Electroencephalography (EEG) with and without simultaneous fMRI

1

NIH MRI Summer Course

Peter J. Molfese, Ph.D. July 23, 2024

A quick recap

- On July 18, 2024 Multimodal Neuroimaging Overview
- Pros/Cons of doing Multimodal Neuroimaging
- Design, Analysis, and Interpretation caveats and guides
- Mostly a theoretical overview
- Today July 23, 2024
- All about EEG
- Might have some overlap
- Some introduction "Doing EEG at NIH"

2-1

A quick recap

- On July 18, 2024 Multimodal Neuroimaging Overview
- Pros/Cons of doing Multimodal Neuroimaging
- Design, Analysis, and Interpretation caveats and guides
- Mostly a theoretical overview
- Today July 23, 2024
- All about FFG
- Might have some overlap
- Some introduction "Doing EEG at NIH"

A quick recap

- On July 18, 2024 Multimodal Neuroimaging Overview
- Pros/Cons of doing Multimodal Neuroimaging
- Design, Analysis, and Interpretation caveats and guides
- Mostly a theoretical overview
- Today July 23, 2024
- All about FFG
- Might have some overlap
- Some introduction "Doing EEG at NIH"

EEG Turns 100! Hans Berger's 1924

• Physician, Lecturer, Medical Chief

• Hans Berger 1873-1941

EEG Turns 100! Hans Berger's 1924

- Hans Berger 1873-1941
- Physician, Lecturer, Medical Chief
- Discovered the EEG in 1924
- Eyes Open/Eyes Closed Alpha/Beta
- Paper published in 1929
- Did not go over well…
- Replications from London in 1934

EEG Turns 100!

Hans Berger's 1924

• Hans Berger 1873-1941

- Physician, Lecturer, Medical Chief
- Discovered the EEG in 1924
- Eyes Open/Eyes Closed Alpha/Beta
- Paper published in 1929
- Did not go over well…
- Replications from London in 1934

EEG Turns 100! Hans Berger's 1924

- Hans Berger 1873-1941
- Physician, Lecturer, Medical Chief
- Discovered the EEG in 1924
- Eyes Open/Eyes Closed Alpha/Beta
- Paper published in 1929
- Did not go over well…
- Replications from London in 1934

3-6

Spatial-Temporal Trade-offs

3-5

Neural Origins of EEG From Neurons to Computers

EEG Reflects Brain States

6

EEG is made up of various frequencies

Frequency Bands Thought to Reflect Certain Processes

Introduction to EEG- and Speech-Based Emotion Recognition

The Event-Related Potential Time/Event-locked EEG

8-1

The Event-Related Potential

Time/Event-locked EEG

The Event-Related Potential

Time/Event-locked EEG

• Event-Related Potential or ERP

The Event-Related Potential

Time/Event-locked EEG

• Event-Related Potential or ERP

• Never "ERRRP"

The Event-Related Potential Time/Event-locked EEG

- Event-Related Potential or ERP
- Never "ERRRP"
- Portion of the ongoing EEG

8-4

The Event-Related Potential

Time/Event-locked EEG

- Event-Related Potential or ERP
- Never "ERRRP"
- Portion of the ongoing EEG
- Time-Locked to Stimulus Onset

The Event-Related Potential

Time/Event-locked EEG

- Event-Related Potential or ERP
	- Never "ERRRP"
- Portion of the ongoing EEG
- Time-Locked to Stimulus Onset
- Strong Temporal Information

The Event-Related Potential

Time/Event-locked EEG

- Event-Related Potential or ERP
- Never "ERRRP"
- Portion of the ongoing EEG
- Time-Locked to Stimulus Onset
- Strong Temporal Information
- Comparability across the lifespan

ERP

"Sequence of overlapping components, each perhaps representing activity of different populations of nerve cells and each sometimes standing in different, perhaps orthogonal, relations to experimental variables"

-Donchin, 1979, p24

Event Related Potential (ERP)

9

ERPs are comparable across lifespan

8-8

Can be used on all ages

- Predict later behavior and conditions
- Reading ability
- Accurate prediction of dyslexia as early as 1 day old infants

Figure courtesy

Infant EEG Recording

Infant is 24 hours old, testing in hospital nursery

Infant EEG Recording

Infant is 24 hours old, testing in hospital nursery

11-2

ERP Measures Amplitude, Latency, Distribution

12-1

ERP Measures Amplitude, Latency, Distribution

ERP Measures

Amplitude, Latency, Distribution

ERP Nomenclature

13

Key, A. P., Dove, G. O., & Maguire, M. J. (2005). Linking brainwaves to the brain: an ERP primer. Developmental neuropsychology, 27(2), 183–215. https://doi.org/10.1207/s15326942dn2702_1

Amplitude & Latency Measures "Peak Picking" • Measure the amplitude of peak • Postive GRAND CENTROID • Negative over the entire head or even flip condition centred to 1000 DISK FILE NAME: SORT CUTTO.028F

-
- Measure the latency of peak
- Try to make search windows
	-

ERP Components

16

ERP Components

Part 3

Key, A. P., Dove, G. O., & Maguire, M. J. (2005). Linking brainwaves to the brain: an ERP primer. Developmental neuropsychology, 27(2), 183–215. https://doi.org/10.1207/s15326942dn2702_1

17

Multivariate Alternatives to Picking Peaks PCA

Multivariate Alternatives to Picking Peaks

19-7

Multivariate Alternatives to Picking Peaks

19-10

Caveats

Peaks are peaks, but are they really peaks?

20-1

Caveats

Peaks are peaks, but are they really peaks?

Caveats

Peaks are peaks, but are they really peaks?

Caveats

Peaks are peaks, but are they really peaks?

20-4

Do we really need that many...

Sampling Rate and Electrodes

21-1

Do we really need that many…

Sampling Rate and Electrodes

• More data is better!

Do we really need that many…

Sampling Rate and Electrodes

• More data is better!

Do we really need that many…

Sampling Rate and Electrodes

- More data is better!
- Temporal Nyquist

Do we really need that many…

Sampling Rate and Electrodes

- More data is better!
- Temporal Nyquist

21-5

Time Frequency Wavelets, FFTs, Oh My!

Time Frequency $\, \, . \,$ Measures of oscillatory dynamics

Wavelets, FFTs, Oh My!

-
- "Spectral Content" and how it changes over time
- Brain oscillations at different frequencies can be associated with various cognitive functions / processes

22-2

22-3

Time Frequency • Measures of oscillatory dynamics Wavelets, FFTs, Oh My!

- "Spectral Content" and how it changes over time
- Brain oscillations at different frequencies can be associated with various cognitive functions / processes
- Transform from the time domain to the frequency domain
- Wavelets allow us to keep some of the temporal information (similar to sliding window FFT)

Time Frequency • Measures of oscillatory dynamics Wavelets, FFTs, Oh My!

- "Spectral Content" and how it changes over time
- Brain oscillations at different frequencies can be associated with various cognitive functions / processes
- Transform from the time domain to the frequency domain
- Wavelets allow us to keep some of the temporal information (similar to sliding window FFT)
- Evoked Phase locked oscillations

Time Frequency $\, \, . \,$ Measures of oscillatory dynamics

Wavelets, FFTs, Oh My!

- "Spectral Content" and how it changes over time
- Brain oscillations at different frequencies can be associated with various cognitive functions / processes
- Transform from the time domain to the frequency domain
- Wavelets allow us to keep some of the temporal information (similar to sliding window FFT)
- Evoked Phase locked oscillations

22-6

Time Frequency $\, \, . \,$ Measures of oscillatory dynamics

Wavelets, FFTs, Oh My!

- "Spectral Content" and how it changes over time
- Brain oscillations at different frequencies can be associated with various cognitive functions / processes
- Transform from the time domain to the frequency domain
- Wavelets allow us to keep some of the temporal information (similar to sliding window FFT)
- Evoked Phase locked oscillations
- Induced Not phase-locked

22-7

Time Frequency • Measures of oscillatory dynamics Wavelets, FFTs, Oh My!

- "Spectral Content" and how it changes over time
- Brain oscillations at different frequencies can be associated with various cognitive functions / processes
- Transform from the time domain to the frequency domain
- Wavelets allow us to keep some of the temporal information (similar to sliding window FFT)
- Evoked Phase locked oscillations
- Induced Not phase-locked

Source Analysis

Just show me some brains!

Best Practices for Source Analysis

- Adequate Number of Sensors
- Know the Geometry of Head & Sensors
- Accurate Head Model
- Know Conductivity of the head
- Choose a inverse solution model

Best Practices for Source Analysis

- Adequate Number of Sensors √
- Know the Geometry of Head & Sensors
- Accurate Head Model
- Know Conductivity of the head
- Choose a inverse solution model

24

Best Practices for Source Analysis

- Adequate Number of Sensors √
- Know the Geometry of Head & Sensors
- Accurate Head Model
- Know Conductivity of the head
- Choose a inverse solution model

Forward Solution EEG Sensor Geometry

Head Model

25

Forward Solution

EEG Sensor Geometry

• Use some type of method for triangulating where the sensors are on the head

Forward Solution EEG Sensor Geometry

- Use some type of method for triangulating where the sensors are on the head
- Infrared NDI scanners

27-2

27-3

Forward Solution EEG Sensor Geometry

- Use some type of method for triangulating where the sensors are on the head
- Infrared NDI scanners

Forward Solution EEG Sensor Geometry

- Use some type of method for triangulating where the sensors are on the head
- Infrared NDI scanners
- Electrode Triangulation Systems

Forward Solution

EEG Sensor Geometry

- Use some type of method for triangulating where the sensors are on the head
- Infrared NDI scanners
- Electrode Triangulation Systems

27-6

Forward Solution EEG Sensor Geometry

- Use some type of method for triangulating where the sensors are on the head
- Infrared NDI scanners
- Electrode Triangulation Systems
- Polhemus-like pen registration systems

27-7

Forward Solution EEG Sensor Geometry

- Use some type of method for triangulating where the sensors are on the head
- Infrared NDI scanners
- Electrode Triangulation Systems
- Polhemus-like pen registration systems

Source Analysis The Problems

Source Analysis The Problems

• Forward Problem: Given the sources and a propagation model, what does the scalp topography look like?

Source Analysis The Problems

• Forward Problem: Given the sources and a propagation model, what does the scalp topography look like?

28-2

BESA Simulator - FREE Download

28-3

28-5

No Noise Low Noise

- Forward Problem: Given the sources and a propagation model, what does the scalp topography look like?
- Inverse Problem: Given scalp topography and propagation model, what are the generators?

BESA Simulator - FREE Download

Forward Solution

FEM / BEM - Head Volume Conduction

29-1

Forward Solution FEM / BEM - Head Volume Conduction

• BEM - Boundary Element Model

• Typically uses a simple three-layer model (scalp, skull, brain) with isotropic conductivity

Forward Solution

FEM / BEM - Head Volume Conduction

- BEM Boundary Element Model
- Typically uses a simple three-layer model (scalp, skull, brain) with isotropic conductivity

29-3

BEM

Forward Solution

FEM / BEM - Head Volume Conduction

• BEM - Boundary Element Model

- Typically uses a simple three-layer model (scalp, skull, brain) with isotropic conductivity
- FEM Finite Element Model
- Divide head volume into small elements (tetrahedral or hexahedral) with specific conductivity properties (e.g. brain, skull, scalp, CSF)
- Allows for complex geometries to exist and be modeled & currents to vary by direction of flow (e.g. white matter tracts)

29-4

Forward Solution

FEM / BEM - Head Volume Conduction

FEM BEM

- BEM Boundary Element Model
- Typically uses a simple three-layer model (scalp, skull, brain) with isotropic conductivity
- FEM Finite Element Model
- Divide head volume into small elements (tetrahedral or hexahedral) with specific conductivity properties (e.g. brain, skull, scalp, CSF)
- Allows for complex geometries to exist and be modeled & currents to vary by direction of flow (e.g. white matter tracts)

Inverse Models

Often Underspecified and Under-Appreciated

- Single Dipoles
- Distributed Source Models
- Minimum Norm Estimates (MNE)
- Beamforming

Single Current Dipoles

Equivalent Single Dipole

Single Current Dipoles

Equivalent Single Dipole

• Assume EEG signals are generated by a single equivalent current dipole source in the brain.

Single Current Dipoles Equivalent Single Dipole

- Assume EEG signals are generated by a single equivalent current dipole source in the brain.
- Specifies location (XYZ), orientation, and strength

31-3

31-2

Single Current Dipoles Equivalent Single Dipole

- Assume EEG signals are generated by a single equivalent current dipole source in the brain.
- Specifies location (XYZ), orientation, and strength
- The quality of the fit is assessed using measures like residual variance or goodness of fit

Single Current Dipoles Equivalent Single Dipole

- Assume EEG signals are generated by a single equivalent current dipole source in the brain.
- Specifies location (XYZ), orientation, and strength
- The quality of the fit is assessed using measures like residual variance or goodness of fit
-
- Early sensory evoked potentials or Epileptic spikes

Single Current Dipoles

Equivalent Single Dipole

- Assume EEG signals are generated by a single equivalent current dipole source in the brain.
- Specifies location (XYZ), orientation, and strength
- The quality of the fit is assessed using measures like residual variance or goodness of fit
- Particularly useful for focal sources:
- Early sensory evoked potentials or Epileptic spikes
- May not be appropriate for more complex or distributed brain activity patterns

Minimum Norm

Well implemented in many software

- Best fit of the sensor data while minimizing the overall amplitude of brain activity
- Variants: sLORETA, dSPM

• Pros

- Computationally efficient, even for large datasets
- Can handle complex source configurations
- Provides a distributed estimate of brain activity
- Limitations
- Tends to produce spatially smeared results (requires some regularization)
- May have difficulty with deep sources

31-6

Beamforming

Checkout the MEG talks for more info!

- Source Analysis by applying a spatial filter to sensor data
- Spatial filters are adaptive and pass signals from a specific brain location while attenuating signals from other locations
- Common types: LCMV, DICS, and SAM
- Can handle multiple simultaneous sources
- No prior assumptions about number/location of sources
- Good spatial resolution
- Cons
	- Difficulty with highly correlate sources

EEG / EEG-fMRI at NIH

32

Our EEG Options

FMRI Facility Owned Equipment

- 2x EGI MR-Conditional 256-Channel EEG Systems
- 1x EGI GTEN "Neuromodulation" 256-Channel EEG System
- tACS/tDCS/tRNS
- Can record EEG continuously
- GeoScan NDI Sensor for Electrode Triangulation
- Data Storage Node

Data Storage Belco FLOW Server

- Sort of like XNAT for your EEG data
- Stores your EEG Data and assorted extras
- Electrode location files
- Screen captures
- Can also process your data on the node
- Complete with basic source analysis

Efficient Workflow Machine Learning Collaboration

35

Design your Experiment

Currently supporting PsychoPy and E-PRIME

- CMN (Josh & Pete) wrote the Python package to communicate between PsychoPy and EGI's Net Station
- Millisecond accuracy timing
- Flexible using a range of stimuli
- Visual
- Auditory
- Movies

from egi_pynetstation import NetStation
Set an IP address for the computer running NetStation as an IPv4 string
IP_ms = '10.10.10.42'
Set a port that NetStation will be listening to as an integer
Set a port that Ne port $ns = 55513$ port_ns = 55513
ns = NetStation(IP_ns, port_ns)
Set an NTP clock server (the amplifier) address as an IPv4 string
IP_amp = '10.10.10.51' 1P_amp = '18.18.18.51'
ns.connect(ntp_ip=IP_amp)
Do whatever setup for you
Begin recording
ns.begin_rec() .
vour experiment here.. *# You can now send events; this one just says "HIYA" and automatically*
 # marks the time for you
 ms.send.event(event.type="HYA")
 *# You can include a data dictionary; perhaps you have a dog stimulus

my_data = {"* ns.end_rec() ns.end_rec()
You'll want to disconnect the amplifier when your program is done
ns.disconnect()

Learn how use the system

- Net applications
- Training offered 1-2 times a year
- Ideal for when new folks join the lab
- Also learn how to hook system into MRI
	- Proper patient/subject prep
	- Recording good quality data
	- Cleaning / sanitizing

Learn how use the system

- Net applications
- Training offered 1-2 times a year
-
- Also learn how to hook system into MRI
- Proper patient/subject prep
- Recording good quality data
- Cleaning / sanitizing

38-2

Learn how to analyze EEG/EEG-fMRI

- Python notebooks available
- Processing nodes for Commercial Programs
- **Guidance on analysis trajectory**

39

MR Artifact Removal / Reduction

Shing for Minimal

Gradient Artifacts • AAS (Allen et al. 2000)

• Average Artifact Subtraction

- Possible problems if you have movement in scanner
- OBS (Mossmann et al. 2009)
- Optimal Basis Sets to potentially model artifact
- More flexible to changes in artifact over time
- More complex, possible overfitting?

Subduing fMRI Artifacts

Comparing Preprocessing

It can make a difference!

42-1

Comparing Preprocessing

It can make a difference!

42-2

Scheduling Just like MRI

- Scheduler can be accessed from our website
- fmrif.nimh.nih.gov
- First come, first serve
- "Pre-wired" on most 3T scanners
- 3Tb
-
- NIAAA 3T Prisma

Come Collect Awesome Data

45