Tradeoffs in fMRI acquisition

Jennifer Evans

Experimental Therapeutics and Pathophysiology Branch NIMH/NIH/DHHS

fMRI summer course 08Jun16

Outline

Introduction

Voxel contents
neurovascular coupling
hemodynamic response
MR signal basics
BOLD signal basics

Spatial/Temporal resolution

Imaging Factors

MR acquisition Basics

K-space

EPI

Spiral

TR/TE

Field strength 3T, 7T

Acceleration:

k-space: Single/multi-shot EPI

In-plane: SENSE (ASSET)

GRAPPA (iPAT)

Multi-slice

Biological factors

Veins/capillaries Physiological noise

Functional Contrast

BOLD Gradient-echo Spin-echo Multi-echo Perfusion Diffusion VASO

fMRI in temporal – spatial perspective

fMRI data pipeline

WHAT DO YOU SEE IN AN MR IMAGE?

TISSUE MAGNETIZATION

MAGNETIC RESONANCE IMAGE

(WHAT DO YOU SEE?)

T1

PROTON DENSITY

T2

TISSUE CHARACTERISTICS

Showands

What's in a voxel?

- Neurons
- Synapses
- Axons
- Dendrites
- Vasculature
- Capillaries
- Aterioles/venules
- Arteries/Veins

Average size of fMRI voxels

- In plane resolution of 9-16 mm² (3x3, 4x4)
- Slice thickness 5-7 mm

Average voxel size: 55 mm³

- 5.5 million neurons
- 2.2-5.5 10¹⁰ synapses
- 22 km of dendrites
- 220 km of axons

And vasculature ...

Spatial inhomogeneity of vasculature

Neurovascular coupling

Hemodynamic response and BOLD signals

- Metabolic signal unknown
- Drugs / Anesthetic influence
- Disease

Signal components of the BOLD effect

CMRO₂ – metabolic oxygen uptake

CBF - Cerebral Blood Flow

CBV - Cerebral Blood Volume

Hb – Haemoglobin

BOLD – Blood Oxygenation Level Dependent effect

Signal localization of the BOLD effect

Contrast Mechanisms

T2* is the "observed" or "effective" T2

- * can come from:
- inhomogeneities in the main magnetic field
- susceptibility-induced field distortions
 produced by the tissue
 => BOLD contrast

Hemodynamic Response speed

- •Slow response, delayed 4-6 s, lasts ~ 4-6 s, returns to baseline much later
- Post and pre stimulus undershoot, vascular variation

Outline

Introduction

Voxel contents
neurovascular coupling
hemodynamic response
MR signal basics
BOLD signal basics

Imaging Factors

K-space

EPI

Spiral

TR/TE

Field strength 3T, 7T

Spatial/Temporal

resolution

Acceleration:

k-space: Single/multi-shot EPI

In-plane: SENSE (ASSET)

GRAPPA (iPAT)

Multi-slice

Functional Contrast

BOLD Gradient-echo Spin-echo Multi-echo Perfusion Diffusion VASO

Biological factors

Veins/capillaries
Physiological noise

fMRI acquisition

Anatomical

One image / 3-5 min

One image / 2 s for 5 min

K-space, briefly

Mezrich, R. Radiology. 1995 May; 195(2):297-315.

Ways of filling k-space:

Standard pulse sequences

Filling k-space, one line at a time

Movie

Filling k-space, center out

KSpace — Image Space

Movie

Courtesy of Nick Bock, McMaster

Example EPI/Spiral images ... susceptibility

Spiral in/out

Susceptibility reduction

Image acquisition basics

Can acquire data for a limited time due to signal decay

Outline

Introduction

Voxel contents
neurovascular coupling
hemodynamic response
MR signal basics
BOLD signal basics

Spatial/Temporal resolution

Imaging Factors

MR acquisition Basics

K-space

EPI

Spiral

TR/TE

Field strength 3T, 7T Voxel size, TR, TE

Acceleration:

k-space: Single/multi-shot EPI

In-plane: SENSE (ASSET)

GRAPPA (iPAT)

Multi-slice

Biological factors

Veins/capillaries Physiological noise

Functional Contrast

BOLD Gradient-echo Spin-echo Multi-echo Perfusion Diffusion VASO

Whole brain vs. Partial coverage

Increasing **number** of slices:

- Decreased temporal or
- Decreased in-plane resolution

Increasing slice thickness:

- Increased partial voluming
- Increased susceptibility artifacts

Useful for:

- cognitive studies
- resting state

Thinner slices for short TRs

- Increased in-plane resolution
- shorter TR

Useful for:

Specific ROIs

Single shot EPI

Multi-shot EPI (partial k-space)

- Shot 1
- Shot 2

- All lines acquired in a single "shot" with one RF pulse
 - Pros: Fast
 - Cons: Long readout => distortions
- Split the acquisition into parts
 - Pros: acquire higher resolution
 - Cons: phase errors, ghosting, requires more time

Parallel imaging

(SENSE, SMASH, GRAPPA, iPAT, etc)

Surface coils

Multi-channel coils: Array of RF receive coils
Each coil is sensitive to a subset of the object
Coil sensitivity to encode additional information
Can "leave out" large parts of k-space (more than 1/2!)

Acceleration: SENSE/GRAPPA

- Undersample k-space by accleration factor n
- -reconstruct either in k-space (GRAPPA) or image space (SENSE)
- maximum acceleration limited by number of coils and SNR reduction

Multi-slice or mutli-band excitation

Multi-slice or mutli-band excitation

- excites multiple slices at once,
- uses coil sensitivity profiles to unmix the images
- sub TR whole brain images are achievable
- loss in SNR
- long reconstruction times

Outline

Introduction

Voxel contents
neurovascular coupling
hemodynamic response
MR signal basics
BOLD signal basics

Spatial/Temporal resolution

Imaging Factors

MR acquisition Basics

K-space

EPI

Spiral

TR/TE

Field strength 3T, 7T

Acceleration:

k-space: Single/multi-shot EPI

In-plane: SENSE (ASSET)

GRAPPA (iPAT)

Multi-slice

Functional Contrast

BOLD Gradient-echo Spin-echo Multi-echo Perfusion Diffusion VASO

Biological factors

Veins/capillaries Physiological noise

Voxel size

- Smaller voxel size is primarily limited by SNR
- Smaller is usually desirable to reduce partial volume effects, physiological noise
 - -Voxel SNR is given by

$$SNR \propto p^2 w \sqrt{T_{acq}N}$$

- •Where p is the voxel size, w is the slice thickness, T is the acquisition time, and N is the number of time frames
- •T acq is about 20-30ms for single shot EPI.

Field Strength

Pros

- Higher SNR (1.6 times at 7t v 4t)
- => potential increased resolution / specificity

Cons

- -shorter T2*
- => faster readout/ acceleration needed
- -longer T1
- =>longer repetition time to get signal
- -larger field perturbations and inhomogeneities
- -SAR limitations

What is the optimal voxel size?

- Need to take into account noise fluctuations over time
- Thermal sources, physiological noise
- •TSNR is the ratio over the average voxel time course signal over the time course standard deviation.
- TSNR has a nonlinear relation with image SNR

Optimal voxel size?

$$\sigma_{thermal} = \sigma_{physio}$$

Has been suggested as a guide to choosing voxel size given a particular image SNR Based on tissue types and imaging parameters

J. Bodurka, et al., Neurolmage, (2007)

What's the effective spatial resolution?

- imaging limit ~0.5 mm, easily 2mm, standard 3 ish mm
- hemodynamic PSF 3.5 mm (Engel, 1997)
- higher at 7T ~2.3 mm
- smoothing improves reproducibility, alignment between subjects ~10mm (Strother 2005)

Optimal TE T₂* EPI - echo time

TE=40ms

TE=55ms

Maximize BOLD signal where TE = T2*

TE=25ms

TE=10ms

- BUT: T2* varies across the brain => no ideal TE
- A shorter TE is typically chosen as compromise.
- This reduces BOLD sensitivity everywhere else

TE=70ms

Optimal TR?

Inflow effects affect TRs < 1s

Gao Je et al., NeuroImage, Volume 62, Issue 2, 2012, 1035 - 1039

 Sampling of physiological noise (no aliasing) HRF is a low pass filter

Henson, 2007; http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency

Posse et al. Front Hum Neurosci. 2013; 7: 479.

Outline

Introduction

Voxel contents
neurovascular coupling
hemodynamic response
MR signal basics
BOLD signal basics

Spatial/Temporal resolution

Imaging Factors

MR acquisition Basics

K-space

EPI

Spiral

TR/TE

Field strength 3T, 7T

Acceleration:

k-space: Single/multi-shot EPI

In-plane: SENSE (ASSET)

GRAPPA (iPAT)

Multi-slice

Biological factors

Veins/capillaries
Physiological noise

Functional Contrast

BOLD Gradient-echo Spin-echo Multi-echo Perfusion Diffusion VASO

Contrast Mechanisms

Spin-echo: Reduce the influence of veins

- Add a 'refocusing pulse' to get T2 contrast
- Reduced number of slices per TR
- Increased specificity, but still have intravascular signal at lower field strengths
- Less sensitive to rapidly flowing blood
- Less signal dropout
- Reduced contrast-to-noise ratio

Increased specificity with SE

Vasculature density

- GE BOLD fMRI (A) has the highest percent signal change at the cortical surface, where large pial vessels are located (green contours)
- Large vessel contributions are suppressed in SE BOLD

Contrast Mechanisms

VASO: Null the blood signal

VASO

- single-slice method
- based on blood nulling in an inversion-recovery sequence
 - Grey matter is also saturated => smaller SNR
- VASO is a negative contrast

Figure from [Lu et al., 2014, NMR Biomed]

Advantages of VASO

Negative BOLD (inhibition):

- VASO is quantitative compared to BOLD
- VASO is not contaminated from large veins

Layer-dependent fMRI:

to distinguish between feedforward and feedback activity.

Contrast Mechanisms

ASL: tag the blood signal

ASL vs. BOLD

- Tagged blood is T1 contrast
- Signal is from arterioles and capillaries
- Longer TR, lower signal
- Lower inter-subject variability
- Insensitive to drift artifact

The trouble with slow stimuli

BOLD ASL

duration stimuli

Contrast Mechanisms

multi-echo: measure at more than one point

T2* is the "observed" or "effective" T2

Can come from:

- inhomogeneities in the main magnetic field.
- susceptibility-induced field distortions produced by the tissue

=> BOLD contrast

Separating BOLD from non-BOLD

- The BOLD signal is TE dependent
- Non-BOLD signals do not scale with TE
- Measuring several TEs enables the separation of non-BOLD artifacts from the data

Signal scaling

a Multi-echo EPI images

b Multi-echo EPI time courses for task (V1)

C Multi-echo EPI time courses for rest (precuneus)

Multi-echo Component selection

Detection of slow BOLD signals with ME

- Group average timeseries taken over voxels in V1 for a visual block and ramp contrast task
- The thick line is the mean and the shading is the standard error.

- The block is visible but not the ramp in the OC or standard data
- Both tasks are clear in the me-dn BOLD data
- The scanner specific drift is visible in the non-BOLD data
- It effectively cancels the ramp in the OC data

Outline

Introduction

Voxel contents
neurovascular coupling
hemodynamic response
MR signal basics
BOLD signal basics

Spatial/Temporal resolution

Imaging Factors

MR acquisition Basics

K-space

EPI

Spiral

TR/TE

Field strength 3T, 7T

Acceleration:

k-space: Single/multi-shot EPI

In-plane: SENSE (ASSET)

GRAPPA (iPAT)

Multi-slice

Biological factors

Veins/capillaries Physiological noise

Functional Contrast

BOLD Gradient-echo Spin-echo Multi-echo Perfusion Diffusion VASO

Summary

- BOLD is oxygen level dependent contrast indirectly related to neural activity
- spatial/temporal resolution and contrast tradeoffs
- ways to optimize acquisitions for specific applications
- appreciation of various contrast choices
- Technical / hardware abilities are rapidly approaching the temporal and spatial resolution of the functional response
- Limitation with fMRI now lie in the origins of the signal

Acknowledgements

Thanks to:

Catie Chang Peter Bandettini

Email: jennifer.evans@nih.gov

ASL vs. BOLD

	BOLD	ASL	
Signal Mechanism	Blood flow, Blood volume, Oxygenation consumption	Blood flow	
Contrast parameter	T2*	T1	
Spatial specificity	Venules and draining veins	Capillaries, arterioles	
Typical signal change	0.5-5 %	< 1 %	
Imaging methods	Gradient-echo, spin-echo	Spin-echo	
Sample rate (TR)	1-3 s per image	< 3-8s per perfusion image	
Optimal task frequency (block design)	0.01 – 0.06 Hz (100 s - 16 s)	< 0.01 Hz	
Intersubject variability	High	Low	
Imaging coverage	Whole brain	Most of brain cortex	
Major artifacts	Susceptibility, motion, baseline drift	Vascular artifact	
Relative CNR	> 2 high task frequency < 0.5 low task frequency	1	

Diffusion weighted fMRI

- Add diffusion gradients to increase the spatial specificity of the fMRI signal
- Attenuates signal from the larger vessels (faster moving flow) reducing the contribution from distant neural sources
- Intravascular incoherent motion weighted
- Potentially sensitive to cell swelling

Faster response than SE/GE BOLD

Temporal limits

- Create a functional image within
 2s for more robust activation or
 in less than 1s using acceleration
- Limited by filtering lag of hemodynamic response function 4-6 s
- Can detect differences in the onset of hemodynamic responses down to 100 ms using paradigm manipulations
- Long (> 2 min) duration stimuli are hampered by baseline changes but can be measured using ME acquisitions

Spatial limitations

- At 3 T: ~ 1.5 mm³ resolution
 The functional point spread function is about 3.5 mm.
- At 7 T, ~ 0.5 mm³ resolution
- The functional point spread function can be has high as 1.5 mm.
- At 7 T, using spin-echo sequences, the smallest resolved functional unit was orientation columns (on the order of 0.5-mm width).
- Practically limited by smoothing kernels, template alignment in group studies.

Yacoub E et al. PNAS 2008;105:10607-10612

Sequence	TR	Spatial coverage	Advantages	Disdvantages
EPI (single shot)	2s	3.5	Fast,	Signal drop out
Spiral	2s		Efficient gradient use	Blurry artefacts
Gradient echo (GE)			+CNR	
Contrasts				
Spin Echo (SE,EPI)			+spatial resolution	
Diffusion				
ASL				slow
VASO				
SSFP				
Acceleration				
EPI multi-shot				
SENSE/GRAPPA/SM ASH/HASTE				
Multi-slice				

CBV contrast in <u>Vascular Space Occupancy</u> (VASO)

[Lu et al., MRM, 2003]