Electroencephalography (EEG) with and without simultaneous fMRI

1

NIH MRI Summer Course

CMN

A quick recap

- On July 18, 2024 Multimodal Neuroimaging Overview
- Pros/Cons of doing Multimodal Neuroimaging
- Design, Analysis, and Interpretation caveats and guides
- Mostly a theoretical overview
- Today July 23, 2024
- All about EEG
- Might have some overlap
- Some introduction "Doing EEG <u>at NIH</u>"

2-1

A quick recap

- On July 18, 2024 Multimodal Neuroimaging Overview
- Pros/Cons of doing Multimodal Neuroimaging
- Design, Analysis, and Interpretation caveats and guides
- Mostly a theoretical overview
- Today July 23, 2024
- All about EEG
- Might have some overlap
- Some introduction "Doing EEG <u>at NIH</u>"

A quick recap

- On July 18, 2024 Multimodal Neuroimaging Overview
- Pros/Cons of doing Multimodal Neuroimaging
- Design, Analysis, and Interpretation caveats and guides
- Mostly a theoretical overview
- Today July 23, 2024
- All about EEG
- Might have some overlap
- Some introduction "Doing EEG <u>at NIH</u>"

3-1

EEG Turns 100! Hans Berger's 1924

- Rhysisian Lesturer Medical Ch

EEG Turns 100! Hans Berger's 1924

- Hans Berger 1873-1941
- Physician, Lecturer, Medical Chief
- Discovered the EEG in 192
- Eyes Open/Eyes Closed Alpha/Beta
- Paper published in 1929
- Did not go over well.
- Replications from London in 1934

EEG Turns 100!

• Hans Berger 1873-1941

- Physician, Lecturer, Medical Chief
- Discovered the EEG in 1924
- Eyes Open/Eyes Closed Alpha/Beta
- Paper published in 192
- Did not go over well..
- Replications from London in 1934

EEG Turns 100! Hans Berger's 1924

- Hans Berger 1873-1941
- Physician, Lecturer, Medical Chief
- Discovered the EEG in 1924
 - Eyes Open/Eyes Closed Alpha/Beta
 - Paper published in 1929
- Did not go over well..
- Replications from London in 1934

3-6

Spatial-Temporal Trade-offs

3-5

Neural Origins of EEG

EEG Reflects Brain States

6

EEG is made up of various frequencies

echanisms in both rodents and

7-4

The Event-Related Potential Time/Event-locked EEG

8-1

The Event-Related Potential

Time/Event-locked EEG

The Event-Related Potential

Time/Event-locked EEG

• Event-Related Potential or ERP

The Event-Related Potential

Event-Related Potential or ERP

Never "ERRRP"

The Event-Related Potential Time/Event-locked EEG

- Event-Related Potential or ERP
- Never "ERRR
- Portion of the ongoing EEG

8-4

The Event-Related Potential

Time/Event-locked EEG

- Event-Related Potential or ERP
- Never "ERRRP"
- Portion of the ongoing EEG
- Time-Locked to Stimulus Onset

The Event-Related Potential

Time/Event-locked EEG

- Event-Related Potential or ERP
 - Never "ERRRP"
- Portion of the ongoing EEG
- Time-Locked to Stimulus Onset
- Strong Temporal Information

The Event-Related Potential

- Event-Related Potential or ERP
- Never "ERRRP"
- Portion of the ongoing EEG
- Time-Locked to Stimulus Onset
- Strong Temporal Information
- Comparability across the lifespan

ERP

"Sequence of overlapping components, each perhaps representing activity of different populations of nerve cells and each sometimes standing in different, perhaps orthogonal, relations to experimental variables"

-Donchin, 1979, p24

Event Related Potential (ERP)

9

ERPs are comparable across lifespan

8-8

Can be used on all ages

- Predict later behavior and conditions
- Reading ability
- Accurate prediction of dyslexia as early as 1 day old infants

Figure courtes Dennis Molfes Infant EEG Recording

Infant is 24 hours old, testing in hospital nursery

Infant EEG Recording

Infant is 24 hours old, testing in hospital nursery

11-2

ERP Measures Amplitude, Latency, Distributio

12-1

ERP Measures

ERP Measures Amplitude Latency Distribut

100ms -18µV

ERP Measures

Amplitude, Latency, Distribution

12-5

ERP Measures Amplitude, Latency, Distribution

12-8

ERP Nomenclature

13

Amplitude & Latency Measures

Peak Picking

- Measure the amplitude of peak
- Postive
- Negative
- Measure the latency of peak
- Try to make search windows over the entire head
- Latency and polarity may vary or even flip

ERP Components

Part 1

	Peaks	Latency (ms)	Experiment Manipulation	Max Scalp Amplitude	Interpretation	Source
	P1	50 Auditory	None Specific	Anterior	arousal level, suppression of unattended	primary auditory cortex, superior temporal gyres, medial frontal
		100 Visual	Specific	Occipital	information	striate or extra-striate (posterior fusiform), posterior-parietal regions
	NI -	100 Auditory	None Specific	Temporal	selective filtering, basic stimulus characteristics,	Primary auditory cortex, superior temporal plane
		100-161 Visual		Central, Midline, Occipital	initial selection for later pattern recognition	inferior occipital, occipito- temporal junction, inferior temporal lobe
	P2 -	150-275 Auditory	None	Central	selective attention, stimulus change, feature detection,	primary auditory cortex, secondary auditory cortex
	φ2 ·	200+ Visual	Specific	Occipital, Frontal	short-term memory	inferior occipital region

14

ERP C Part 2	on	npoi	nents)		Linking Develo	P, Dove, G. O, & Maguire, M. J. (2) brainwaves to the brain: an ERP priental neuropsychology, 27(2) doi.org/10.1207/s15326942dn2702
	Peaks	Latency	Experimental Manipulation	Max Amplitude	Interpretation	Source	
		200 ms Auditory	None Specific	vertex, pre- occipital, and frontal	Detect changes in attended stimuli	supratemporal, auditory cortex	
	N2	156–189 ms (N170)	Face and Object Recognition	inferior temporal	Facial and Object Expertise	Fusiform Gyrus, lateral occipital-temporal	
		100-300 ms	Go/No-Go	frontal, central	inhibition	caudal and astral anterior cingulate	
	MMN	100-250 ms Auditory	Physically different stimuli	frontal, central	early sensory memory	temporal lobe, right superior temporal gyrus and plane	
-		300 ms	oddball (P3b)	occipito-parietal	memory updating, stimulus discrimination	thalamus, hippocampus, superior temporal gyrus and junction	
	P3	300 ms	novel stimuli (P3a)	frontal	involuntary attention, inhibition	medial parietal lobe, left superior prefrontal cortex	

16

ERP Components

Parahippocampal, anterior fusiform, medial temporal, hippocampus, amygdala, lateral temporal region Sentence ocessing wit Semantic Violations Higher-Order Language Process ietal and Temp 525 ms Auditory Prefrontal, anterior temporal lobe, anterior cingulate, hippocampus frontal and temporal Memory, Novel lentification, can be cross-modal 400-600 ms Memory Left Temporal, Frontaocentral earned vs. Nove Superior Parietal, Precuneus, Posterior Cingulate, Basal Ganglio 500 ms Language Syntactic Violation phrase structure, subcategorization Frontocentral

17

Multivariate Alternatives to Picking Peaks

18

Multivariate Alternatives to Picking Peaks

19-2

Multivariate Alternatives to Picking Peaks

19-3

Multivariate Alternatives to Picking Peaks

Multivariate Alternatives to Picking Peaks $_{\mbox{\tiny PCA}}$

19-6

Multivariate Alternatives to Picking Peaks

19-7

Multivariate Alternatives to Picking Peaks PCA Journal of Neuroscience Methods The ERP PCA Toolkit: An open source 4 program for advanced statistical analysis of ر 🌑 🍮 🌑 🔔 event-related potential data Ö 🏂 🍈 🙆 🦉 ______ 3ur _______ 3ur ۵ 🦚 🝙 ۲ 🚯 🙆 🙆 la 🙆 🕚 🙆 🔞 Rando Data ۵ ۵ ۵ 💿 💿 A (Donchin, 1968; 1969) OVA (Molfese, 1975; 1976)

Multivariate Alternatives to Picking Peaks

19-10

Caveats

Peaks are peaks, but are they really peaks?

20-1

Caveats

Peaks are peaks, but are they really peaks?

Caveats

Peaks are peaks, but are they really peaks?

Caveats

Peaks are peaks, but are they really peaks?

20-4

Do we really need that many...

Sampling Rate and Electrodes

21-1

Do we really need that many...

Sampling Rate and Electrodes

• More data is better!

Do we really need that many...

Sampling Rate and Electrodes

• More data is better!

Do we really need that many...

Sampling Rate and Electrodes

- More data is better!
- Temporal Nyquist

Do we really need that many...

Sampling Rate and Electrodes

- More data is bette
- Temporal Nyquist

21-5

21-4

Do we really need that many...

Sampling Rate and Electrodes

- More data is better!
- Temporal Nyquist
- Spatial Nyquist

Srinivasan, Tucker, & Murias (1998)

Time Frequency Wavelets, FFTs, Oh My!

Time Frequency

Time Frequency · Measures of oscillatory dynamics

- "Spectral Content" and how it changes over time

22-2

22-3

Time Frequency . Measures of oscillatory dynamics

- "Spectral Content" and how it changes over time

- Wavelets allow us to keep some of the temporal information (similar to sliding window FFT)

Time Frequency . Measures of oscillatory dynamics

- "Spectral Content" and how it changes over time

- Wavelets allow us to keep some of the temporal information (similar to sliding window FFT)

Time Frequency . Measures of oscillatory dynamics

Wavelets, FFTs, Oh My!

- "Spectral Content" and how it changes over time

- Wavelets allow us to keep some of the temporal

22-6

Time Frequency · Measures of oscillatory dynamics

- "Spectral Content" and how it changes over time

- information (similar to sliding window FFT)
- Induced Not phase-locked

22-7

Time Frequency . Measures of oscillatory dynamics

- "Spectral Content" and how it changes over time

- Wavelets allow us to keep some of the temporal information (similar to sliding window FFT)

Source Analysis

Just show me some brains!

Best Practices for Source Analysis

- Adequate Number of Sensors
- Know the Geometry of Head & Sensors
- Accurate Head Model
- Know Conductivity of the head
- · Choose a inverse solution model

Best Practices for Source Analysis

- Adequate Number of Sensors
- Know the Geometry of Head & Sensors
- Accurate Head Model
- Know Conductivity of the head
- Choose a inverse solution model

24

Best Practices for Source Analysis

- Adequate Number of Sensors √
- Know the Geometry of Head & Sensor
- Accurate Head Model
- Know Conductivity of the head
- Choose a inverse solution model

Forward Solution

EEG Sensor Geometry

25

Forward Solution

 Use some type of method for triangulating where the sensors are on the head

Forward Solution

- Use some type of method for triangulating where the sensors are on the head
- Infrared NDI scanners

27-2

27-3

Forward Solution

- Use some type of method fo triangulating where the sensors are on the head
- Infrared NDI scanners

Forward Solution EEG Sensor Geometry

- Use some type of method for triangulating where the sensors are on the head
- Infrared NDI scanner
- Electrode Triangulation Systems

Forward Solution

- Use some type of method fo triangulating where the sensors are on the head
- Infrared NDI scanners
- Electrode Triangulation
 Systems

27-6

Forward Solution EEG Sensor Geometry

- Use some type of method for triangulating where the sensors are on the head
- Infrared NDI scanners
- Electrode Triangulation Systems
- Polhemus-like pen registration systems

27-7

Forward Solution EEG Sensor Geometry

- Use some type of method for triangulating where the sensors are on the head
- Infrared NDI scanners
- Electrode Triangulat Systems
- Polhemus-like pen registration
 systems

Source Analysis

Source Analysis The Problems

 Forward Problem: Given the sources and a propagation model, what does the scalp topography look like?

Source Analysis

Forward Problem: Given the sources and a propagation model, what does the scalp topography look like?

28-2

SA Simulator - FREE Download

28-3

Source Analysis The Problems

Forward Problem: Given the sources and a propagation model, what does the scalp topography look like?

- Forward Problem: Given the sources and a propagation model, what does the scalp topography look like?
- Inverse Problem: Given scalp topography and propagation model, what are the generators?

BESA Simulator - FREE Download

28-6

Forward Solution FEM / BEM - Head Volume Conduct

29-1

Forward Solution

• BEM - Boundary Element Model

• Typically uses a simple three-layer model (scalp, skull, brain) with isotropic conductivity

Forward Solution

FEM / BEM - Head Volume Conduction

- BEM Boundary Element Model
- Typically uses a simple three-layer model (scalp, skull, brain) with isotropic conductivity

Forward Solution

• BEM - Boundary Element Model

- Typically uses a simple three-layer model (scalp, skull, brain) with isotropic conductivity
- FEM Finite Element Model
- Divide head volume into small elements (tetrahedral or hexahedral) with specific conductivity properties (e.g. brain, skull, scalp, CSF)
- Allows for complex geometries to exist and be modeled & currents to vary by direction of flow (e.g. white matter tracts)

Forward Solution

3EM - Head Volume Conduction 🛛 🚽

- BEM Boundary Element Model
- Typically uses a simple three-layer model (scalp, skull, brain) with isotropic conductivity
- FEM Finite Element Model
- Divide head volume into small elements (tetrahedral or hexahedral) with specific conductivity properties (e.g. brain, skull, scalp, CSF)
- Allows for complex geometries to exist and be modeled & currents to vary by direction of flow (e.g. white matter tracts)

29-4

29-5

Inverse Models

Often Underspecified and Under-Appreciated

- Single Dipoles
- Distributed Source Models
- Minimum Norm Estimates (MNE)
- Beamforming

Single Current Dipoles

Equivalent Single Dipole

Single Current Dipoles

• Assume EEG signals are generated by a single equivalent current dipole source in the brain.

Single Current Dipoles Equivalent Single Dipole

- Assume EEG signals are generated by a single equivalent current dipole source in the brain.
- Specifies location (XYZ), orientation, and strength

31-3

Single Current Dipoles

Equivalent Single Dipole

- Assume EEG signals are generated by a single equivalent current dipole source in the brain.
- Specifies location (XYZ), orientation, and strength
- The quality of the fit is assessed using measures like residual variance or goodness of fit

Single Current Dipoles Equivalent Single Dipole

- Assume EEG signals are generated by a single equivalent current dipole source in the brain.
- Specifies location (XYZ), orientation, and strength
- The quality of the fit is assessed using measures like residual variance or goodness of fit
- Particularly useful for focal sources:
- Early sensory evoked potentials or Epileptic spikes

Single Current Dipoles

Equivalent Single Dipole

- Assume EEG signals are generated by a single equivalent current dipole source in the brain.
- Specifies location (XYZ), orientation, and strength
- The quality of the fit is assessed using measures like residual variance or goodness of fit
- Particularly useful for focal sources:
- Early sensory evoked potentials or Epileptic spikes
- May not be appropriate for more complex or distributed brain activity patterns

Minimum Norm

- Best fit of the sensor data while minimizing the overall amplitude of brain a
- Variants: sLORETA, dSPI
- Pros
 - Computationally efficient, even for large datasets
 - Can handle complex source configurations
- Provides a distributed estimate of brain activity
- Limitations
- Tends to produce spatially smeared results (requires some regularization
- May have difficulty with deep sources

31-6

Beamforming

Checkout the MEG talks for more info!

- Source Analysis by applying a spatial filter to sensor data
- Spatial filters are adaptive and pass signals from a specific brain location while attenuating signals from other locations
- Common types: LCMV, DICS, and SAM
- Can handle multiple simultaneous sources
- No prior assumptions about number/location of sources
- Good spatial resolution
- Cons
 - Difficulty with highly correlate sources

EEG / EEG-fMRI at NIH

32

33

Our EEG Options

FMRI Facility Owned Equipment

- 2x EGI MR-Conditional 256-Channel EEG Systems
- tx EGI GTEN "Neuromodulation" 256-Channel EEG
 System
- tACS/tDCS/tRNS
- Can record EEG continuously
- GeoScan NDI Sensor for Electrode Triangulation
- Data Storage Nod

Data Storage Belco FLOW Server

- Sort of like XNAT for your EEG data
- Stores your EEG Data and assorted extras
- Electrode location files
- Screen captures
- Can also process your data on the node
- Complete with basic source analysis

Efficient Workflow Machine Learning Collaboration

36

35

Design your Experiment

Currently supporting PsychoPy and E-PRIME

- CMN (Josh & Pete) wrote the Python package to communicate between PsychoPy and EGI's Net Station
- Millisecond accuracy timing
- Flexible using a range of stimuli
- Visual
- Auditory
- Movies

- from egi_pystitation import NetStation
 # Set an IP address for the computer running NetStation as an IPv4 string
 IP.ns = '10.10.10.42'
 # Set a port that NetStation will be Listening to as an integer
 port.ns = Sisi3
 ns = NetStation(IP.ns, port.ns)
 " P.apage 130.10.10.5."
 R so the restrict of the amplifier) address as an IPv4 string
 r.s.connect(int_pisP.amp)
 # Do whatever setup for your experiment here...
 # Begin recording
 ns.begin_rec()
 # You can include a data dictionary: perhaps you have a dog stimulus
 my_data = ("dogs": "Ido")
 # Send this data with the event type of "STIM"
 ns.sond.event(event type "STIM", datamy_data)
 # With the experiment conclude, you can end the recording
 # Not the experiment conclude, you can end the recording
 # Not the experiment conclude, you can end the recording
 # Stim the experiment conclude, you can end the recording
 # Set the end for you can end the recording
 # Stim the experiment conclude, you can end the recording
 # Stim the experiment conclude, you can end the recording
 # Stim the set of the
- # You'll want to disconnect the amplifier when your program is done ns.disconnect()

Learn how use the system

- Net applications
- Training offered 1-2 times a year
- Ideal for when new folks join the lab
- Also learn how to hook system into MRI
 - Proper patient/subject prep
 - Recording good quality data
 - Cleaning / sanitizing

Learn how use the system

Net applications

- Training offered 1-2 times a year
- Ideal for when new folks join the lab
- Also learn how to hook system into MRI
- Proper patient/subject prep
- Recording good quality data
- Cleaning / sanitizing

38-2

Learn how to analyze EEG/EEG-fMRI

- Python notebooks available
- Processing nodes for Commercial Programs
- Guidance on analysis trajectory

39

MR Artifact Removal / Reduction

THE REAL PROPERTY AND ADDR

Gradient Artifacts

• AAS (Allen et al. 2000)

- Average Artifact Subtraction
- Possible problems if you have movement in scanner
- OBS (Mossmann et al. 2009)
- Optimal Basis Sets to potentially model
 artifact
- More flexible to changes in artifact over time
- More complex, possible overfitting

Subduing fMRI Artifacts

Comparing Preprocessing

It can make a difference!

42-1

Comparing Preprocessing

42-2

Scheduling Just like MRI

- Scheduler can be accessed from our website
- fmrif.nimh.nih.gov
- First come, first serve
- "Pre-wired" on most 3T scanners
- 3Tb
- 3Td
- NIAAA 3T Prisma

Navigation	Scanner:	FMRIF EEG syste	sm - A 🚦 #	Days: 6 🕒	🗸 Show Resea	archer? Start
lic Resources	edit	view previo	us 🗦 next Prin	ntable Version		
ut						
stigators		Monday 04/08/24	Tuesday 04/09/24	Wednesday 04/10/24	Thursday 04/11/24	Friday 04/12/24
f		EEG Schedule	EEG Schedule	EEG Schedule	EEG Schedule	EEG Schedule
ctions	7am	(unassigned)	(unassigned)	(unessigned)	(unassigned)	(unassigned)
Course	8am	(posted)	ETP8	(posted)	(posted)	(posted)
immer 2019	9am	El (posted)	ETPB	El (posted)	El (posted)	E (posted)
immer 2018	10am	EI (posted)	ETPB	El (posted)	El (posted)	EI (posted)
immer 2017	11am		ETP8			
immer 2016		(posted)		(posted)	(posted)	(posted)
immer 2015	Noon	(posted)	(posted)		El (posted)	(posted)
immer 2014	1pm	(posted)	(posted)	E SCN	El (posted)	E (posted)
er Courses VPA	2pm	(posted)	(posted)	EI SCN	(posted)	(posted)
vra.	3pm	(posted)	(posted)	EI SCN	EI SCN	(posted)
ernal Resources	4pm	(posted)	(posted)	(posted)	EI SCN	(posted)
nner Schedules	5pm	(posted)	(posted)	(posted)	EI SCN	(posted)
hnologists' help uest form	6pm	(posted)	(posted)	(posted)	(posted)	(posted)
ining request form	7pm	(posted)	(posted)	(posted)	(posted)	(posted)
RIF Manual	8pm	(posted)	(posted)	(posted)	(posted)	(posted)
nner Rooms	9pm	(posted)	(posted)	(posted)	(posted)	(posted)
inload Data	10pm	(posted)	(posted)	(posted)	(posted)	(posted)
ing Lists		_				
Scanlog	X time u:	ied 🔀 time not	t used 🔣 unkn	own		

Come Collect Awesome Data

