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Noise !?
• “Impacting the effect of fMRI noise through hardware 

and acquisition choices – Implications for controlling 
false positive rates”
Wald & Polimeni, NeuroImage (2017)
• First sentence of their introduction
• Applied to the intensity fluctuations of a pixel in an fMRI 

time- series, the term “noise” is so non-specific and carries 
such negative connotations that it should probably be 
eliminated from the fMRI vocabulary.



What causes noise?
•Measurement errors
• Thermal Noise (MRI physics)
• “Under sampled” data

• Imperfect data processing
• Assumptions in data recon algorithms – particularly with 

acceleration
• Imperfect signal modeling
• Not acquiring or mis-using undesired fluctuations
• Bad alignment between images



What do we mean by minimizing noise?
• Maximize Signal-To-Noise Ratio (SNR)
• Maximize Temporal Signal-To-Noise Ratio (TSNR)
• Maximize Contrast-To-Noise Ratio (CNR)

High SNR Low SNR TSNR

CNR

CNR



What do we mean by minimizing noise?
• Minimize specific artifacts
• Minimize distortions & signal dropout

http://www.24x7mag.com/2014/01/abcs-mri/
http://mriquestions.com/nyquist-n2-ghosts.html
http://mriquestions.com/artifacts-in-pi.html
https://practicalfmri.blogspot.com/2011/11/physics-for-understanding-fmri.html



What do we mean by minimizing noise?
Minimize subject-induced or unmodeled variation
• Head movement
• Breathing, Heart pulsation, chest movement
• Unmodeled behavior or neural activity
• task non-compliance
• Non-task specific structured behaviors

• Unmodeled Hemodynamic Responses / Neurovascular Coupling



What do we mean by minimizing noise?
• Improve temporal resolution
• Improve spatial specificity

Huber et al NeuroImage (in press)

Griffanti et al NeuroImage 2014



What do we mean by minimizing noise?
• Maximize Signal-To-Noise Ratio (SNR)
• Maximize Contrast-To-Noise Ratio (CNR)
• Maximize Temporal Signal-To-Noise Ratio (TSNR)
• Minimize specific artifacts
• Minimize distortions & signal dropout
• Minimize subject-induced or unmodeled variation
• Improve temporal resolution
• Improve spatial specificity

We want fast data at super high resolution where responses can be 
resolved in just a few trials with no distortion, dropout, or artifacts

Everything is a balance of priorities with no definitive right answer, 
but many wrong ones



Parts of Presentation

•Parameters & Pulse Sequences
•Peripherals & Participants
•Preventative scanner health



Parameters and Pulse Sequences
A semi-arbitrary and semi-ordered series of examples

Parameters and Pulse Sequences

• Examples of how parameter choices matter
• Preparatory scans matter
• SMS vs 3D-EPI
• Contrast options
•Motion correction
• Calibration scans



General acquisition goals

• Give thought to the specific priorities of a study
• Response shape sensitivity vs specificity
• Anatomical accuracy
• Robustness against general artifacts
• Robustness against artifacts that can bias a study

• The optimal acquisition options aren’t always obvious.

• What is the best flip angle for an fMRI study?

Parameters and Pulse Sequences



better contrast at lower flip angles translates in easier segregation of
tissue compartments.

Discussion

Physiological noise is a major source of undesired variance in
BOLD fMRI time courses in a vast majority of experimental situations
(Kruger and Glover, 2001; Kruger et al., 2001; Triantafyllou et al.,
2005; Bodurka et al., 2007). We have investigated, both theoretically
and experimentally, the effect that MR-signal strength-dependent
physiological noise exerts on BOLD fMRI temporal signal to noise

ratio (TSNR) as a function of the flip angle in situations where
physiological noise constitutes a dominant source of time course
variance. We have scanned 8 subjects at a commonly used BOLD
fMRI voxel volume of 3.75×3.75×4 mm3, where physiological noise
is the dominant source of time course variance (Bodurka et al.,
2007); and physiological noise introduces a non-linear dependence
in TSNR, which translates into a flattening of the TSNR vs. flip angle
curve. We have also demonstrated that this TSNR behavior can be
exploited to perform BOLD-fMRI at flip angles other than the Ernst
angle with no detrimental effects in our ability to detect statistically
significant neuronal activations.

Fig. 7. Averaged hemodynamic response across all eight subjects for all flip angles in three different anatomically defined ROIs: right visual cortex, left visual cortex and left primary
motor cortex. The top panel shows 3D renderings of the ROIs. Themiddle panel shows estimations of the hemodynamic response without intensity normalization (i.e., only constant,
linear and quadratic trends were removed). The bottom panel shows estimations of hemodynamic response in terms of signal percent change. These were obtained by means of
intensity normalization prior to the detrending step.
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Optimal flip angle?

appreciably smaller than the response for the reference angle
(θ=75°, black curve) in all ROIs. Conversely, for larger angles (θ=
[45°, 60°, 90°, 105°, 120°]), the differences are small (visual cortex) or
do not exist (motor cortex). After intensity normalization, differences
across ROI persists, e.g. visual cortex ROIs shows a positive deflection
of about 1.5% while motor cortex shows levels below 1%, but
differences across flip angles are clearly reduced. Intensity normalized
HRs are almost undistinguishable across flip angles in all three ROIs,
with the exception of the HR for θ=9° (red curve), which appears to
be slightly stronger in all regions.

Across subjects averaged total noise (σfmri), BOLD contrast (ΔS)
and CNR levels are presented in Fig. 8. Noise level and BOLD contrast
vary with flip angle, still CNR appears not to be modulated by flip
angle, at least for the angles under consideration. To evaluate the
significance of these observations we performed independent 3-way
mixed effect ANOVAs [A=Flip Angle, Fixed; B=Subject, Random;
C=ROI, Fixed] for each metric. Noise levels significantly vary across
flip angles (F=60.32; pb0.05) in all ROIs. Subsequent multiple
comparison analysis (MATLAB function multcompare) reveals that
noise levels at low angles [θ=9°, 15°, and 30°] were significantly
smaller than noise levels at θ=75°. For all other angles, the multiple
comparison analysis on noise levels revealed no significant differences
with θ=75°. The same tendency is true for BOLD contrast levels
(F=42.76; pb0.05). Conversely, CNR shows no significant variation
across flip angles (F=1.09, p=0.37).

Task-related activation results

Figs. 9 and 10 show statistical maps of activation for visual and
motor cortices, respectively, in a sample of four representative
subjects. Results for the remaining set of subjects were similar to
the ones depicted in the figures. Significant activations at pFDRb0.05
were detected in bilateral visual cortex and left primary motor
cortex in all subjects and at all flip angles. Overlap maps on the right
most column of the figures show high consistency of activation across
flip angles for each subject in both regions. The ratio of volume
overlap for the full brain was Roverlap=0.65±0.06. When calculations
are restricted to the left primary motor ROI, Roverlap increases to a
value of 0.76±0.09. When the ratio is computed considering
all voxels within left and right visual ROIs, it reaches a value of
0.91±0.04.

Finally, Fig. 11 shows results for the voxel-wise β-coefficient
correlation analysis. Fig. 11A shows a scatter plot and linear fit for the

ideal case where voxel-wise estimations of β are identical for two
different flip angles. For this ideal situation to occur, there is the need
for no flip angle effect (meaning beta values are the same across
different flip angles) and no uncounted inter-run variance. Fig. 11.B
shows two representative scatter plots computed for two different
subjects (Sbj8, Sbj5) and two different ROIs (right visual cortex, left
primary motor cortex). A clear linear relationship exists between the
β-coefficients at θ=75° and other flip angles (θ=45°, θ=15°).
Moreover, the slope (S=0.98, S=1.17) and constant terms (C=
−0.08, C=0.11) of these two representative cases do not greatly
differ from the ones associated with the ideal case (S=1, C=0). To
evaluate if deviations from the ideal case were significant, we
computed averaged values of S and C for each angle-pair comparison
within each ROI. Fig. 11C shows a summary of these average values
(bar height=average value, error bar=95% confidence interval). The
slope of the linear fits was significantly different (pUncorrectedb0.05)
from the ideal case (S=1) in three cases for the right visual ROI
(red error bars), two cases for the left primary motor cortex (red
error bars), and no cases for the left visual cortex. When corrected
for multiple comparisons (pBonferronib0.05) none of these cases
survive the threshold. With respect to the constant term, a
similar situation arises. The constant term was significantly different
(pUncorrectedb0.05) from the ideal case (C=0) for one case in the right
visual cortex (red error bars), two cases in the left visual cortex (red
error bars) and no cases for the left primary motor cortex. When
corrected for multiple comparisons (pBonferronib0.05) none of these
cases survived the threshold.

Tissue contrast dependence with flip angle

Fig. 12A shows simulations of Eq. (12) for three tissue contrasts of
interest; namely GM vs. WM (ΔSWM,GM), GM vs. CSF (ΔSGM,CSF) and
WM vs. CSF (ΔSWM,CSF). These simulations correspond to a TR=2 s
and experimental measures of So and T1 reported in Table 2. Mean and
standard deviation measures of tissue contrast at imaged flip angles
are also presented in the figure. Agreement between experimental
measures and theoretical curves can be observed in the figure.
Moreover, it can be observed that contrast between WM and CSF is
higher at lower flip angles in the vicinity of θS,GM (black dashed line;
ΔSGM,CSF≈16%) than at larger imaging angles in the vicinity of the
Ernst angle for GM (black dotted line; ΔSGM,CSF≈−8%). Fig. 12B
shows axial slices, after steady-state have been reached, for an
exemplary subject. This figure allows us to visually appreciate how

Fig. 6. SNR and TSNR Results for GM, WM and CSF. Dotted lines represent simulations of Eqs. (4) and (9) using parameter values obtained experimentally (Table 2). Averaged
measurements of SNR and TSNR are represented as circles. Standard deviation error bars accompany these mean values. Finally, suggested flip angles are depicted as yellowmarkers
for each tissue compartment.
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Parameters and Pulse Sequences

Gonzalez-Castillo, Roopchansingh, et al 2011

Increases in SNR 
also increase the 

physiological noise 
signal and dampen 
the temporal SNR 

benefits from a 
signal increase

λ is amount of 
physiological noise

the relationship between TSNR and flip angle is relatively constant
across a wide range of flip angles. We subsequently evaluate if the use
of flip angles other than the Ernst angle has any detrimental effect on
our ability to detect BOLD-related neuronal activity. For that purpose
we conducted a block-design experiment with a combined visual-
motor task. Using these data, we examined flip angle effects on the
time-course of the hemodynamic response associated with task
epoch, on contrast-to-noise ratio (CNR), and on statistical maps of
activation. Our results suggest that, as could be expected on the basis
of TSNR behavior, under specific experimental conditions the use of
angles larger or smaller than the Ernst angle does not reduce our
ability to detect BOLD-based neuronal activity. In this respect, we also
provide formulation of the suggested flip angle (θS), which provides a
conservative estimate of the minimum flip angle that can be used
under given experimental SNR and physiological noise levels.

The possibility of performing fMRI at low flip angles without great
loss in TSNR, as our results suggest, comes accompanied by a series of
additional benefits such as: (1) reduction of RF power, (2) limitation
of apparent T1-related inflow effects—e.g., increasing BOLD specificity,
(3) reduction of through-plane motion artifacts, (4) lower levels of
physiological noise—as a result of the linear dependence between
physiological noise and signal level and (5) improved tissue contrast.
Two of these benefits, lower physiological noise and lower RF induced
heating are of special importance in imaging at ultra-high fields.

Theory

Signal-to-Noise Ratio (SNR)

SNR =
S
σo

ð1Þ

SNR for magnetic resonance images (Eq. (1)) is defined as the ratio
of the signal (S) from a small volume of material in the body to the
thermal noise present in the measuring system (σo) (Edelstein et al.,
1986). In the case of gradient recalled-echo, in which a series of
consecutive imaging volumes are acquired with repetition times (TR)
in the same order of magnitude as the longitudinal relaxation time
(T1) of the sample under study, the numerator in Eq. (1) no longer
refers to the signal generated after a single excitation, but to the
steady state signal that develops after several seconds. The mathe-
matical formulation of this steady state signal (SSSIS) is provided in
Eq. (2) (Zur et al., 1991)

SSSIS ≡ SðθÞ = Mo⋅
1−e−TR=T1

! "
⋅ sinðθÞ

1−e−TR=T1 ⋅ cosðθÞ
⋅e−TE =T#

2 ð2Þ

where θ=flip angle, TE=echo time, T2*=transverse relaxation time,
and Mo=longitudinal magnetization. If we now define SNRo as the
signal-to-noise ratio for the first image of the fMRI time-series for
θ=90° (Eq. (3)), we can obtain a simplified version (Eq. (4)) of SNR as
a function of flip angle (θ) for gradient echo fMRI that depends solely
on parameters easily obtained experimentally.

SNRo =
So
σo

=
Mo⋅e−TE =T#

2

σo
ð3Þ

SNRðθÞ = SNRo⋅
1−e−TR=T1

! "
⋅ sinðθÞ

1−e−TR=T1 ⋅ cosðθÞ
ð4Þ

Temporal Signal-to-Noise Ratio

In fMRI, temporal signal to noise ratio (and typically not signal to
noise ratio) is the determinant of sensitivity. Temporal signal to noise
ratio (TSNR), which is many times used in fMRI to evaluate data

quality (Bellgowan et al., 2006; Bodurka et al., 2007; Kruger and
Glover, 2001; Murphy et al., 2007; Parrish et al., 2000; Triantafyllou
et al., 2005), is commonly defined as

TSNR =
SSSIS
σ
fmri

ð5Þ

where SSSIS is the mean voxel time course signal, and σfmri is the voxel
time course standard deviation. It has been already demonstrated
(Bodurka et al., 2007; Kruger and Glover, 2001; Kruger et al., 2001)
that the noise variance in an imaging voxel (σfmri

2 ) is the sum of
thermal noise (σo

2) and physiological noise (σp
2). The thermal noise in

MR (σo) arises from the subject and scanner electronics, and depends
on B0, but is independent of MR-signal strength (Kruger and Glover,
2001; Edelstein et al., 1986). The physiological noise (σp) is directly
proportional to MR-signal strength (σp=λ⋅SSSIS), and creates the
following non-linear relationship between SNR and TSNR:

TSNR =
SNRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λ2⋅SNR2
p ð6Þ

If we combine Eqs. (4) and (6) we obtain the following expression
of TSNR as a function of flip angle

TSNR θð Þ =
SNRo⋅

1−e−TR = T1ð Þ⋅ sin θð Þ
1−e−TR = T1 ⋅ cos θð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λ2⋅ SNRo⋅
1−e−TR = T1ð Þ⋅ sin θð Þ
1−e−TR = T1 ⋅ cos θð Þ

$ %2
s ð7Þ

Fig. 1 shows plots of Eqs. (4) and (7) for three human tissue
compartments—namely grey matter (GM), white matter (WM), and
cerebrospinal fluid (CSF)—as well as for a Silicone Oil phantom. The
values of T1, λ, and SNRo (Table 1) used in these simulations
correspond to values previously reported in the literature for 3 T
scanners (Bodurka and Bandettini, 2009; Wang et al., 2006).
Repetition time (TR) is set to 2.0 s, a commonly used value in fMRI
experimentation. In the figure, it can be observed that both SNR and
TSNR reach their respective maximum values at the Ernst angle (Ernst
and Anderson, 1996). The figure also shows how SNR strongly varies
as a function of flip angle in all cases under consideration. Conversely,
TSNR presents two different behaviors depending on the amount of
physiological noise present in the measured system. For a Silicone Oil
phantom, which presents aminor contribution of signal-dependent or
physiological-like noise (λ=0.0015), TSNR behaves in a similar
manner to SNR. Conversely, for GM (λ=0.0067), WM (λ=0.0053)
and, especially for CSF (λ=0.0095), the TSNR curves suffer little
modulation by the flip angle for a wide range of angles above and
below the Ernst angle. To further investigate the effect of λ on the
shape of the TSNR curve, we generated additional plots of TSNR vs.
Flip Angle for different levels of physiological noise (ranging from
λ=0 to λ=0.05) while keeping T1 and SNRo equal to the values
reported in Table 1 for GM. Fig. 2.A shows these additional plots. It can
be observed that as λ increases, the TSNR curve becomes flatter and
conserves a value close to its maximum for a wider range of angles.
Moreover, if we look at the angle below the Ernst angle for which
TSNR has decreased to half its maximum value (θ50%)–marked as
squares in Fig. 2.A–we can see that as λ increases this angle becomes
smaller. Fig. 2B shows how this angle, θ50%, decreases very rapidly and
reaches a value of 7.22° for λ=0.0067 (physiological noise level
previously reported for GM (Bodurka and Bandettini, 2009)).

These results, coupled with the fact that TSNR is the primary
measure of the ability to detect BOLD signal changes (Bellgowan et al.,
2006; Parrish et al., 2000), suggest that detection of BOLD fMRI
changes might not be detrimentally affected by the use of flip angles
other than the Ernst angle. In the experiments described below we
explore this possibility in detail.
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the relationship between TSNR and flip angle is relatively constant
across a wide range of flip angles. We subsequently evaluate if the use
of flip angles other than the Ernst angle has any detrimental effect on
our ability to detect BOLD-related neuronal activity. For that purpose
we conducted a block-design experiment with a combined visual-
motor task. Using these data, we examined flip angle effects on the
time-course of the hemodynamic response associated with task
epoch, on contrast-to-noise ratio (CNR), and on statistical maps of
activation. Our results suggest that, as could be expected on the basis
of TSNR behavior, under specific experimental conditions the use of
angles larger or smaller than the Ernst angle does not reduce our
ability to detect BOLD-based neuronal activity. In this respect, we also
provide formulation of the suggested flip angle (θS), which provides a
conservative estimate of the minimum flip angle that can be used
under given experimental SNR and physiological noise levels.

The possibility of performing fMRI at low flip angles without great
loss in TSNR, as our results suggest, comes accompanied by a series of
additional benefits such as: (1) reduction of RF power, (2) limitation
of apparent T1-related inflow effects—e.g., increasing BOLD specificity,
(3) reduction of through-plane motion artifacts, (4) lower levels of
physiological noise—as a result of the linear dependence between
physiological noise and signal level and (5) improved tissue contrast.
Two of these benefits, lower physiological noise and lower RF induced
heating are of special importance in imaging at ultra-high fields.

Theory

Signal-to-Noise Ratio (SNR)

SNR =
S
σo

ð1Þ

SNR for magnetic resonance images (Eq. (1)) is defined as the ratio
of the signal (S) from a small volume of material in the body to the
thermal noise present in the measuring system (σo) (Edelstein et al.,
1986). In the case of gradient recalled-echo, in which a series of
consecutive imaging volumes are acquired with repetition times (TR)
in the same order of magnitude as the longitudinal relaxation time
(T1) of the sample under study, the numerator in Eq. (1) no longer
refers to the signal generated after a single excitation, but to the
steady state signal that develops after several seconds. The mathe-
matical formulation of this steady state signal (SSSIS) is provided in
Eq. (2) (Zur et al., 1991)

SSSIS ≡ SðθÞ = Mo⋅
1−e−TR=T1

! "
⋅ sinðθÞ

1−e−TR=T1 ⋅ cosðθÞ
⋅e−TE =T#
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where θ=flip angle, TE=echo time, T2*=transverse relaxation time,
and Mo=longitudinal magnetization. If we now define SNRo as the
signal-to-noise ratio for the first image of the fMRI time-series for
θ=90° (Eq. (3)), we can obtain a simplified version (Eq. (4)) of SNR as
a function of flip angle (θ) for gradient echo fMRI that depends solely
on parameters easily obtained experimentally.

SNRo =
So
σo

=
Mo⋅e−TE =T#
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SNRðθÞ = SNRo⋅
1−e−TR=T1
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ð4Þ

Temporal Signal-to-Noise Ratio

In fMRI, temporal signal to noise ratio (and typically not signal to
noise ratio) is the determinant of sensitivity. Temporal signal to noise
ratio (TSNR), which is many times used in fMRI to evaluate data

quality (Bellgowan et al., 2006; Bodurka et al., 2007; Kruger and
Glover, 2001; Murphy et al., 2007; Parrish et al., 2000; Triantafyllou
et al., 2005), is commonly defined as

TSNR =
SSSIS
σ
fmri

ð5Þ

where SSSIS is the mean voxel time course signal, and σfmri is the voxel
time course standard deviation. It has been already demonstrated
(Bodurka et al., 2007; Kruger and Glover, 2001; Kruger et al., 2001)
that the noise variance in an imaging voxel (σfmri

2 ) is the sum of
thermal noise (σo

2) and physiological noise (σp
2). The thermal noise in

MR (σo) arises from the subject and scanner electronics, and depends
on B0, but is independent of MR-signal strength (Kruger and Glover,
2001; Edelstein et al., 1986). The physiological noise (σp) is directly
proportional to MR-signal strength (σp=λ⋅SSSIS), and creates the
following non-linear relationship between SNR and TSNR:

TSNR =
SNRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λ2⋅SNR2
p ð6Þ

If we combine Eqs. (4) and (6) we obtain the following expression
of TSNR as a function of flip angle

TSNR θð Þ =
SNRo⋅

1−e−TR = T1ð Þ⋅ sin θð Þ
1−e−TR = T1 ⋅ cos θð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1−e−TR = T1ð Þ⋅ sin θð Þ
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Fig. 1 shows plots of Eqs. (4) and (7) for three human tissue
compartments—namely grey matter (GM), white matter (WM), and
cerebrospinal fluid (CSF)—as well as for a Silicone Oil phantom. The
values of T1, λ, and SNRo (Table 1) used in these simulations
correspond to values previously reported in the literature for 3 T
scanners (Bodurka and Bandettini, 2009; Wang et al., 2006).
Repetition time (TR) is set to 2.0 s, a commonly used value in fMRI
experimentation. In the figure, it can be observed that both SNR and
TSNR reach their respective maximum values at the Ernst angle (Ernst
and Anderson, 1996). The figure also shows how SNR strongly varies
as a function of flip angle in all cases under consideration. Conversely,
TSNR presents two different behaviors depending on the amount of
physiological noise present in the measured system. For a Silicone Oil
phantom, which presents aminor contribution of signal-dependent or
physiological-like noise (λ=0.0015), TSNR behaves in a similar
manner to SNR. Conversely, for GM (λ=0.0067), WM (λ=0.0053)
and, especially for CSF (λ=0.0095), the TSNR curves suffer little
modulation by the flip angle for a wide range of angles above and
below the Ernst angle. To further investigate the effect of λ on the
shape of the TSNR curve, we generated additional plots of TSNR vs.
Flip Angle for different levels of physiological noise (ranging from
λ=0 to λ=0.05) while keeping T1 and SNRo equal to the values
reported in Table 1 for GM. Fig. 2.A shows these additional plots. It can
be observed that as λ increases, the TSNR curve becomes flatter and
conserves a value close to its maximum for a wider range of angles.
Moreover, if we look at the angle below the Ernst angle for which
TSNR has decreased to half its maximum value (θ50%)–marked as
squares in Fig. 2.A–we can see that as λ increases this angle becomes
smaller. Fig. 2B shows how this angle, θ50%, decreases very rapidly and
reaches a value of 7.22° for λ=0.0067 (physiological noise level
previously reported for GM (Bodurka and Bandettini, 2009)).

These results, coupled with the fact that TSNR is the primary
measure of the ability to detect BOLD signal changes (Bellgowan et al.,
2006; Parrish et al., 2000), suggest that detection of BOLD fMRI
changes might not be detrimentally affected by the use of flip angles
other than the Ernst angle. In the experiments described below we
explore this possibility in detail.

2 J. Gonzalez-Castillo et al. / NeuroImage xxx (2010) xxx–xxx

Please cite this article as: Gonzalez-Castillo, J., et al., Physiological noise effects on the flip angle selection in BOLD fMRI, NeuroImage (2010),
doi:10.1016/j.neuroimage.2010.11.020



MRI acquisition general parameters
• Voxel size

• Smaller -> Lower SNR
• Smaller -> More anatomical specificity -> Higher TSNR of interest

Parameters and Pulse Sequences

Huber et al NeuroImage (in press)

3x3x3mm3 voxels = 27 mm3

1x1x1mm3 voxels = 1 mm3



Griffanti et al NeuroImage 2014

MRI acquisition general parameters

• TR
• Shorter -> lower SNR, but better temporal resolution and possibly higher 

TSNR
• Shorter -> Better filtering of high frequency artifacts (if not removed using 

other methods)
• Still limited by the speed of the hemodynamic response

Parameters and Pulse Sequences



MRI acquisition general parameters
• Acceleration (collecting incompletely sampled data sets and 

estimating what was missing during reconstruction)
• Sometimes lower SNR
• Makes shorter TRs, smaller voxels, and multi-echo practical
• Potentially less susceptibility dropout & distortion
• Imperfect reconstruction can create or amplify artifacts

• Possibly more sensitivity to B0 fluctuations linked to respiratory chest movement

Parameters and Pulse Sequences



GRAPPA acceleration reconstruction affected by calibration scan

FLASH GRAPPA for fMRI: Talagala et al., 20015 MRM
FLEET GRAPPA for fMRI: Polimeni et al., 2016 MRM  
dual polarity GRAPPA for fMRI: Hoge et al., 2016 MRM  

Conventional EPI calibration scan 
can contain phase errors

FLASH calibration scan is more robust

Parameters and Pulse Sequences

Images from Laurentius Huber

Example 1



Fat ghosts: small signal but large instability

Mean signal with normal 
fat saturation

Standard devision with 
normal fat saturation

Mean signal with ultra 
strong fat saturation

Standard deviation with 
ultra strong fat saturation

Parameters and Pulse Sequences

VASO data presented at OHBM 2016. Handwerker, Huber et al

Example 2



spatially neighboring 
slices are acquired 
distant in time

5

SMS and (task-induced) motion
Parameters and Pulse Sequences

Slides from Laurentius Huber

Example 3



5

spatially neighboring 
slices are acquired 
distant in time

SMS and (task-induced) motion
Parameters and Pulse Sequences

Slides from Laurentius Huber

Example 3



spatially neighboring 
slices are acquired 
distant in time

after motion correction

5-3 ΔCBV ml/100ml

SMS and (task-induced) motion
Parameters and Pulse Sequences

Slides from Laurentius Huber

Example 3



spatially neighboring 
slices are acquired 
distant in time

after motion correction

5-3 ΔCBV ml/100ml

[Poser et al., NeuroImage , 2010]

all slices are 
acquired 
simultaneously

SMS and (task-induced) motion
Parameters and Pulse Sequences

Slides from Laurentius Huber

Example 3



spatially neighboring 
slices are acquired 
distant in time

all slices are 
acquired 
simultaneously

after motion correction after motion correction

5-3 ΔCBV ml/100ml 5-3 ΔCBV ml/100ml

SMS and (task-induced) motion
Parameters and Pulse Sequences

Slides from Laurentius Huber

Example 3



Huber et al., 
NeuroImage, 2016

The “best” pulse sequence interacts with voxel size & SNR
te
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SMS

3D
EPI

3 mm 1.5 mm

SMS wins in 
physiological 
noise dominated
regime

SMS is 
challenged in 
thermal
noise dominated
regime]

see poster #3605

Parameters and Pulse Sequences Example 4



Pulse sequences contrasts
Parameters and Pulse Sequences

Images from Laurentius Huber
graphical depiction of review articles [Uludaĝ and Blinder 2017] and [Huber et al., 2017]
drawn based on Duvernoy, 1981 Brain Res

Example 5



Parameters and Pulse Sequences
MRI contrast

[Lu, 2003]
[Huber, 2014]

CMRR C2P
[Auerbach, 2013]

[Rane, 2013]

[Hua, 2014]

[Duong, 2003]

[Huber et al., ISMRM, 2017]

Images from Laurientius Huber

Example 5



Parameters and Pulse Sequences
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Parameters and Pulse Sequences

[Huber et al., ISMRM, 2017]
Images from Laurientius Huber

Example 5

Functional Response



Parameters and Pulse Sequences

Without PROMO With PROMO

Real time motion correction during data collection

MPRAGE anatomical image

Images from Vinai Roopchansingh

Example 6



Calibration or Baseline scans

• Other examples are simple tasks, enriched gas breathing, baseline CBF, standard deviation of resting scans
• Good sanity checks and may be useful
• These can take scanner time away from studying the effects of interest, which has limited their popularity

• Relatively few clinically interesting studies use them 

Parameters and Pulse Sequences

jects were 8.4% in FEF, 10.4% in M1, 8.7% in SEF, and
8.7% in V1. M1 was significantly different from the other
ROIs (P < 0.023).
Figure 2A,B shows the mean signal percent change for

the peak magnitude during the saccade and hypercapnia
tasks for each population in each ROI and collapsed across
ROIs. Collapsed across ROIs, a significant decrease in mag-
nitude was found from younger to older subjects during
the saccade task but not during the hypercapnia task.
Within individual ROIs, there were significant differences
across populations in FEF, SEF, and V1 during the saccade
task. Figure 3A–D shows that the distributions of the mean
signal percent change values across groups are almost
identical.
In addition to comparing percent change in younger vs.

older subjects, we used regression analyses to examine
percent change vs. age. Since each TR had a different num-
ber of trials and slices, TR was also included in the regres-
sions as a dummy variable. Percent change during the sac-
cade task was significantly correlated with age in FEF (P ¼
0.01), SEF (P ¼ 0.042), V1 (P ¼ 0.002), and across all
regions (P ¼ 0.005). Percent change during the hypercap-
nia task was not significantly correlated with age.
Although there were a different number of trials and slices
for each TR, neither the percent change during the saccade
task nor the percent change during the hypercapnia task
significantly changed with TR. This was true for the young
and old subjects grouped together and for each group ana-
lyzed separately. This demonstrates that the results were
not biased by the data from one sampling rate.

BOLD Signal Relationships for
Saccade vs. Hypercapnia Tasks

Linear regression analysis was used to compare the per-
cent signal change by voxel of the saccade task vs. the
hypercapnia task. The selected voxels were significantly
active during the saccade task and all comparisons across
tasks used the same voxels for each task.

Collapsed across ROIs

There was a significant linear regression between activ-
ity in the saccade task vs. hypercapnia with voxels from
all ROIs and clustered by subject (P < 10"26, R2 ¼ 0.566,
slope ¼ 0.0959, and the intercept ¼ 0.843). When subjects
were divided into younger and older populations, the
slope of the regression for younger subjects was 0.100 and
0.087 for older subjects. Neither the slope nor intercept dif-
ferences across the populations were significant. There was
also a significant linear regression in most individual sub-
jects. Figure 4 shows examples of these regressions from
four younger and four older subjects. Forty-eight of the 50
subjects showed significant linear regressions of signal

Figure 2.
Bar graphs of regions and populations. A,B: Mean percent change
across voxels in all subjects during the saccade task and the hyper-
capnia task, respectively. C: Mean of the percent change during
the saccade task divided by the percent change during the hyper-

capnia task in each voxel. The error bars show the robust stand-
ard error clustered by subject. The P-values are shown above sig-
nificant differences and were calculated from regressions that com-
pared across populations and included a dummy variable for TR.

Figure 3.
A,B: Histograms of percent signal change during the saccade task.
C,D: Percent signal change during the hypercapnia task. E,F: The
ratio, by voxel of the percent signal changes of the saccade task di-
vided by the hypercapnia task. This includes data from all subjects
and all anatomical masks. Histograms A,C,E use a 1.1-s TR and
B,D,F use a 2-s TR. Since each population had a different number
of subjects and a different raw number of significantly active voxels,
the y-axis was scaled to percent of voxels in that population.

r Handwerker et al. r

r 852 r

Handwerker, Gazzaley, et al 2007

Collecting an additional scan that helps correct for subject-specific systematic variation

Example 7



Peripherals and Participants

• Peripherals
• Respiration, Pulse, Peripheral NIRS
• Eye movement
• Head movement
• Multimodal neural measures: EEG, optical, Galvanic skin response

• Participants
• Head restraints
• Good instructions, training, & feedback
• Good task design & response monitoring

Peripherals and Participants



Collect respiration & pulse data
• Removal of physiological noise during post processing is nice
• RETROICOR (Glover, Li, Ress 2000)
• Respiration Volume / Time (RVT) (Birn, Diamond et al 2006)
• Heart rate (Chang, Metzger, et al 2013)

• Knowing what your volunteer is doing is essential

Peripherals and Participants

RVT  (black). 
Word/nonword task 
block design (blue)

Birn, Murphy, et al 2009



Collect respiration & pulse data
A minor confession

Handwerker, Gazzaley, et al 2007

Peripherals and Participants

Present a 200ms flickering 
checkerboard every 18-24s

Volunteers press a button and 
move their eyes

jects were 8.4% in FEF, 10.4% in M1, 8.7% in SEF, and
8.7% in V1. M1 was significantly different from the other
ROIs (P < 0.023).
Figure 2A,B shows the mean signal percent change for

the peak magnitude during the saccade and hypercapnia
tasks for each population in each ROI and collapsed across
ROIs. Collapsed across ROIs, a significant decrease in mag-
nitude was found from younger to older subjects during
the saccade task but not during the hypercapnia task.
Within individual ROIs, there were significant differences
across populations in FEF, SEF, and V1 during the saccade
task. Figure 3A–D shows that the distributions of the mean
signal percent change values across groups are almost
identical.
In addition to comparing percent change in younger vs.

older subjects, we used regression analyses to examine
percent change vs. age. Since each TR had a different num-
ber of trials and slices, TR was also included in the regres-
sions as a dummy variable. Percent change during the sac-
cade task was significantly correlated with age in FEF (P ¼
0.01), SEF (P ¼ 0.042), V1 (P ¼ 0.002), and across all
regions (P ¼ 0.005). Percent change during the hypercap-
nia task was not significantly correlated with age.
Although there were a different number of trials and slices
for each TR, neither the percent change during the saccade
task nor the percent change during the hypercapnia task
significantly changed with TR. This was true for the young
and old subjects grouped together and for each group ana-
lyzed separately. This demonstrates that the results were
not biased by the data from one sampling rate.

BOLD Signal Relationships for
Saccade vs. Hypercapnia Tasks

Linear regression analysis was used to compare the per-
cent signal change by voxel of the saccade task vs. the
hypercapnia task. The selected voxels were significantly
active during the saccade task and all comparisons across
tasks used the same voxels for each task.

Collapsed across ROIs

There was a significant linear regression between activ-
ity in the saccade task vs. hypercapnia with voxels from
all ROIs and clustered by subject (P < 10"26, R2 ¼ 0.566,
slope ¼ 0.0959, and the intercept ¼ 0.843). When subjects
were divided into younger and older populations, the
slope of the regression for younger subjects was 0.100 and
0.087 for older subjects. Neither the slope nor intercept dif-
ferences across the populations were significant. There was
also a significant linear regression in most individual sub-
jects. Figure 4 shows examples of these regressions from
four younger and four older subjects. Forty-eight of the 50
subjects showed significant linear regressions of signal

Figure 2.
Bar graphs of regions and populations. A,B: Mean percent change
across voxels in all subjects during the saccade task and the hyper-
capnia task, respectively. C: Mean of the percent change during
the saccade task divided by the percent change during the hyper-

capnia task in each voxel. The error bars show the robust stand-
ard error clustered by subject. The P-values are shown above sig-
nificant differences and were calculated from regressions that com-
pared across populations and included a dummy variable for TR.

Figure 3.
A,B: Histograms of percent signal change during the saccade task.
C,D: Percent signal change during the hypercapnia task. E,F: The
ratio, by voxel of the percent signal changes of the saccade task di-
vided by the hypercapnia task. This includes data from all subjects
and all anatomical masks. Histograms A,C,E use a 1.1-s TR and
B,D,F use a 2-s TR. Since each population had a different number
of subjects and a different raw number of significantly active voxels,
the y-axis was scaled to percent of voxels in that population.

r Handwerker et al. r

r 852 r

The unpublished part
• Stimuli presented for 3s, 6s & 12s durations to examine response 

scaling across populations
• A non-trivial # of volunteers held their breath for whatever the hold duration was
• If I hadn’t collected respiration data, I would have published a visually appealing 

results that were severely confounded by task-locked breath holds
• How many studies with variable task durations recorded respiration traces???



Collect respiration & pulse data
Respiration can really mess up your data

Peripherals and Participants
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Seconds

Collect respiration & pulse data
Respiration can really mess up your data

Peripherals and Participants

BOLD and CBF responses during the Valsalva Manuever
Daniel A Handwerker1, Wen-Ming Luh2, Paula Wu1, Peter A Bandettini1,2

1. Section on Functional Imaging Methods, LBC, National Institute of Mental Health, Bethesda, MD
2. Functional MRI Facility, National Institute of Mental Health, Bethesda, MD
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GE 3T HDx scanner, 16 channel head coil, 9 axial, ASSET=2
FOV = 24cm, slice thickness=4.5mm, no gap, 64/64 grid, flip=90
slice TR =2000ms, TE=14.8ms

Data were collected from 10 healthy volunteers each with some 
variation in pulse sequences and tasks. The following two ASL scans 
were used:
PCASL: Pseudocontinuous ASL (Dai et. al. 2008)
Tagging duration = 800ms, post labeling delay = 900ms
Tag below Circle of Willis, presaturation pulse off

PASL: Pulsed Arterial Spin Labeling QUIPSS II (Wong et. al. 1998)
TI1 = 700ms, TI2 = 1500ms, tag size = 12cm, 
Tag 1cm below bottom slice

For PASL, some scans were collected with no tagging pulse, but 
with keeping the QUIPSS II saturation pulses. This results in 
BOLD time series with no flow weighting. CBF responses were 
estimated in the same way as PASL with tagging. These data were 
used to identify task-related changes in the CBF estimates that 
aren’t due to flow changes.

Valsalva Task: Volunteers received visual instructions to breathe in 
and out at 1/6Hz for 39s ending on an inhale followed by a 19 or 21s 
breath hold repeated for 5 or 6 cycles. During the breath holds, they 
were told to blow into a non-complaint tube that was attached to an air 
pressure transducer. They were given real-time feedback of the air 
pressure in the tube. Before each  run, volunteers were given a target 
pressure of 10, 20, 30 or 40mmHg.

Paced Breathing: Volunteers received visual cues to breath in and out 
at 1/6Hz for 5 min.

A/D Converter with 
scanner trigger

Polyethylene tubing
1/8” external diameter
1/16” internal diameter Pressure Transducer

Data were processed in AFNI (afni.nimh.nih.gov) and Matlab
Preprocessing: After motion correction, the alternating tag and control 
scans were interpolated to create both a tag and control volume at 
teach time point. These were averaged to create BOLD time series 
and subtracted to create the CBF time series.

Time series were averaged over a whole-brain mask that was the 
intersection of several masks: Probable gray matter voxels from a T1 
map (magnitudes between 1200 & 1600), voxels with a mean CBF in 
a rest or paced breathing scan greater tha 5, and voxels with a 
significant BOLD response to the Valsalva task (p<0.01 uncorrected)

Supported by the NIMH 
Intramural Research Program Contact: handwerkerd@mail.nih.gov

The chest pressure modulates BOLD, but not CBF

Chest movement affects CBF calculations 

ASL analyses on tagged and untagged data help identify and 
slightly decrease the artifact during the Valsalva task
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Dawson et. al. J Appl Pysiol 1999

Breath holding causes a whole brain BOLD response  
that can potentially be used to calibrate fMRI BOLD 
signal changes (Bandettini et al, NMR Biomed 1997, 
Davis et al, PNAS 1998) or as a clinical cerebrovascular 
reactivity measure. The Valsalva maneuver combines a 
breath hold with an increase in internal chest pressure. 
While a breath hold is often assumed to alter blood 
flow through hypercapnia (increase blood CO2), 
increased chest pressure during a Valsalva maneuver 
alters blood pressure, heart rate, cerebral spinal fluid 
pressure, and cerebral blood flow (CBF) (Dawson et. al. 
J Appl Pysiol 1999  Greenfield et. al. Stroke 1984)
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We demonstrated that Valsalva maneuvers with graded 
chest pressure changes, even while keeping breath 
hold duration constant, systematically altered the 
BOLD signal magnitude (Handwerker et al ISMRM 
2010). Here we examine this effect on cerebral blood 
flow (CBF) using arterial spin labelling (ASL). As part of 
this work, we identify chest-movement related 
fluctuations in the estimated CBF and examine the 
cause and potential ways to remove these fluctuations.

P. A. Bandettini, E. C. Wong, NMR Biomed 10, 197 (Jun-Aug, 1997). 
W. Dai, et. al., MRM 60, 1488 (2008)
T.L. Davis et al., Proc Natl Acad Sci U S A 95, 1834 (Feb 1998).  
S.L. Dawson et. al., J Appl Physiol 86, 675 (1999)
J.C. Greenfield, et. al. 15, 76 (1984)
D. A. Handwerker, et al, ISMRM Annual Meeting 2010
E.C. Wong, et. al., MRM 39, 702 (1998)

Paul Guillod wrote the stimulus presentation & pressure recording script in 
Presentation. Ronald Harper, George Dold and Thomas Talbot helped with 
the pressure recording sytem setup. Javier Gonzalez-Castillo and Vinai 
Roopchansignh helped and advised with data analysis and presentation
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To test whether the lack of CBF response was 
due to CBF having more noise than BOLD, 

we collected 20 trials of 10mmHg breath hold 
data and a flickering checkerboard task with 
the same timing. The data are averaged over 

voxels significant to both tasks

While there is a now a clear rise in CBF 
during the breath hold, there are also large 

CBF fluctuations during the paced breathing. 
BOLD and CBF responses have similar 

response shapes for the checkerboard task

Interpolation to align 
tag & control

Alignment based
on chest position

Fitted Tag & Control 
Time Series

Chest Movement
Tag and Control from

 the same chest position

Recorded 
Data

Estimated 
Data

Control
Tag

CBF estimates using

PASL data from a 1/6Hz paced 
breathing scan from subject 7.

The gap between “tag” and “control” 
fluctuates with chest movement 

even when there is no tag
 (both are controls).

This causes a periodic CBF 
fluctuation at half the rate of chest 

movement since each tag occurs at 
the same chest movement position 
as 12 s earlier (4 s from tag-to-tag 
with 6 s chest movement cycles)

Instead of interpolation, shifting the 
time series by 3 volumes and 

causes the paired tags and controls 
to occur at the same chest 

positions. This removes the chest 
movement induced fluctuations in 

the CBF calculations

Subject 3

PASL data with 18-24 10mmHg breath holding for data with and without tagging
Regressing out the fluctuations from the no tag runs slightly reduces the paced 

breathing artifacts in the tagged runs

Cerebral blood flow estimates are very sensitive to chest movement for multiple ASL 
sequences

By having volunteers breath at a constant rate, we were able to identify and characterize the 
effects of chest position

Accounting for chest movement might help reduce a major source of temporal noise in CBF 
estimates that is usually overlooked when subjects breath freely

BOLD and CBF responses during the Valsalva Manuever
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GE 3T HDx scanner, 16 channel head coil, 9 axial, ASSET=2
FOV = 24cm, slice thickness=4.5mm, no gap, 64/64 grid, flip=90
slice TR =2000ms, TE=14.8ms

Data were collected from 10 healthy volunteers each with some 
variation in pulse sequences and tasks. The following two ASL scans 
were used:
PCASL: Pseudocontinuous ASL (Dai et. al. 2008)
Tagging duration = 800ms, post labeling delay = 900ms
Tag below Circle of Willis, presaturation pulse off

PASL: Pulsed Arterial Spin Labeling QUIPSS II (Wong et. al. 1998)
TI1 = 700ms, TI2 = 1500ms, tag size = 12cm, 
Tag 1cm below bottom slice

For PASL, some scans were collected with no tagging pulse, but 
with keeping the QUIPSS II saturation pulses. This results in 
BOLD time series with no flow weighting. CBF responses were 
estimated in the same way as PASL with tagging. These data were 
used to identify task-related changes in the CBF estimates that 
aren’t due to flow changes.

Valsalva Task: Volunteers received visual instructions to breathe in 
and out at 1/6Hz for 39s ending on an inhale followed by a 19 or 21s 
breath hold repeated for 5 or 6 cycles. During the breath holds, they 
were told to blow into a non-complaint tube that was attached to an air 
pressure transducer. They were given real-time feedback of the air 
pressure in the tube. Before each  run, volunteers were given a target 
pressure of 10, 20, 30 or 40mmHg.

Paced Breathing: Volunteers received visual cues to breath in and out 
at 1/6Hz for 5 min.

A/D Converter with 
scanner trigger

Polyethylene tubing
1/8” external diameter
1/16” internal diameter Pressure Transducer

Data were processed in AFNI (afni.nimh.nih.gov) and Matlab
Preprocessing: After motion correction, the alternating tag and control 
scans were interpolated to create both a tag and control volume at 
teach time point. These were averaged to create BOLD time series 
and subtracted to create the CBF time series.

Time series were averaged over a whole-brain mask that was the 
intersection of several masks: Probable gray matter voxels from a T1 
map (magnitudes between 1200 & 1600), voxels with a mean CBF in 
a rest or paced breathing scan greater tha 5, and voxels with a 
significant BOLD response to the Valsalva task (p<0.01 uncorrected)

Supported by the NIMH 
Intramural Research Program Contact: handwerkerd@mail.nih.gov

The chest pressure modulates BOLD, but not CBF

Chest movement affects CBF calculations 

ASL analyses on tagged and untagged data help identify and 
slightly decrease the artifact during the Valsalva task
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Breath holding causes a whole brain BOLD response  
that can potentially be used to calibrate fMRI BOLD 
signal changes (Bandettini et al, NMR Biomed 1997, 
Davis et al, PNAS 1998) or as a clinical cerebrovascular 
reactivity measure. The Valsalva maneuver combines a 
breath hold with an increase in internal chest pressure. 
While a breath hold is often assumed to alter blood 
flow through hypercapnia (increase blood CO2), 
increased chest pressure during a Valsalva maneuver 
alters blood pressure, heart rate, cerebral spinal fluid 
pressure, and cerebral blood flow (CBF) (Dawson et. al. 
J Appl Pysiol 1999  Greenfield et. al. Stroke 1984)
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We demonstrated that Valsalva maneuvers with graded 
chest pressure changes, even while keeping breath 
hold duration constant, systematically altered the 
BOLD signal magnitude (Handwerker et al ISMRM 
2010). Here we examine this effect on cerebral blood 
flow (CBF) using arterial spin labelling (ASL). As part of 
this work, we identify chest-movement related 
fluctuations in the estimated CBF and examine the 
cause and potential ways to remove these fluctuations.

P. A. Bandettini, E. C. Wong, NMR Biomed 10, 197 (Jun-Aug, 1997). 
W. Dai, et. al., MRM 60, 1488 (2008)
T.L. Davis et al., Proc Natl Acad Sci U S A 95, 1834 (Feb 1998).  
S.L. Dawson et. al., J Appl Physiol 86, 675 (1999)
J.C. Greenfield, et. al. 15, 76 (1984)
D. A. Handwerker, et al, ISMRM Annual Meeting 2010
E.C. Wong, et. al., MRM 39, 702 (1998)

Paul Guillod wrote the stimulus presentation & pressure recording script in 
Presentation. Ronald Harper, George Dold and Thomas Talbot helped with 
the pressure recording sytem setup. Javier Gonzalez-Castillo and Vinai 
Roopchansignh helped and advised with data analysis and presentation

ACKNOWLEDGEMENTS

S
ub

je
ct

 1
 m

m
H

g

−1.0

−0.5

0

0.5

1.0

%
 c

ha
ng

e

CBF

PCASL data averaged across gray matter voxels. 21s breath hold repeated 5 times
Task compliance is high, but CBF noise is bigger than the flow increase during the breath hold

−0.5

0

0.5

10mmHg Breath Hold

0

10

20

30

−0.25

0

0.25

0.5
Flickering Checkerboard

B
O

LD
 %

 C
ha

ng
e

 

 

10 20 30 40

25

30

C
B

F

BOLD
CBF

Seconds
5010 20 30 40 50

To test whether the lack of CBF response was 
due to CBF having more noise than BOLD, 

we collected 20 trials of 10mmHg breath hold 
data and a flickering checkerboard task with 
the same timing. The data are averaged over 

voxels significant to both tasks

While there is a now a clear rise in CBF 
during the breath hold, there are also large 

CBF fluctuations during the paced breathing. 
BOLD and CBF responses have similar 

response shapes for the checkerboard task

Interpolation to align 
tag & control

Alignment based
on chest position

Fitted Tag & Control 
Time Series

Chest Movement
Tag and Control from

 the same chest position

Recorded 
Data

Estimated 
Data

Control
Tag

CBF estimates using

PASL data from a 1/6Hz paced 
breathing scan from subject 7.

The gap between “tag” and “control” 
fluctuates with chest movement 

even when there is no tag
 (both are controls).

This causes a periodic CBF 
fluctuation at half the rate of chest 

movement since each tag occurs at 
the same chest movement position 
as 12 s earlier (4 s from tag-to-tag 
with 6 s chest movement cycles)

Instead of interpolation, shifting the 
time series by 3 volumes and 

causes the paired tags and controls 
to occur at the same chest 

positions. This removes the chest 
movement induced fluctuations in 

the CBF calculations

Subject 3

PASL data with 18-24 10mmHg breath holding for data with and without tagging
Regressing out the fluctuations from the no tag runs slightly reduces the paced 

breathing artifacts in the tagged runs

Cerebral blood flow estimates are very sensitive to chest movement for multiple ASL 
sequences

By having volunteers breath at a constant rate, we were able to identify and characterize the 
effects of chest position

Accounting for chest movement might help reduce a major source of temporal noise in CBF 
estimates that is usually overlooked when subjects breath freely

BOLD and CBF responses during the Valsalva Manuever
Daniel A Handwerker1, Wen-Ming Luh2, Paula Wu1, Peter A Bandettini1,2

1. Section on Functional Imaging Methods, LBC, National Institute of Mental Health, Bethesda, MD
2. Functional MRI Facility, National Institute of Mental Health, Bethesda, MD
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GE 3T HDx scanner, 16 channel head coil, 9 axial, ASSET=2
FOV = 24cm, slice thickness=4.5mm, no gap, 64/64 grid, flip=90
slice TR =2000ms, TE=14.8ms

Data were collected from 10 healthy volunteers each with some 
variation in pulse sequences and tasks. The following two ASL scans 
were used:
PCASL: Pseudocontinuous ASL (Dai et. al. 2008)
Tagging duration = 800ms, post labeling delay = 900ms
Tag below Circle of Willis, presaturation pulse off

PASL: Pulsed Arterial Spin Labeling QUIPSS II (Wong et. al. 1998)
TI1 = 700ms, TI2 = 1500ms, tag size = 12cm, 
Tag 1cm below bottom slice

For PASL, some scans were collected with no tagging pulse, but 
with keeping the QUIPSS II saturation pulses. This results in 
BOLD time series with no flow weighting. CBF responses were 
estimated in the same way as PASL with tagging. These data were 
used to identify task-related changes in the CBF estimates that 
aren’t due to flow changes.

Valsalva Task: Volunteers received visual instructions to breathe in 
and out at 1/6Hz for 39s ending on an inhale followed by a 19 or 21s 
breath hold repeated for 5 or 6 cycles. During the breath holds, they 
were told to blow into a non-complaint tube that was attached to an air 
pressure transducer. They were given real-time feedback of the air 
pressure in the tube. Before each  run, volunteers were given a target 
pressure of 10, 20, 30 or 40mmHg.

Paced Breathing: Volunteers received visual cues to breath in and out 
at 1/6Hz for 5 min.

A/D Converter with 
scanner trigger

Polyethylene tubing
1/8” external diameter
1/16” internal diameter Pressure Transducer

Data were processed in AFNI (afni.nimh.nih.gov) and Matlab
Preprocessing: After motion correction, the alternating tag and control 
scans were interpolated to create both a tag and control volume at 
teach time point. These were averaged to create BOLD time series 
and subtracted to create the CBF time series.

Time series were averaged over a whole-brain mask that was the 
intersection of several masks: Probable gray matter voxels from a T1 
map (magnitudes between 1200 & 1600), voxels with a mean CBF in 
a rest or paced breathing scan greater tha 5, and voxels with a 
significant BOLD response to the Valsalva task (p<0.01 uncorrected)
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The chest pressure modulates BOLD, but not CBF

Chest movement affects CBF calculations 

ASL analyses on tagged and untagged data help identify and 
slightly decrease the artifact during the Valsalva task
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Breath holding causes a whole brain BOLD response  
that can potentially be used to calibrate fMRI BOLD 
signal changes (Bandettini et al, NMR Biomed 1997, 
Davis et al, PNAS 1998) or as a clinical cerebrovascular 
reactivity measure. The Valsalva maneuver combines a 
breath hold with an increase in internal chest pressure. 
While a breath hold is often assumed to alter blood 
flow through hypercapnia (increase blood CO2), 
increased chest pressure during a Valsalva maneuver 
alters blood pressure, heart rate, cerebral spinal fluid 
pressure, and cerebral blood flow (CBF) (Dawson et. al. 
J Appl Pysiol 1999  Greenfield et. al. Stroke 1984)
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We demonstrated that Valsalva maneuvers with graded 
chest pressure changes, even while keeping breath 
hold duration constant, systematically altered the 
BOLD signal magnitude (Handwerker et al ISMRM 
2010). Here we examine this effect on cerebral blood 
flow (CBF) using arterial spin labelling (ASL). As part of 
this work, we identify chest-movement related 
fluctuations in the estimated CBF and examine the 
cause and potential ways to remove these fluctuations.

P. A. Bandettini, E. C. Wong, NMR Biomed 10, 197 (Jun-Aug, 1997). 
W. Dai, et. al., MRM 60, 1488 (2008)
T.L. Davis et al., Proc Natl Acad Sci U S A 95, 1834 (Feb 1998).  
S.L. Dawson et. al., J Appl Physiol 86, 675 (1999)
J.C. Greenfield, et. al. 15, 76 (1984)
D. A. Handwerker, et al, ISMRM Annual Meeting 2010
E.C. Wong, et. al., MRM 39, 702 (1998)

Paul Guillod wrote the stimulus presentation & pressure recording script in 
Presentation. Ronald Harper, George Dold and Thomas Talbot helped with 
the pressure recording sytem setup. Javier Gonzalez-Castillo and Vinai 
Roopchansignh helped and advised with data analysis and presentation
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To test whether the lack of CBF response was 
due to CBF having more noise than BOLD, 

we collected 20 trials of 10mmHg breath hold 
data and a flickering checkerboard task with 
the same timing. The data are averaged over 

voxels significant to both tasks

While there is a now a clear rise in CBF 
during the breath hold, there are also large 

CBF fluctuations during the paced breathing. 
BOLD and CBF responses have similar 

response shapes for the checkerboard task

Interpolation to align 
tag & control

Alignment based
on chest position

Fitted Tag & Control 
Time Series

Chest Movement
Tag and Control from

 the same chest position

Recorded 
Data

Estimated 
Data

Control
Tag

CBF estimates using

PASL data from a 1/6Hz paced 
breathing scan from subject 7.

The gap between “tag” and “control” 
fluctuates with chest movement 

even when there is no tag
 (both are controls).

This causes a periodic CBF 
fluctuation at half the rate of chest 

movement since each tag occurs at 
the same chest movement position 
as 12 s earlier (4 s from tag-to-tag 
with 6 s chest movement cycles)

Instead of interpolation, shifting the 
time series by 3 volumes and 

causes the paired tags and controls 
to occur at the same chest 

positions. This removes the chest 
movement induced fluctuations in 

the CBF calculations

Subject 3

PASL data with 18-24 10mmHg breath holding for data with and without tagging
Regressing out the fluctuations from the no tag runs slightly reduces the paced 

breathing artifacts in the tagged runs

Cerebral blood flow estimates are very sensitive to chest movement for multiple ASL 
sequences

By having volunteers breath at a constant rate, we were able to identify and characterize the 
effects of chest position

Accounting for chest movement might help reduce a major source of temporal noise in CBF 
estimates that is usually overlooked when subjects breath freely



Advice for collecting respiration & pulse 
data

• If you want to use post-processing removal methods, make sure respiration 
and cardiac traces are connected to MRI acquisition times
• For respiration: To conduct an RVT correction, make sure the response 

magnitude doesn’t auto-scale and you now the relationship between chest 
movement & signal
• For cardiac: Pulse oximeters are sensitive to finger movement. Take the time 

to make sure the oximeter is secure and tell the volunteer to minimize finger 
movement during a scan
• Monitor traces before & during scanning

Peripherals and Participants



Peripheral near-infrared spectroscopy
Peripherals and Participants

participant, suggesting that as in the peripheral NIRS data, the
wide temporal shifts of the LFOs exist in the BOLD fMRI.
Clearly it is necessary to determine the optimal delay of the
LFO signal for each voxel to account for the dynamic evolution
of this signal.

Figure 4 shows the maximum z-statistic map for each parti-
cipant, registered to theMNI152 brain41 in axial, sagittal, and cor-
onal slices. The activated voxels represent areas where global
circulatory LFOs accounted for a significant portion of the signal
variance at some time lag within the tested range. The supra-
threshold area is large and symmetric. The maximum z-statistic
map summarizes the correlation maps at 181 different time-shift
values. This map simply combines and displays the highest sig-
nificance values found without conducting any statistical analysis.

3.4 Coherence between Peripheral LFO and BOLD
fMRI

Figure 5 shows, for each participant, the averaged coherences
over all the voxels [Fig. 5(a)] with a blue cross indicating the

maximum and the corresponding coherence map at the fre-
quency of the maximum averaged coherence [Fig. 5(b)].
From Fig. 5(a), the frequency of highest coherence between per-
ipheral LFO and BOLD fMRI were participant specific. Only
three participants (1, 5, and 6) showed clear peaks, at 0.029,
0.097, and 0.082 Hz, respectively. For the rest of the partici-
pants, there was no clearly dominant frequency. The patterns
of high coherence at the dominant frequency, shown in
Fig. 5(b), are similar to the patterns shown in the maximum
z-statistic maps (Fig. 4).

4 Discussion
To the best of our knowledge, this is the first concurrent NIRS/
fMRI study establishing the relationship between the LFO com-
ponent of BOLD fMRI in the brain and a signal recorded in the
periphery with NIRS. The observed LFOs at the peripheral sites
(finger and toes) and in the brain, which were independent
of cardiac pulsation and respiration, correlated highly with
each other when accounting for the specific time lags. Higher

Fig. 3 Temporal traces of blood oxygen level-dependent functional MRI (BOLD fMRI) and comparison with that of NIRS at the fingertip. In one parti-
cipant, two points in the brain were chosen as shown in the green cross and the blue cross in Video 1; the corresponding BOLD signals (dashed line) are
depicted in (a) and (b) together with the temporal traces of Δ[tHb] obtained by NIRS at the fingertip (solid gray line) and its temporal-shifted version
(solid black line). A.U., arbitrary unit.
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participant, suggesting that as in the peripheral NIRS data, the
wide temporal shifts of the LFOs exist in the BOLD fMRI.
Clearly it is necessary to determine the optimal delay of the
LFO signal for each voxel to account for the dynamic evolution
of this signal.

Figure 4 shows the maximum z-statistic map for each parti-
cipant, registered to theMNI152 brain41 in axial, sagittal, and cor-
onal slices. The activated voxels represent areas where global
circulatory LFOs accounted for a significant portion of the signal
variance at some time lag within the tested range. The supra-
threshold area is large and symmetric. The maximum z-statistic
map summarizes the correlation maps at 181 different time-shift
values. This map simply combines and displays the highest sig-
nificance values found without conducting any statistical analysis.

3.4 Coherence between Peripheral LFO and BOLD
fMRI

Figure 5 shows, for each participant, the averaged coherences
over all the voxels [Fig. 5(a)] with a blue cross indicating the

maximum and the corresponding coherence map at the fre-
quency of the maximum averaged coherence [Fig. 5(b)].
From Fig. 5(a), the frequency of highest coherence between per-
ipheral LFO and BOLD fMRI were participant specific. Only
three participants (1, 5, and 6) showed clear peaks, at 0.029,
0.097, and 0.082 Hz, respectively. For the rest of the partici-
pants, there was no clearly dominant frequency. The patterns
of high coherence at the dominant frequency, shown in
Fig. 5(b), are similar to the patterns shown in the maximum
z-statistic maps (Fig. 4).

4 Discussion
To the best of our knowledge, this is the first concurrent NIRS/
fMRI study establishing the relationship between the LFO com-
ponent of BOLD fMRI in the brain and a signal recorded in the
periphery with NIRS. The observed LFOs at the peripheral sites
(finger and toes) and in the brain, which were independent
of cardiac pulsation and respiration, correlated highly with
each other when accounting for the specific time lags. Higher

Fig. 3 Temporal traces of blood oxygen level-dependent functional MRI (BOLD fMRI) and comparison with that of NIRS at the fingertip. In one parti-
cipant, two points in the brain were chosen as shown in the green cross and the blue cross in Video 1; the corresponding BOLD signals (dashed line) are
depicted in (a) and (b) together with the temporal traces of Δ[tHb] obtained by NIRS at the fingertip (solid gray line) and its temporal-shifted version
(solid black line). A.U., arbitrary unit.
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correlations and smaller time delays were found between the
two toes than those between finger and toe and between finger
and brain. The results suggest an endogenous source of contrast
for LFOs, which propagates through the entire body with spe-
cific time delays at various sites, and thus may potentially be
used as a biomarker.

The presence of a highly correlated component of the LFO at
different peripheral sites, as well as in the brain, demonstrates
that this LFO signal is an endogenous source of contrast, pro-
pagating throughout the entire body. Furthermore, based on the
time shifts between these LFOs, we hypothesize that the source
of this LFO is at or before the heart (the common source of the
circulation) in the vascular network. In the heart, LFO signals in
the blood must be in phase, as all of the blood is mixed in the left
ventricle before being pumped out to the body. When the blood
exits the heart at the ascending aorta, divergent pathways exist
for blood traveling to different locations in the body. The blood
to the fingers is routed through the subclavian artery, and blood
traveling to the lower limbs is delivered through the descending
aorta to the femoral artery. These vascular pathways differ with
respect to their length, diameter, and elasticity, which together
may render the blood signal less uniform as it travels. For
instance, as the blood travels to its specific destination of fingers,
toes, or the draining veins of the brain, the frequencies and
amplitudes of signals carried by it may be affected differentially
by physiological effects resulting from regional circulatory
changes, as well as local oxygen demands and vasodilation.42

These effects can account for variations between the signals
recorded at the different sites.

Because the vasculature in the body is relatively symmetri-
cal, the LFO signals recorded at the two toes are more correlated
than those in the finger-toe or finger-brain pairs, and with smal-
ler relative time delays. However, the complicated vascular
system of the brain and the complex regional blood changes
associated with neuronal activity can be expected to lead to
greater variations of the brain LFOs (as shown in Fig. 3) and

of the arrival times (as shown in Video 1 as well as in
Fig. 3). As shown in Table 1, the average delay between the
LFO collected at the fingers and the toes among healthy parti-
cipants in a resting state was approximately 3.07 s. The varia-
tions between individuals likely resulted from differences in
height, age, sex, and general cardiac function.

Nevertheless, our results suggest that LFO signals with spe-
cific time delays may potentially be used as biomarkers for
assessing blood flow throughout the body. Such a biomarker
could have clinical or research applications in assessing circu-
latory function. For example, a large discrepancy in the magni-
tude and/or arrival times of the LFO at two toes (or two fingers)
on different sides of the body could indicate peripheral neuro-
pathy in patients with diabetes. Furthermore, we have demon-
strated that NIRS provides a robust method to measure these
LFOs at multiple peripheral sites. However, Tachtsidis et al.43

demonstrated that LFOs measured by NIRS on the head are
posture dependent (shown using the PSD), which we have
also observed (data not shown). All concurrent data shown in
this manuscript were measured with the participant in a supine
position. Further studies on how posture affects the time delays
in different body parts measured by NIRS are necessary and will
add to the understanding of the nature of LFO.

Another observation from the present results is that because
the LFO used in RIPTiDe is derived by applying a bandpass
filter (0.01 to 0.15 Hz) to the NIRS Δ[tHb], which has been
sampled at a relatively high frequency (12.5 Hz), the heartbeat
(∼1 Hz) and respiratory (∼0.2 Hz) signals have been fully
sampled; therefore there is no aliasing of these signals into
the LFO signal. Consequently, the LFOs we identified in the
periphery, and those we identified in the brain with BOLD
fMRI, are independent of the fluctuations from the cardiac pul-
sation (measured by pulse oximeter) and respiration (measured
by respiration belt), which provides strong counterevidence to
the contention that the nonneuronal LFO in BOLD is mainly the
aliased signal from cardiac pulsation and respiration. Our study

Fig. 4 Max z-statistics maps of each participant overlaid on the standard brain showing areas highly correlated with LFOs collected at the fingertip. The
color bar indicates the colors corresponding to the z value from 3 to 6.
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correlations and smaller time delays were found between the
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of the arrival times (as shown in Video 1 as well as in
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on different sides of the body could indicate peripheral neuro-
pathy in patients with diabetes. Furthermore, we have demon-
strated that NIRS provides a robust method to measure these
LFOs at multiple peripheral sites. However, Tachtsidis et al.43

demonstrated that LFOs measured by NIRS on the head are
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sampled; therefore there is no aliasing of these signals into
the LFO signal. Consequently, the LFOs we identified in the
periphery, and those we identified in the brain with BOLD
fMRI, are independent of the fluctuations from the cardiac pul-
sation (measured by pulse oximeter) and respiration (measured
by respiration belt), which provides strong counterevidence to
the contention that the nonneuronal LFO in BOLD is mainly the
aliased signal from cardiac pulsation and respiration. Our study
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meaning the signal arrived earlier in the brain than in the fin-
gertip. We considered 181 time shift values covering the range
of −14.4 toþ14.4 swith respect to the unshifted signal, in steps
of 0.16 s (for Video 1, a longer covering range was chosen for
the purpose of dynamic display). The range of the time shifts
was determined on the basis of a preliminary analysis to find
the range over which significant correlations were observed.

For each participant, standard fMRI preprocessing steps
[including motion correction, high-pass filter (>0.01 Hz), and
slice timing correction] were applied to the original BOLD
data before further analysis. The RIPTiDe procedure determined

two independent quantities: the time delay value between the
NIRS and fMRI data, and the contribution of the delayed
NIRS signal to the BOLD variance. The time delay was deter-
mined by fitting a Gaussian to the cross-correlation calculated in
the time domain38 (which is more robust for determining subTR
time shifts in the presence of aliasing than the direct frequency
domain method). This cross-correlation was implemented using
181 invocations of film_gls (part of FSL) with differently
time-shifted NIRS Δ[tHb] time courses used as a regressor. The
resulting thresholded z-statistic maps of the LFO signals were
concatenated over all time lags in sequence, and a voxelwise

Fig. 1 Experimental setup and example of near-infrared spectroscopy (NIRS) temporal traces. Schematic drawing of the placement of the NIRS probes
on the middle fingertip (a) and the big toe (b). Raw temporal traces of changes in total hemoglobin concentration Δ([tHb]) obtained by NIRS at the
fingertip and left toe (c). Enlarged section of (c) (indicated by gray block) shown in (d). The low-frequency oscillation (LFO) signal of the finger and toe
from (c) permit calculating that the signal measured at the toe is 2.72 s later than that of the finger (e).

Video 1 The dynamic passage of the LFO wave is shown in red-yellow. The green dot in the middle panel indicates the time lags NIRS regressor (from
fingertip) was shifted. The total time shift is from −16 s toþ16 s at steps of 0.16 s. The video was played repeatedly, each time with shifted coronal and
axial views marked by the cross. The color bar indicates the colors corresponding to the z value from 2.3 to 8 (QuickTime, 1.9 MB) [URL: http://dx.doi
.org/10.1117/1.JBO.17.10.106004.1].
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Eye tracking
Peripherals and Participants

• Correlations to eyelids 
open vs closed

• Other studies have shown gaze 
to also be an arousal/attention 
measure

• This variation my have a neural 
origin, but it can still be noise 
when unmodeled

Chang, Leopold, et at 2016



Head Movement
• Less head motion -> Less need to remove motion in data processing
• Head movement may systematically vary across populations
• Don’t assume the way you saw someone else restrict head movement is the 

best way
• “The best” varies by head coil, head size, & population
• There are more and more options

Peripherals and Participants

caseforge.cohttp://www.magmedix.com/pearltec-multipad-slim.html



Prepare participants
• Take the time to make sure a participant knows what to do 

in the MRI and is comfortable
• The more feedback you get in a task, the better you know 

what a participant is doing
• For classic ”resting state” scans, peripheral measurements are 

particularly useful
•Noise IS NOT independent from task design

Peripherals and Participants



Head Movement
Experimental design affects head motion

Peripherals and Participants

Huijbers, Van Dijk, et al 2017



Head Movement
Experimental 

design affects head 
motion

Peripherals and Participants

Vanderwal, Kelly, et al 2015
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Preventative scanner health

•Regular Quality Assessment (QA) scans
•Regular Overall Evaluation of Results
•Real Time Data Observation

Preventative scanner health



Quality Assessment Scans
NIH Intramural example

• Approximately daily scans of an oil phantom for every commonly 
used head coil on every scanner
• Parameters that can provide long-term consistency
• Single Echo EPI, no acceleration; 72x72 grid; 37 slices; 3mm3 voxels; 

5-10 min of data per receiver coil

• Save reconstructed & (sometimes) raw data
• Try to automate processing & recording pipeline

Preventative scanner health



Sample QA Plots of Temporal Signal To Noise 
Ratio

Preventative scanner health

From different scanners From each receiver coil on one scanner

Images from Vinai Roopchansingh



Regular Results Evaluations

Image from: http://mriqc.readthedocs.io/en/stable/reports/group.html

MRIQC code: https://github.com/poldracklab/mriqc
MRIQC new web API: https://mriqc.nimh.nih.gov/

Preventative scanner health



Real time observation of motion

AFNI real time interface

Preventative scanner health

Images from Vinai Roopchansingh



Real time observation of motion

AFNI real time interface

Preventative scanner health

Images from Vinai Roopchansingh



Real time observation of motion

AFNI real time interface

Preventative scanner health

Images from Vinai Roopchansingh



Z.S.S 16/06/13

Physiological noise 
Real time correlations as a monitoring tool

Respiration artifacts

Preventative scanner health

Using InstaCorr in AFNI

Image by Ziad Saad: https://afni.nimh.nih.gov/pub/dist/edu/latest/afni_handouts/BiasSources_RS-FMRI.pdf

https://afni.nimh.nih.gov/pub/dist/edu/latest/afni_handouts/BiasSources_RS-FMRI.pdf


Correlations for artifact monitoring
Preventative scanner health

Z.S.S 16/06/13

Hardware instability 

Image by Ziad Saad: https://afni.nimh.nih.gov/pub/dist/edu/latest/afni_handouts/BiasSources_RS-FMRI.pdf

https://afni.nimh.nih.gov/pub/dist/edu/latest/afni_handouts/BiasSources_RS-FMRI.pdf


Correlations for artifact monitoring
Preventative scanner health

Images by Ziad Saad: https://afni.nimh.nih.gov/pub/dist/edu/latest/afni_handouts/BiasSources_RS-FMRI.pdfZ.S.S 16/06/13

Hardware instability 

Z.S.S 16/06/13

Using AFNI InstaCorr

https://afni.nimh.nih.gov/pub/dist/edu/latest/afni_handouts/BiasSources_RS-FMRI.pdf


Summary

•Noise from many sources will always exist in fMRI data
• The more you understand noise sources and what 

acquisition decisions affect them, the better you can 
control for noise in acquisition and correct for noise in 
post-processing
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