human subjects performing a task

“That the difference in activity between vase and faces trials changes over peristimulus
time is consistent with a modulation of evoked responses by preceding levels of baseline
activity and suggests an interaction between baseline activity and the evoked response.”




Testing linear-superposition
g PP
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X:  Ongoing activity

X+Y: Recorded signal

Linear Superposition: ry y = 0;
Stereotypical task-evoked activity: o2, = o.

One observable, two unknowns!
o

The law of variance sum:
2 — 2 2




p — pl 2
O%,y = O%x + O%y + 2Iy y Oy Oy

A A
Recorded Ongoing

(under task)
* Linear Superposition: ry, =0

2 —_ 2 2
O%y,y =07 + 07y

— Prediction: 02y,y = 02 (equal sign in the limit of 62, = 0)

* Positive Interaction: ryy >

— Prediction: 02y,y = 0% (equalsignin the limit of 6>, = 0)

* Negative Interaction: ryy <o

5 e ) B
Prediction: 0%y > 0% it -0y[20y<ryy<0

!

0%,y < 02y, ifryy<-0,/20y <0

2 — 2 1 —_ _
0%,y = 0%y, if My = —0y[20y




Task Activation

Task Design

SOA:
17 ~ 30 sec

Fox et al., Neuron 2007; He et al., Neuron 2010




O°y,y VS. 0%y
Test 1: Variance of brain activity during task (X+Y) vs. rest (X)

Variance

-—-AG
-=-Broca
-+-dACC

~ Right motor cortex | ——dRetino
=" T Rest —rer
- Task; -o-FP
' —HF

—L motor

——LSlI

Variance : . ~ ——pIPS

~+R Cerebellum

R DLPFC
—~—RFI

Frequency (Hz) : — RTFS
SFG
Thalamus
vIPS
He, JNS 2011 vRetino

Rest Task




p p
02,y VS. 02y

Test 2: Variance of post-stimulus (X+Y) vs. pre-stimulus (X) activity
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Whole-brain voxel-wise analysis

r=-0.25
P< 1e-256

s.d. change t-score

5 10 15 20
Activation Z-score (abs. value)

Trial-averaged Activity



Whole-brain voxel-wise analysis

Activation only
o . Activation + s.d. quenching
. "M W S.d. quenching only
13 W Deactivation only
A B Deactivation + s.d. quenching

(P < 0.05, FDR corrected)




Could it all be hemodynamic?

Stimuli = Neural Activity - CBF = BOLD

nonlinearity nonlinearity

Friston et al., MRM 1998
Miller... Buxton, HBM 2001

How to test? Assuming linear-superposition in the neural activity,
can hemodynamic response introduce variability reduction?
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Recorded resting-state fMRI signal
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Simulated spontaneous BOLD activity
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Range (% change) SD (% change) Hurst exponent H
Empirical 30.1 4.45 0.84

Simulation 30.9 441 0.83

Recorded fMRI data (He, JNS 2011) Simulated data (He, JNS 2013)

Variance of
detrended data
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Simulated evoked
BOLD response

rCBF response

normalized flow

%BOLD change

o

Following Buxton et al., 1998;
Friston et al., 2000

1‘ Evoked BOLD resopnse

4 1\ (%BOLD change)
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HRF nonlinearity cannot cause variability reduction

Simulation
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Interim Summarg

Observations:
» Temporal variance Task < Rest

» Across-trial variability Post-stimulus < Pre-stimulus

If we assume there exists separate ongoing and evoked activity
and that ongoing activity is (mean- and variance-) stationary:

Given the Law of Variance Sum,

Ongoing and evoked activity must negatively interact.

A

Partial cancellation during across-trial averaging
e, JNS 2013




Partial cancellation during across-trial averaging
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[s trajectory~basecl idea more Parsimonious?

@ Variability reduction
€ Negative interaction

@ Explains similarity between RSN and task-systems

Deco & Jirsa, 2012




Trajector9~basec:l PFOCCSSiﬂg

Briggman et al.,

2005 Iy " " . " .
crawl ... information is encoded in evolving neural

Linear

STV trajectories. ... computation is in the voyage through
state space as opposed to the destination.”

Direction

"The response of a population of neuronsin a
network is determined not only by the characteristics
of the external stimulus but also by the dynamic
changes in the internal state of the network.”

(Buonomano& Maass, 2009)

1.1 -

Churchland et al., 2010




Assessment of cortical state space




BOLD (t+2)

o

Shrinking of cortical state-space

pre-stimulus
L MC post-stimulus RMC 32 59,

BOLD (t+2) / %change
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Trial-averaged activity
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v
o
c
©

<
v

(@)

-

)

@D

X

-0.2 | R
2 0 2 4 6 8 10 12 14 16
Time (sec) He, JNS 2013




Across-trial variability correlates with behavior
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Why have some studies reported linear-superposition?

Arieli et al., Science 1956
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BOLD (t+2) / %change
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Interim 5ummarg

Spatial patterns of across-trial variability and trial-averaged
response are dissociable.

Variability reduction contains behaviorally relevant information
not present in trial-averaged response.

—> Reevaluation of which brain regions are involved in which functions...

Trajectory-based processing framework is more parsimonious and
potentially closer to reality.

Q: How does the brain distinguish between ongoing and evoked activity?

The brain processes incoming sensory stimuli in a strongly initial-
state-dependent manner.




Autism  Potential clinical applications - variability

Trial-averaged activity Across-trial variability Signal-to-noise ratio

Blue: control
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Dinstein et al., 2012 (fMRI)
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Overall conclusions

Prevalent variability reduction observed in fMRI and ECoG data
under a simple visual detection task contradicts the widely
assumed "“linear superposition” model.

If we assume that ongoing and evoked activity sum to give rise to
the recorded brain signal, then they must negatively interact to
produce variability reduction.

An alternative and more parsimonious framework is that cortical
activity trajectory carries information processing in itself; and
that the distinction between ongoing and evoked activity under
task context is artificial.

Variability reduction contains behaviorally relevant information
not present in trial-averaged response, opening up a new avenue
for cognitive and clinical neuroscience.
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