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FIM Agenda

WHAT IS BOLD FUNCTIONAL CONNECTIVITY DYNAMICS?

* Original observations
e Spatial Distribution
* Relationship to Structural Connectivity

RELATIONSHIP TO COGNITION / DISEASE

* Sleep Staging based on Dynamic FC Changes.
* Cognitive State Detection based on Dynamic FC Changes.
e Disruption of Dynamic FC Patterns in patient populations.

SOME COMMENTS ON METHODOLOGY

Interpretational Issues with Sliding Window Correlation
* Dynamic Conditional Correlation (DCC)
* Dynamic Connectivity Detection (DCD)
* Single-volume Co-Activation Patterns (CAPs)
e Others...

CONCLUSIONS




FIM fMRI Connectivity Dynamics: DEFINITION
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p Original Observations (I)

“Most studies of resting-state functional connectivity using fMRI employ methods that assume
temporal stationarity, such as correlation and data-driven decompositions computed across the
duration of the scan. However, evidence from task-based fMRI studies and animal electrophysiology
suggests that functional connectivity may exhibit changes within the time scale of seconds to

minutes....”

Arbitrary BOLD Units

Sliding Window
Correlation

Chang & Glover, Neurolmage 2009



FIM Original Observations (I):Dynamic behavior varies across regions

“Most studies of resting-state functional connectivity using fMRI employ methods that assume
temporal stationarity, such as correlation and data-driven decompositions computed across the
duration of the scan. However, evidence from task-based fMRI studies and animal electrophysiology
suggests that functional connectivity may exhibit changes within the time scale of seconds to

minutes....”

“..Although it is unclear whether the observed coherence and phase variability can be attributed to

residual noise or modulation of cognitive state, the present results illustrate that
, and

addition to average quantities, when characterizing resting state.” Chang & Glover, Neurolmage 2009

, in



Original Observations (Il): Short Term FC can strongly deviate from Average Patterns

a) Dynamic FC
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Original Observations (lll): Dynamic FC also present in anaesthetized monkeys

AWAKE HUMANS ISOFLURANE-ANESTHESIZED MONKEY
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FIM Spatial Distribution of Short Term FC Stability (I) — Most Stable Connections

MOST STABLE CONNECTIONS
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FIM Spatial Distribution of Short Term FC Stability (I) — Most Variable Connections
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Gonzalez-Castillo et al., Frontiers in Neuroscience 2014



. Spatial Distribution of Short Term FC Stability (11)

Dorsal view

Left hemisphere

>

FC variability

Component rank

Posterior view

0 0.5 1
ZOl score
ZONE OF INSTABILITY: Set of Intrinsic Connectivity Networks with the most variable FC
based on approx. 6 min long rest scans acquired on a group of 405 young adults and using a
window length of 44 seconds.

Allen et al. Cerebral Cortex 2014



w Overlap with regions of high inter-subject variability in stationary FC

Inter-subject Variability in FC A

Evolutionary Cortical Surface Expansion
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i I !!_ FC Dynamics & Anatomical Connectivity (ll)

Connection type:  Ho: Interhemispheric connections between homologous rois

ntrahemispheric () Ha- |nterhemispheric connections between non-homologous rois
heterotopic (he)

homotopic (ho) I: Intrahemispheric connections.

Human Data: 2 Conditions Rest | Induced Negative Rumination
Macaque Data: 1 Condition Light Anesthesia

Across conditions & species, Homotopic FC is the most stable of all 3 types of connections.
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FC Dynamics & Anatomical Connectivity (ll)

Connection type:  Ho: Interhemispheric connections between homologous rois
;:‘;2:‘;2“;5?&';’ )" He: Interhemispheric connections between non-homologous rois
homotopic (ho) I: Intrahemispheric connections.

Human Data: 2 Conditions Rest | Induced Negative Rumination
Macaque Data: 1 Condition Light Anesthesia

Temporal stability of homotopic FC is facilitated by direct anatomical projections and
their conduction characteristics

Macadue Macaque Profile of temporal stability for homotopic

connections with direct structural connectivity
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Temporal stability
(autocorrelation coefficient)

FC Dynamics cannot be explained simply by distance

0.5r

0.1
0

r=-0.23
p< 0.p01

(5) FC Stability independent of distance

human
v v Y

Distance (mm)

macaque
¥ v
r=-0.05
v: @ p < 0.001
. : .
<
. |::.’;u'):f4:;¢t";1"' TR ..' — 1
'u,_.-.-'._’\» Ty
40

Distance (mm)

Shen et al. PNAS 2015



Reproducible Short-term patterns of FC — Connectivity States

FUNCTIONAL CONNECTIVITY STATES: a series of re-occurring short-term (in the order of
seconds) whole-brain connectivity patterns that are common across subjects.
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Allen et al. Cer. Cortex, 2014



w Reproducible Short-term patterns of FC — Connectivity States
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FIM FC Dynamics — Interim Conclusions ()

+** FC exhibit a rich dynamic behavior at the scale of minutes to seconds.

** Present both in awake humans, as well as, anesthetized macaques.

*»* Observed short-term FC patterns can deviate significantly from average/stationary FC
patterns.

¢ FC Dynamics have well defined spatial patterns:
* Interhemispheric Homotopic Connections are among the most stable.
* Heterotopic Connections are among the most variable.

+¢ Spatial distribution of FC Dynamics overlap with:
e Spatial maps of Between-Subject Long Term FC Stability.
* Spatial maps of evolutionary cortical expansion.

¢ There are reproducible re-ocurring patterns of whole brain connectivity common across
subjects, commonly referred to as “Functional Connectivity States”.
* Depart substantially from average connectivity patterns (networks break down).
* Have the potential to be biologically/cognitively meaningful.




, Agenda

 WHAT IS BOLD FUNCTIONAL CONNECTIVITY DYNAMICS?

* Original observations
e Spatial Distribution
e Relationship to Structural Connectivity

. SOME COMMENTS ON METHODOLOGY

Interpretational Issues with Sliding Window Correlation
* Dynamic Conditional Correlation (DCC)
* Dynamic Connectivity Detection (DCD)
* Single-volume Co-Activation Patterns (CAPs)
e Others...

* CONCLUSIONS




’ FC Dynamics vs. Sleep Stages

e Concurrent BOLD fMRI and o , |
Medial visual Lateral visual Auditory

EEG Recordings. AR an
* Approx. 50 min long scans. el 2

* Manual Sleep Staging based
on EEG/AASM Criteria.
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Tagliazucchi et al. Neurolmage 2012



E

AASM (EEG) SVM (fMRI)

FC Dynamics vs. Sleep Stages (ll)

Test set #1 (wake & sleep)

Wake 1 Wake
REM} 1 REM; | |
N1t - NEl!
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0 40 0 20 40
Wake Wake ' '
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80% Accuracy for WL = 2 mins and above

Tagliazucchi et al. Neurolmage 2012



& FC Dynamics vs. Mental States Imposed by Task (1)

Mental States Imposed
by Experiment

Computation of
Windowed
FC Patterns
FC State
Detection

FC State
Timeline

Validation

Mental State
Timeline

Gonzalez-Castillo et al. PNAS 2015



>

Classif. Acc. [ARI]
v > N o © =

FC Dynamics vs. Mental States Imposed by Task (Il)
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FIM FC Dynamics vs. Task Outcome Prediction

.
Examined the relationship between a psychomotor vigilance task and the interacting
default mode and task positive networks. b)
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r E I Ll Alterations of Dynamic Connectivity & Disease (l): Schizophrenia

A state 1 state 2 state 3
HC: (N = 118) HC: (N = 134) HC: (N = 134)
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’ A word of caution...

“Here, using simulations and multiple sets of empirical observations, we confirm that
imposed task states can alter the correlation structure of BOLD activity. However, we find
that observations of “dynamic” BOLD correlations during the resting state are largely
explained by sampling variability. Beyond sampling variability, the largest part of observed
“dynamics” during rest is attributable to head motion. An additional component of dynamic
variability during rest is attributable to fluctuating sleep state. Thus, aside from the
preceding explanatory factors, a single correlation structure—as opposed to a sequence of
distinct correlation structures—may adequately describe the resting state as measured by
BOLD fMRI.”

Real Resting State
fMRI Data

Statistically |
Stationary Simulated
Data

Stationary Process: “one whose spectral content and moments (e.g., mean, variance, etc.)
are constant over time... stationarity does not mean a still process.”

Laumann et al., Cerebral Cortex (2016)



FIM Interim Conclusions (1)

+* Dynamic changes in FC at the scale of seconds to minutes can be used to:

= Reliably perform automatic sleep staging at the single subject level.
= Discriminate between externally imposed mental states at the single subject level.
= Predict Task performance on an individual basis.

+* Huge Diversity of Experimental and Analytical Methods:

= Differences in Acquisition: scan durations / TRs / window lengths

= Differences in Pre-processing:

= Differences in Parcellation Scheme: number of ROls / selection criteria / coverage
= Differences in Metrics used to Capture FC Dynamics

= Differences in classification/grouping algorithms: SVM / K-means / Similarity

= Differences in validation schemes: None / Tasks / Populations

+» Comparison / Consolidation of Results is quite challenging.

+* Some groups already working on potential clinical applications based on measures of

dynamic FC
= Schizophrenia, Bipolar Disorder, Alzheimer’s, Multiple Sclerosis...
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 WHAT IS BOLD FUNCTIONAL CONNECTIVITY DYNAMICS?

* Original observations
e Spatial Distribution
e Relationship to Structural Connectivity

* RELATIONSHIP TO COGNITION / DISEASE

* Sleep Staging based on Dynamic FC Changes.
e Cognitive State Detection based on Dynamic FC Changes.
e Disruption of Dynamic FC Patterns in patient populations.

* CONCLUSIONS
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FIM Sliding Window Analysis

Perhaps the most commonly used strategy for examining dynamics.

| DYNAMIC FC
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pI s e
What window type to use? What window length? What window step?

PROS:
* It seems easy to interpret.
* It seems to capture phenomena with potential biological/neuronal relevance.

* Requires a-priori selection of WL

* Too short WL = may render connectivity estimates unreliable

* Toolong WL —-> may impede observation of phenomena of interest

* Interpretation is more complex that it seems.

* WL limits the analysis to fluctuations in the freq. range below the window period,
independently of the true frequency content of the data



FIM Sliding Window Analysis

“... pitfall is to identify an observed value of a test statistic with its true underlying value. This means that the mere
presence of fluctuations in an observed FC time series is taken as evidence for the presence of dFC. The pitfall is that of
overlooking the fact that the observed FC values are estimates of the true (and unobservable) values, and hence, are

subject to statistical uncertainty...
...Thus, to decide whether fluctuations in an observed FC time series are due to statistical uncertainty or reflect true

changes in population FC, an appropriate statistical test has to be carried out.”
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w Sliding Window Correlation: Spurious Correlations (I)

WL < 1 Period of slower fluctuation = Spurious fluctuations in correlation traces will appear
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To avoid this confound, we must high pass filter the data (F.. =1/WL) according to the

window lengths (WLs) used during the analysis
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Leonardi et al. Neurolmage 2015



Spurious Fluctuations (1)

Sliding Window Correlation
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Sliding Window Correlation: Spurious Fluctuations (I1)

1. Data Collection }
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w Sliding Window Correlation: Window Length vs. Amount of Fluctuation

COMMON OBSERVATION: The longer the window, the less the observed variability in
Dynamic FC.
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BE AWARE: The sliding window acts as a low pass filter with cutoff frequency F,,=1/WL on

the resulting traces of dynamic connectivity (e.q., sliding window correlation traces).
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Leonardi et al. Neurolmage, 2015



ﬁ I ! Sliding Window Correlation: Window Length vs. Amount of Fluctuation
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(1) Spurious fluctuations in dynFC can be limited by appropriate high pass filtering (1/WL).
(2) Remaining fluctuations in dynFC will be low-pass filtered (1/WL).

(3) Smaller windows and/or longer TR > greater influence of noise in estimation of dynFC.

Leonardi et al. Neurolmage, 2015



w Functional Connectivity States: Parcellation Selection
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Functionally defined ROIs seem to perform better than Anatomically defined ROls.
Shirer et al. Cerebral Cortex 2012
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“More smaller ROIs” seem to perform better than “Less larger ROIS”

Gonzalez-Castillo et al., PNAS 2015



w Functional Connectivity States: Clustering Algorithm
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p Other Methods: Dynamic Conditional Correlation (DCC) (1)

DCC: A model for computation of time-varying variances and correlations in non-
stationary time-series borrowed from the financial literature (multivariate

volatility models).
* Does not requires a-priori selection of window length.
* Robust against previously discussed limitations of the sliding window correlation.
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Linquist et al., Neurolmage, 2014



p Other Methods: Dynamic Conditional Correlation (DCC) (ll)

DCC: A model for computation of time-varying variances and correlations in non-
stationary time-series borrowed from the financial literature (multivariate

volatility models).

* Does not requires a-priori selection of window length.
* Robust against previously discussed limitations of the sliding window correlation.

Transient State Changes
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FIM

Other Methods: Dynamic Conditional Correlation (DCC) (1l)

-

DCD: Data-driven technique to detect temporal change points in functional connectivity,
and estimate FC patterns within each segment defined by the change points.
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Off-on-off design, with an anxiety-provoking speech preparation
task sandwiched between two lower-anxiety rest periods.

* P1: No topic available yet.

* P2: Topic and instructions.

* P3: Subject is informed no speech needed.

Limitations:
* Limited Number of ROIs
* Computationally expensive
* Five user parameters: min. distance between change
points, significance level for bootstrapping, etc.

Xi & Linquist, Frontiers in Neuros., 2015



FIM Other Methods: Frame-wise Analysis / Co-Activation Patterns

-

Sliding window assumes spontaneous brain activity is characterized by slow, but
continuously evolving dynamics.

Alternative: all dynamic information is condensed into events/short periods. =2 Point
Process Analysis [Tagliazucchi et al. 2010]

A seed signal .
l ; . correlation map

S W time frame average

Lui et Dyun, PNAS, 2013; Chen et al. Neurolmage 2015



Other Methods: Frame-wise Analysis / Co-Activation Patterns

Frame averages

CAPs

Lui et Dyun, PNAS, 2013; Chen et al. Neurolmage 2015



FIM Other Methods: Frame-wise Analysis / Co-Activation Patterns
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FIM Other Methods...

¢ Time — Frequency Analyses

% Chang, C,, Glover, G.H., 2010. “Time-frequency dynamics of resting-state brain connectivity measured with
fMRI”. Neurolmage 50, 81-98

% Rack-Gomer, A.L, Liu, TT, 2012. “Caffeine increases the temporal variability of resting- state BOLD
connectivity in the motor cortex”. Neurolmage 59, 2994-3002

% Demirtas, M., Tornador, C., et al. 2016. “Dynamic functional connectivity reveals altered variability in
functional connectivity among patients with major depressive disorder”. Hum. Brain Mapp. 37, 2918-2930.

¢ Multiplication of Temporal Derivatives
+» Shine, J.M., Koyejo, O., et al. 2015. “Estimation of dynamic functional connectivity using Multiplication of
Temporal Derivatives”. Neurolmage 122, 399-407.
+* Shine, J.M., Koyejo, O., Poldrack, R.A., 2016. “Temporal metastates are associated with differential patterns
of time-resolved connectivity, network topology, and attention.” PNAS 113(35):9888-91.

+» Hidden Markov Models

R/

+» Eavani, H., Satterthwaite, T.D., Gur, R.E., Gur, R.C., Davatzikos, C., 2013. “Unsupervised learning of functional
network dynamics in resting state fMRI”. Brain 23, 426—-437.

«** Dynamic Graph Analysis

*» Betzel, R.F, Fukushima, et al. 2016. “Dynamic fluctuations coincide with periods of high and low modularity
in resting-state functional brain networks”. Neurolmage 127, 287-297.

+* Sizemore & Bassett “Dynamic graph metrics: tutorial, toolbox and tale”. Neurolmage [In Press]

Preti et al. Neurolmage 2016. Excellent review to look for an overview of methods



p General Conclusions / Open Questions

«* BOLD Functional Connectivity exhibit rich spatio-temporal dynamic behavior at the
scale of seconds to minutes.

«» Short-term patterns significantly differ from whole-scan average patterns. Some of
these short-term patterns re-occur in time and are consistent across subjects.

+» Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic
neural activity patterns underlying critical aspects of cognition and behavior.

+* Temporal features of FC could serve as a disease biomarker.

»* Better understand which methods actually capture biologically and neuronally relevant
functional connectivity dynamics.

** It is unclear the extent to which dynamic FC is best conceptualized as a multi-stable
state space wherein multiple discrete patterns recur, or whether it simply varies along a
continuous state space.

** The study of dynamic FC raises the issue that the concept of a “network” is rather
elusive, hinging (among other factors) upon the time-scale over which it is defined.
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