Quantitative MRI

Govind Nair Staff Scientist, NINDS

Multiple sclerosis is an immune mediated neurodegenerative disease affecting the myelin, axons, and neurons.

Qualitative vs. Quantitative

Qualitative: "Hyper-intense lesion seen in the deep white matter"

Fluid-Attenuated Inversion Recovery (FLAIR)

The Trouble with Quantitation

Different scanners, very similar protocols FLAIR

The Trouble with Quantitation

Area: 1.089 cm² (W: 1.060 cm H: 1.307 cm) Mean: 60.888 SDev: 2.493 Sum: 7611 Min: 56.000 Max: 71.000 1.6 Ratio of Signal Intensities 1.4 Т 1.2 т 1 0.8 0.6 0.4 0.2 0 Siemens Philips GE Area: 1.089 cm² (W: 1.060 cm H: 1.307 cm) Mean: 77.179 SDev: 3.334 Sum: 9493 Min: 69.000 Max: 86.000

> Different scanners, very similar protocols FLAIR

Coil Sensitivities Effect Normalization

Coil Sensitivities Effect Normalization

Why Bother with Quantitation: Philosophical

"I often say that when you can <u>measure</u> what you are speaking about, and <u>express it in numbers</u>, you <u>know</u> <u>something</u> about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a <u>meager and unsatisfactory kind</u>; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of *Science*, whatever the matter may be."

• Lord Kelvín [PLA, vol. 1, "Electrícal Uníts of Measurement", 1883-05-03]

Courtesy of Daniel Glen

qMRI parameters may reflect specific biological processes

Why Bother with Quantitation: Clinical

Commonly used qMRI measures

- Basic MR parameters
 - T₁, T₂, T₂* Relaxometry
 - Diffusion of water in tissue
 - Metabolite concentrations using MR Spectroscopy
 - Volumetrics

. . .

. . .

- Derived parameters
 - Blood flowing through tissue (perfusion)
 - Permeability of blood brain barrier

Commonly used qMRI measures

- Basic MR parameters
 - T₁, T₂, T₂* Relaxometry
 - Diffusion of water in tissue
 - Metabolite concentrations using MR Spectroscopy
 - Volumetrics

. . .

. . .

- Derived parameters
 - Blood flowing through tissue (perfusion)
 - Permeability of blood brain barrier

Back to Fundamentals

Quick Review of Basic MRI Contrasts

Engineering the Contrast

T₂ Relaxation:

$$M = M_0 e^{-TE/T2}$$

T₁ Relaxation:

$$M = M_0 (1 - e^{-TR/T1})$$

Signal from Gradient Echo Sequence

$$S = k [H] \frac{\sin \alpha (1 - e^{-TR/T1})}{(1 - (\cos \alpha) e^{-TR/T1})} e^{-TE/T2^*}$$

Signal from MPRAGE

$$\frac{1 - \varphi + \frac{\varphi \cdot \cos(\theta) \cdot (1 - \delta) \cdot \left(1 - \mu^{N-1}\right)}{1 - \mu} + \varphi \cdot \cos(\theta) \cdot \mu^{N-1} + \rho \cdot \cos(\alpha) \cdot \cos^{N}(\theta)}{1 - \rho \cdot \cos(\alpha) \cdot \cos^{N}(\theta)}$$

$$\delta = \exp\left(-\frac{\tau}{T_1}\right), \varphi = \exp\left(-\frac{TD}{T_1}\right), \text{ and } \mu = \delta \cdot \cos(\theta)$$

Signal from Steady State Sequences

 $M_0(sqrt(sin(FA) * E_2(1-E_1)))/1-(E_1-E_2)*cos(FA) - E_1*E_2)$ Where $E_1 = exp(-T_R/T_1)$ and $E_2 = exp(-T_R/T_2)$

$$S_{FISP} = k \tan(\alpha/2) \left[1 - (e^{TR/T1} - \cos \alpha) \sqrt{\frac{1 - e^{-2TR/T2}}{(1 - e^{-TR/T1})^2 - e^{-2TR/T2} (e^{-TR/T1} - \cos \alpha)^2}} \right] e^{-TE/T2^*}$$

$$S_{PSIF} = k \tan(\alpha/2) \left[1 - (1 - e^{TR/T1} \cos \alpha) \sqrt{\frac{1 - e^{-2TR/T2}}{(1 - e^{-TR/T1})^2 - e^{-2TR/T2} (e^{-TR/T1} - \cos \alpha)^2}} \right] e^{-TE/T2}$$

Wang J et. Al. PLoS ONE 2014: 9(5) e96899; Gyngell JMR 81 (1989) 474; Hänicke W et. Al. (2003) MRM 49: 771

T₂ Relaxation

Signal loss due to:

- Macroscopic magnetic field inhomogeneities (refocused by the 180° pulse)
- Local environment (presence of paramagnetic molecules, viscosity...) T₂

T2 map now reflects a property of the tissue

Wikipedia

T₂*-weighted TE=16 ms

Pros

Intensity may actually mean something

Cons

 Fitting errors and related artifacts

T₂*-map

Applications: Exogenous Contrast Agents

Nair et. al. Neuroimage. (2011) 54(2): 1063

FLAIR

Relative blood flow map

Post-contrast T1-wt

Application: T₂ of CSF

Elements	Relaxivity r ₂	Concentration in control CSF	Extrapolated R ₂ (s ⁻¹)	% of R ₂ change in control CSF
Zn	-8x10 ⁻³ mM ⁻¹ .s ⁻¹	3x10 ⁻⁴ mM	-2.4x10 ⁻⁶	0%
Cu	0.6 mM ⁻¹ .s ⁻¹	1.4x10 ⁻⁴ mM	7.8x10 ⁻⁵	0.02%
Fe	3x2 mM ⁻¹ .s ⁻¹	< 5.4x10 ⁻⁴ mM	< 1.7x10 ⁻³	< 0.4%
Mn	124 mM ⁻¹ .s ⁻¹	< 2x10⁻⁵ mM	< 2.5x10 ⁻³	< 0.5%
Proteins (BSA)	1.3x10 ⁻³ mg/dL ⁻¹ .s ⁻¹	47 mg/dL	6.1x10 ⁻²	13%
Glucose	4x10 ⁻³ mg/dL ⁻¹ .s ⁻¹	45-80 mg/dL ^a	0.2-0.3	39 – 69%

a. Tichy et al., 1970

Brain is fully immersed in CSF and changes in brain are often reflected in CSF (But can they be measured using MRI?):

- The low metal concentration doesn't impact CSF T₂ value
- Total protein is responsable for 13% of T₂ value
- Glucose is responsable for ~54% of T_2 value

Tumor Detection by Nuclear Magnetic Resonance

Abstract. Spin echo nuclear magnetic resonance measurements may be used as a method for discriminating between malignant tumors and normal tissue. Mea-

No.	150 495 233 255	Rectus r T_1 0.493 .548 .541 .576 (0.600)* .531 0.538 ± 0.015 relaxation time	nuscle T_2 0.050 .050 .050 .070 0.055 ± 0.005	.322 .241 .306 (0.287)* .200 .Me	T ₂ 0.050 .060 .050 .048 an and standa	Stomach T_1 0.272 .214 .260 .247 (0.159)* .360	Small intestine T_1 0.280 .225 .316 .316 (0.280)* .150	Kidney <i>T</i> ₁ 0.444 .503 .423 .541 (0.530)*	Brain T_1 0.573 .573 .596 .620 (0.614)
3 4 5	156 150 495 233 255	0.493 .548 .541 .576 (0.600)* .531 0.538 ± 0.015	0.050 .050 .050 .070	0.286 .322 .241 .306 (0.287)* 200 Me	0.050 .060 .050 .048	0.272 .214 .260 .247 (0.159)* .360	T ₁ 0.280 .225 .316 .316 (0.280)*	0.444 .503 .423 .541 (0.530)*	0.573 .573 .596
3 4 5	150 495 233 255	.548 .541 .576 (0.600)* .531	.050 .050 .070	.322 .241 .306 (0.287)* 200 Me	.060 .050 .048	.214 .260 .247 (0.159)* .360	.225 .316 .316 (0.280)*	.503 .423 .541 (0.530)*	.573 .596
3 4 5	495 233 255	.541 .576 (0.600)* .531 0.538 ± 0.015	.050 .070	.241 .306 (0.287)* 200 Me	.050 .048	.260 .247 (0.159)* .360	.316 .316 (0.280)*	.423 .541 (0.530)*	.596
3 4 5 * Spin-	233 255	.576 (0.600)* .531 0.538 ± 0.015	.070	.306 (0.287)* 200 Me	.048	.247 (0.159)* .360	.316 (0.280)*	.541 (0.530)*	
4 5 * Spin-	255	.531 0.538 ± 0.015		200 Me		.360			.620 (0.014)
> * Spin-	(0.538 ± 0.015	0.055 ± 0.005	Me	an and stands		.130		610
* Spin-			0.055 ± 0.005					.489	The second secon
* Spin-	-lattice	relaxation time		0.293 ± 0.010		0.270 ± 0.016	0.257 ± 0.030	0.480 ± 0.026	0.595 ± 0.007
- -			after the specim	en stord overnight	at room temp	perature.			
			P 11 155 12 160	$\begin{array}{c} 1_1 \\ Walker sarcoma \\ 0.700 \\ .750 \\ .794 (0.794) \\ .688 \\ .750 \\ S.L. 0.736 \pm 0.022 \\ <.017 \\ Novikoff hepatoma \\ 0.798 \\ 852 \\ \end{array}$.100	tive to nor T_2 , 0.050 s decrease in intracellula sue. In ad the prolon two malign ble 2 that make it po presence of	and; T_2 , 0.118 mal liver (T_1 , 0 second) suggests in the degree of r water (2) in the dition, it is agged relaxation nant tumors reput NMR technological sible for one f metastatic information either Walker	0.293 second; s a significant f ordering of malignant tis- pparent from times of the ported in Ta- niques would to detect the filtrates of the	
			13 231 Mean and S	.827 E 0.826 ± 0.013				Sarcoma of	
			P	<.01†	0.002				

-vivo specimen @ 0.56

Raymond Damadian, Science 1/1 (19/1):1151

T₁ mapping Using Inversion Preparation

Inversion Preparation

- Gold standard, but extremely long experiment
 - TR \sim 5 x T₁.
 - -5 to 6 TIs for reliable data fitting.
 - Not practical on awake human subjects.

Speeding it up

T₁-weighted TI=250 ms

Pros

Signal may actually mean something

Cons

- Fitting errors and related artifacts
- Slow

Ex-vivo brain at 7T

T₁-map

Do we need both qT_1 and qT_2

Rapid T₁ calculation

$$S = M_0 \frac{(1 - e^{-\mathrm{TR/TI}})\sin\theta}{1 - e^{-\mathrm{TR/TI}}\cos\theta}.$$

 θ is the flip angle and S the signal at that flip

$$\frac{M_{\theta}}{\sin \theta} = e^{-T/T_1} \frac{M_{\theta}}{\tan \theta} + M_0 (1 - e^{-T/T_1})$$

Of the form: $Y = bX + a$

$$T1 = -\frac{TR}{\ln b}.$$

However, transmit coil profiles are not corrected automatically since FA needs to be specified.

Christensen et. al. J Phys Chem 78(19):1971 (1974); Gupta J Mag Res 25:231 (1977)

Volumetric B1-map

Double-angle method

2D acquisition, α-2α method, Tissue T1 dependent, Relative to applied voltage **Bloch-Siegert method**

1.3

0

Volumetric acquisition, Tissue T1 independent, As a fraction of RF pulse angle

Bloch et. al. Phys. Rev.57(6):522 (1940); Sacolick et. al. MRM 63(5): 1315 (2010); Sacolick et. al. MRM 63(5): 1315 (2010); Duan et. al. NMR Biomed. 26:1070 (2013).

Uncorrected T₁ map

DESPOT1-HiFi Correction

From the combined multiangle DESPOT1 and IR-SPGR data, a unique solution for κ , T1, and ρ can be found through the least squares minimization of the combined DESPOT1 and IR-SPGR data to Eqs. [1] and [6] for the three parameters, i.e., minimization of the function:

$$f(\rho, T_1, \kappa) = \sum_{i=1}^{i=NTI} \left[\rho \sin \kappa \alpha_P (1 - 2e^{-TI_i/T_1 + e^{-\pi i/T}}) - S_{IR-SPGR}(i)\right]^2$$

$$+\sum_{i=1}^{i=N\alpha} \left[\frac{\rho(1-E_1) \sin \kappa \alpha_{P,i}}{1-E_1 \cos \kappa \alpha_{P,i}} - S_{SPGR}(i) \right]^2$$
(7)

Duan et. al. NMR Biomed. 2013; 26: 1070–1078

Deoni, JMRI, 26:1106-1111

B1 corrected T_1 map TA ~16 min

1.3

0

MR Fingerprinting

 $M_0(sqrt(sin(FA) * E_2(1-E_1)))/1-(E_1-E_2)*cos(FA) - E_1*E_2)$ Where $E_1 = exp(-T_R/T_1)$ and $E_2 = exp(-T_R/T_2)$

Ma et. Al. Nature 495, 187

Applications: image segmentation

40 y.o. M

Volumetrics - LesionTOADS

FSL,

Slicer...

Shee et. al. PLoS ONE 7(5): e37049

Estimating Brain Atrophy - LesionTOADS

Tissue Segmentation Errors

Segmentation

Global Cerebral Atrophy – Brain Free Water Imaging

FLAIR

Brain Free-Water Imaging The only thing that is bright is CSF

Comparison: BFWI vs. LesionTOADS

BFWI - processed

LesionTOADS - processed

Original

Reproducibility

Mean COVs in 12 subjects

	CSF volume	Brain volume
Brain free water	1.5%	~0.3%
LesionTOADS	0.6%	
SIENAX		2.3%

What does it mean clinically?

Adjusted for age and gender

Liu et. al., Annals of Neurology 76(3):370

Conclusion

- Several qMRI techniques have shown sensitivity to biological and disease processes
 - Correction for various scanner effects and bias fields are available, and have to be used.
 - Can be acquired in clinically acceptable time at high resolution (~1 mm isotropic).
 - Careful experimental design, avoid overinterpretation.
- However, the specificity remains an issue
 - qMRI value could change from an unrelated process.

Source of Errors and Variability

- User induced
 - Sequence and protocol selection (filters, distortion correction, resolution/ETL...)
 - Analysis methods, assumptions, and models...
- Manufacturer dependent
 - Equivalent sequences may still be slightly different (RF pulse, gradient slopes, coil combination, acceleration)
 - Hardware (e.g. OEM 7T head coil, gradient distortions, eddy current)

Future: Understanding the Origins

Solution in a tube:

$$\begin{aligned} \frac{1}{T_1} &= \frac{6}{20} \frac{\hbar^2 \gamma^4}{b^6} \bigg[\frac{\tau_c}{1 + \omega^2 \tau_c^2} + \frac{4\tau_c}{1 + 4\omega^2 \tau_c^2} \bigg], \\ \frac{1}{T_2} &= \frac{3}{20} \frac{\hbar^2 \gamma^4}{b^6} \bigg[3\tau_c + \frac{5\tau_c}{1 + \omega^2 \tau_c^2} + \frac{2\tau_c}{1 + 4\omega^2 \tau_c^2} \bigg]. \end{aligned}$$

In vivo: "Presence of locally disordered macromolecular environments" - compartments with solids, couplings, and different exchange regimes...

Extremely Heterogeneous Environment

Thank you.