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Electroencephalography (EEG) with 
and without simultaneous fMRI
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A quick recap
• On July 18, 2024 - Multimodal Neuroimaging Overview 

• Pros/Cons of doing Multimodal Neuroimaging 

• Design, Analysis, and Interpretation caveats and guides 

• Mostly a theoretical overview 

• Today - July 23, 2024 

• All about EEG 

• Might have some overlap 

• Some introduction “Doing EEG at NIH”
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Spatial-Temporal Trade-offs

Sejnowski et al. (2014)
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Neural Origins of EEG
From Neurons to Computers

Dipoles
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EEG Reflects Brain States
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EEG is made up of various frequencies 
Frequency Bands Thought to Reflect Certain Processes

Abhang, Gawali, & Mehrotra (2016) 
Introduction to EEG- and Speech-Based Emotion Recognition

Band Frequency

Delta 0.5-4Hz

Theta 4-8Hz

Alpha 8-12Hz

Beta 12-35Hz

Gamma >35Hz
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The Event-Related Potential
Time/Event-locked EEG

• Event-Related Potential or ERP

• Never “ERRRP”

• Portion of the ongoing EEG

• Time-Locked to Stimulus Onset

• Strong Temporal Information

• Comparability across the lifespan
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ERP

“Sequence of overlapping components, each 
perhaps representing activity of different 
populations of nerve cells and each sometimes 
standing in different, perhaps orthogonal, 
relations to experimental variables” 

-Donchin, 1979, p24
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ERPs are comparable across lifespan
Can be used on all ages

• Predict later behavior and 
conditions 

• Reading ability  

• Accurate prediction of 
dyslexia as early as 1 day 
old infants

Figure courtesy  
Dennis Molfese
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Infant EEG Recording
Infant is 24 hours old, testing in hospital nursery 
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ERP Nomenclature 

Exogenous = influenced by external factors 
Endogenous = internal factors controlling

13

Amplitude & Latency Measures
“Peak Picking” • Measure the amplitude of peak 

• Postive 

• Negative 

• Measure the latency of peak 

• Try to make search windows 
over the entire head 

• Latency and polarity may vary 
or even flip

Figure courtesy  
Dennis Molfese
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ERP Components

Peaks Latency (ms) Experiment 
Manipulation

Max Scalp 
Amplitude Interpretation Source

P1

50

Auditory

None

Specific

Anterior
arousal level,


suppression of unattended 
information

primary auditory cortex, 
superior temporal gyres, 

medial frontal

100

Visual Occipital

striate or extra-striate 
(posterior fusiform), 

posterior-parietal regions

N1

100

Auditory

None

Specific

Temporal selective filtering, basic 
stimulus characteristics, 
initial selection for later 

pattern recognition

Primary auditory cortex, 
superior temporal plane

100-161

Visual

Central,

Midline,

Occipital

inferior occipital, occipito-
temporal junction, inferior 

temporal lobe

P2

150-275

Auditory

None

Specific

Central
selective attention, stimulus 
change, feature detection, 

short-term memory

primary auditory cortex, 
secondary auditory cortex

200+

Visual

Occipital,

Frontal inferior occipital region

Part 1

Key, A. P., Dove, G. O., & Maguire, M. J. (2005).  
Linking brainwaves to the brain: an ERP primer.  
Developmental neuropsychology, 27(2), 183–215.  
https://doi.org/10.1207/s15326942dn2702_1
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ERP Components

Peaks Latency Experimental

Manipulation Max Amplitude Interpretation Source

N2

200 ms

Auditory None Specific vertex, pre-

occipital, and frontal
Detect changes in 
attended stimuli

supratemporal, auditory 
cortex

156-189 ms

(N170)

Face and Object 
Recognition inferior temporal Facial and Object 

Expertise
Fusiform Gyrus, lateral 

occipital-temporal

100-300 ms Go/No-Go frontal, central inhibition caudal and astral 
anterior cingulate

MMN 100-250 ms

Auditory

Physically different 
stimuli frontal, central early sensory 

memory

temporal lobe, right 
superior temporal gyrus 

and plane

P3

300 ms oddball (P3b) occipito-parietal
memory updating, 

stimulus 
discrimination

thalamus, hippocampus, 
superior temporal gyrus 

and junction

300 ms novel stimuli (P3a) frontal involuntary attention, 
inhibition

medial parietal lobe, 
left superior prefrontal 

cortex

Part 2

Key, A. P., Dove, G. O., & Maguire, M. J. (2005).  
Linking brainwaves to the brain: an ERP primer.  
Developmental neuropsychology, 27(2), 183–215.  
https://doi.org/10.1207/s15326942dn2702_1
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ERP Components

Peaks Latency Experimental

Manipulation Max Amplitude Interpretation Source

N400

475 ms

Visual Sentence 

Processing with 
Semantic 
Violations

Parietal and Temporal Higher-Order 
Language Processing

Parahippocampal, 
anterior fusiform, 
medial temporal, 

hippocampus, amygdala, 
lateral temporal regions

525 ms

Auditory

P600

400-600 ms

Memory Learned vs. Novel Left Temporal, 

Frontaocentral

Memory, Novel 
identification, can be 

cross-modal

Prefrontal, anterior 
temporal lobe, anterior 
cingulate, hippocampus, 
frontal and temporal 

cortex

500 ms

Language

Syntactic 
Violation Frontocentral

Syntactic violation, 
phrase structure, 
subcategorization

Superior Parietal, 
Precuneus, Posterior 

Cingulate, Basal Ganglia

Part 3

Key, A. P., Dove, G. O., & Maguire, M. J. (2005).  
Linking brainwaves to the brain: an ERP primer.  
Developmental neuropsychology, 27(2), 183–215.  
https://doi.org/10.1207/s15326942dn2702_1
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ERP Components

Peaks Latency Experimental

Manipulation Max Amplitude Interpretation Source

ERN
80-150 ms

(Response 
Locked)

Forced Choice

RT/ACC


(e.g. Flanker)
Frontal & Central Intent and 

Motivation

Anterior Cingulate 
Cortex,

DLPFC

FRN 250-350 ms Any reward 
feedback

Anterior Frontal

Central

Expectation differs 
from feedback


Feedback positive vs. 
negative

Anterior Cingulate 
Cortex

CNV
Pre-stimulus 

negative 
deflection

Go/No-Go

Set ITIs Vertex Anticipation Premotor (BA 6)

Part 4

Key, A. P., Dove, G. O., & Maguire, M. J. (2005).  
Linking brainwaves to the brain: an ERP primer.  
Developmental neuropsychology, 27(2), 183–215.  
https://doi.org/10.1207/s15326942dn2702_1
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Multivariate Alternatives to Picking Peaks
PCA
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• More data is better!

• Temporal Nyquist

• Spatial Nyquist

Srinivasan, Tucker, & Murias (1998)
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Source Analysis
Just show me some brains!
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Best Practices for Source Analysis

Head Model
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Forward Solution
EEG Sensor Geometry
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Inverse Models
Often Underspecified and Under-Appreciated

• Single Dipoles 

• Distributed Source Models 

• Minimum Norm Estimates (MNE) 

• Beamforming

30

Single Current Dipoles
Equivalent Single Dipole
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Minimum Norm
Well implemented in many software

• Best fit of the sensor data while minimizing the overall amplitude of brain activity 

• Variants: sLORETA, dSPM 

• Pros 

• Computationally efficient, even for large datasets 

• Can handle complex source configurations 

• Provides a distributed estimate of brain activity 

• Limitations 

• Tends to produce spatially smeared results (requires some regularization) 

• May have difficulty with deep sources
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Beamforming
Checkout the MEG talks for more info!
• Source Analysis by applying a spatial filter to sensor data 

• Spatial filters are adaptive and pass signals from a specific brain location while attenuating signals from 
other locations 

• Common types: LCMV, DICS, and SAM 

• Can handle multiple simultaneous sources 

• No prior assumptions about number/location of sources 

• Good spatial resolution 

• Cons 

• Difficulty with highly correlate sources
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EEG / EEG-fMRI at NIH

34



Our EEG Options
FMRI Facility Owned Equipment

• 2x EGI MR-Conditional 256-Channel EEG Systems 

• 1x EGI GTEN “Neuromodulation” 256-Channel EEG 
System 

• tACS/tDCS/tRNS 

• Can record EEG continuously 

• GeoScan NDI Sensor for Electrode Triangulation 

• Data Storage Node
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Data Storage
Belco FLOW Server

• Sort of like XNAT for your EEG data 

• Stores your EEG Data and assorted extras 

• Electrode location files 

• Screen captures 

• Can also process your data on the node 

• Complete with basic source analysis

36

Design your Experiment
Currently supporting PsychoPy and E-PRIME

• CMN (Josh & Pete) wrote the Python 
package to communicate between 
PsychoPy and EGI’s Net Station 

• Millisecond accuracy timing 

• Flexible using a range of stimuli 

• Visual 

• Auditory 

• Movies

37

Learn how use the system

• Net applications 

• Training offered 1-2 times a year 

• Ideal for when new folks join the lab 

• Also learn how to hook system into MRI 

• Proper patient/subject prep 

• Recording good quality data 

• Cleaning / sanitizing
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Learn how to analyze EEG/EEG-fMRI

• Python notebooks available 

• Processing nodes for Commercial Programs 

• Guidance on analysis trajectory
Commercial

Python

Matlab

39

MR Artifact Removal / Reduction
Gradient Artifacts • AAS (Allen et al. 2000) 

• Average Artifact Subtraction 

• Possible problems if you have movement in 
scanner 

• OBS (Mossmann et al. 2009) 

• Optimal Basis Sets to potentially model 
artifact 

• More flexible to changes in artifact over time 

• More complex, possible overfitting?

40

Subduing fMRI Artifacts

Original 
Data

MR Artifact 
Removed

Filters
BCG Reduced 

using OBS
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Comparing Preprocessing
It can make a difference! 
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Scheduling
Just like MRI

• Scheduler can be accessed from our website 

• fmrif.nimh.nih.gov 

• First come, first serve 

• “Pre-wired” on most 3T scanners 

• 3Tb 

• 3Td 

• NIAAA 3T Prisma

43

Come Collect Awesome Data
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Questions?
Peter.Molfese@nih.gov
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