Introduction to Diffusion-weighted Imaging

Joelle Sarlls, Ph.D.

NIH MRI Research Facility
National Institute of Neurological Disorder and Stroke
National Institutes of Health

Motivation

- Magnetic resonance imaging provides information about the spatial distribution of water.
- Diffusion-weighted MRI (DWI) provides information about the motion of water.
- DWIs are sensitive to cellular architecture and tissue integrity.
- DWI can provide quantitative measures that are directly comparable.
- Diffusion imaging can be used to identify specific white matter tracts
- Over 2000 publications combining fMRI and DWI
 - 200 since I gave this lecture last year

Outline

- What is diffusion?
- How do we measure diffusion in MRI?
- How do we extract directional information?
- What are the practical problems and limitations?
- Beyond the diffusion tensor

Outline

- What is diffusion?
- How do we measure diffusion in MRI?
- How do we extract directional information?
- What are the practical problems and limitations?
- Beyond the diffusion tensor

Diffusion

 Diffusion refers to the random translational (Brownian) motion of molecules that results from the thermal energy of theses molecules

(for sphere)

Gaussian Distribution

 A large number of particles that are free to diffuse have a squared displacement of a Gaussian form

Einstein, A. Ann Physik (1905) 4: 549-590

Diffusion

$$\langle r^2 \rangle \approx 6DT_{dif}$$

For H₂O at 37° C

 $D \approx 3.0 \times 10^{-3} \ mm^2/s$ $T_{\rm dif} \approx 30 \ ms$ $r \approx 25 \ \mu m$

 If the motion of water is hindered by cell membranes, macromolecules, etc. the displacement will be less and D will appear lower.

Outline

- What is diffusion?
- How do we measure diffusion in MRI?
- How do we extract directional information?
- What are the practical problems and limitations?
- Beyond the diffusion tensor

Image Intensity in MRI

Physical property of tissue water

- ρ proton density
- T1 relaxation time
- T2 relaxation time
- T2* relaxation time
- D diffusion coefficient

Concentration of water

Rotational motion, Magnetic field strength

Translational motion

Experimentally controlled parameters

Sequence Spin-echo/gradient echo

- TR Time of Repetition

- TE Time to echo

b-value diffusion-weighting factor

Gradients make the resonance frequency a function of spatial position

$$\omega = \gamma B = \gamma B_0 + \gamma z G_z$$

Basic Diffusion-weighting

Phase Twist

Basic Diffusion-weighting

Guess the intensity

No Diffsision weighteing

Spin-echo Diffusion Preparation

$$b = (\gamma G \delta)^2 \left(\Delta - \frac{\delta}{3} \right)$$

Stejskal, EO and Tanner, JE. J Chem Phys (1965) 42: 288-292

DWI

Non-diffusion-weighted signal intensity

B-value sec/mm²

Diffusion
Coefficient
mm²/sec

Typical DWI

 Single-shot "spin-echo" Echo Planar Imaging

Parameter	Value	Comment
TE	50-100ms	Limited by b-value
TR	>5s	Fully relaxed
Matrix	96 x 96	2.5 x 2.5 mm
Slice Thickness	2.5 mm	Equal dimensions
B-value	~1000 s/mm ²	For brain*

*Jones D., et al. Mag Res Med (1999) 42 : 515

Calculate Diffusion Parameters

Diffusion map

 $b = 0 \text{ s/mm}^2$ I_0

 $b = 1100 \text{ s/mm}^2$ Gz

$$I_z = I_0 e^{-bD_z}$$

Dz

$$D_z = \frac{1}{-b} \ln \left(\frac{I_z}{I_0} \right)$$

Water Diffusion in Tissue

Not Free

Cell membranes
Myelin
Organelles
Extracellular matrix

EM of mouse corpus callosum

Anisotropy

D perpendicular

D parallel

D_{perp}<< D_{par}

$$ADC = \frac{1}{-b} \ln \left(\frac{I_{ave}}{I_0} \right)$$

Acute Stroke

Warach S., et al. Ann Neurol (1995) 37:231-241

Outline

- What is diffusion?
- How do we measure diffusion in MRI?
- How do we extract directional information?
- What are the practical problems and limitations?
- Beyond the diffusion tensor

Water Diffusion in Tissue

Not Free

Cell membranes
Myelin
Organelles
Extracellular matrix

EM of mouse corpus callosum

Anisotropy

D perpendicular

D parallel

D_{perp}<< D_{par}

Anisotropic Diffusion

The Diffusion Tensor

$$\underline{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix}$$

Basser, P, et. al. J Magn Reson B (1994) 3 : 247-254

 $b = 0 \text{ s/mm}^2$

 $b = 1100 \text{ s/mm}^2$

Calculate Diffusion Tensor

Diagonalize DT

$$\underline{D} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

Eigenvalues

Eigenvectors

Average Diffusivity

$$\langle D \rangle = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}$$

Fractional Anisotropy
$$FA = \frac{\sqrt{3(\lambda_1 - \langle \lambda \rangle)^2 + (\lambda_2 - \langle \lambda \rangle)^2 + (\lambda_3 - \langle \lambda \rangle)^2}}{\sqrt{2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)}}$$

 $0 \le FA \le 1$

Directional Encoding for DTI

Pajevic S. and Pierpaoli C., Magn Reson Med (1999) 43: 526-540

$\langle D \rangle$

Directional Encoded Color Map

Applications of DTI

- Cerebral Ischemia (Stroke)
- Brain Cancer and Effects of Radiotherapy
- Multiple Sclerosis
- Epilepsy
- Metabolic Disorders
- Normal Brain Maturation and Aging

- Traumatic Brain Injury
- Alzheimer's Disease
- Amyotrophic Lateral Sclerosis
- Niemann-Pick type CDisease
- Dementias
- Connectivity

Pediatric DIPG

Guess the ellipsoid

Guess the ellipsoid

Outline

- What is diffusion?
- How do we measure diffusion in MRI?
- How do we extract directional information?
- What are the practical problems and limitations?
- Beyond the diffusion tensor

Typical DW SSEPI

PRO

Time Efficient

Insensitive to Bulk motion

CON

Low Resolution

Distortions - Field inhomogeneities

Distortions - Diffusion weighting

CON: Distortions from field inhomogeneities

T2-weighted FSE

Non-diffusion-weighted SSEPI

SSEPI corrected

CON: Distortions from DW

DW SSEPI volumes

FA maps

Other Common Problems in DTI

- Low SNR
- Incomplete Fat Suppression
- Bulk movement
- Cardiac pulsation

Low SNR

2.5 mm iso 1.7mm iso 1.3mm iso

Low SNR

2.5 mm iso 15.625 mm³

1.7mm iso 4.913 mm³

1.3mm iso 2.197 mm³

Low SNR

2.5 mm iso 15.625 mm³

1.7mm iso 4.913 mm³

1.3mm iso 2.197 mm³

Incomplete Fat Suppression

Cardiac Pulsation

Diffusion weighting in Z

Bulk Movement

Outline

- What is diffusion?
- How do we measure diffusion in MRI?
- How do we extract directional information?
- What are the practical problems and limitations?
- Beyond the diffusion tensor

What isTractography?

The use of orientation information from diffusion imaging to reconstruct estimates of white matter pathways in the brain.

Limitation to DTI comes from partial volume effects

Typical resolution for SSEPI DTI 2.5 x 2.5 x 2.5 mm

Cortical projection systems of left cerebral hemisphere

Partial Volume Effect

Sub-millimeter DTI

Beyond Standard DTI

- High Angular Resolution Diffusion Imaging (HARDI)
 - Multi-tensor models
 - Non-parametric algorithums
 - DSI, Qball, SD, PAS

Non-parametric Algorithms

 $b = 0 \text{ s/mm}^2$

ACKNOWLEDGEMENTS

Peter Bandettini, PhD
Carlo Pierpaoli, MD,PhD
Ted Trouard, PhD
Lindsay Walker, MS
Kathy Warren, MD
Emilie Steffen
Dan Handwerker, PhD

THANK YOU

Diffusion Profile

Isotropic

Anisotropic

Inherent Motion in Living Systems

$$S_n(t) = F[k_x(t) + \Delta k_{xn}, k_{yn} + \Delta k_{yn}] e^{i\phi_n}$$

PRO: insensitive to bulk motion

$$S(t) = F[k_x(t) + \Delta k_x, k_y + \Delta k_y] e^{i\phi}$$

DWI

$$S = S_0 e^{-bD}$$

Non-diffusion-weighted signal intensity

B-value sec/mm²

Diffusion
Coefficient
mm²/sec

Take two measures of signal and solve for D.

$$D = \frac{1}{-b} \ln \left(\frac{S}{S_0} \right)$$

Average (Trace) Image

$$I_{xx} = I_0 e^{-bD_{xx}}$$

$$I_{yy} = I_0 e^{-bD_{yy}}$$

$$I_{zz} = I_0 e^{-bD_{zz}}$$

$$I_{Ave} = \sqrt[3]{I_{xx} \times I_{yy} \times I_{zz}}$$

Calculated the ADC

b-value = 0

lave

ADC map (mm²/sec)

Not all processing software is created equal!

Competitor

TORTOISE

Diffusion-Weighted MRI (DWI)

- Sensitizes MRI image intensity to small, thermally induced random motion of water molecules
- The motion of water within tissue is extremely sensitive to the microscopic architecture and integrity of the tissue

$$\langle r^2 \rangle \approx 6DT_{dif}$$

 $D \approx 3.0 \times 10^{-3} \text{ mm}^2/\text{s}$ $T_{\text{dif}} \approx 30 \text{ ms}$ $r \approx 25 \text{ } \mu\text{m}$

Einstein, A. Ann Physik (1905) 4: 549-590

Limitation to DTI: Spatial resolution

Identical anisotropy maintained throughout the entire voxel

Anisotropy a small fraction of the voxel. Not experimentally observed

Complete anisotropy, but variable orientation. Experimentally isotropic.