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Introduction	/	Agenda

MACHINE	LEARNING	

EXPERIMENTAL	
DESIGN

DATA	
ACQUISITION

DATA	
PRE-PROCESSING

GLM	–
ACTIVATION

FUNCTIONAL	
CONNECTIVITY

GRAPH	THEORY

Logistic	Regression,	Support	Vector	Machines,
ICA,	K-Means,	Convolutional	Networks,	etc.

Cost	Function,	Learning	Rate,	Gradient	Descend,
Decision	Boundary,	Regularization,	etc.	

Centrality,	Degree,	Clustering	Coefficient,	Community,	etc.

• A	few	applications	to	fMRI	data.

• A	few	words	on	software.

• Additional	Resources	to	learn	more.



What	is	Machine	Learning?

Field of study that gives computers the ability to learn without being explicitly
programmed. [Samuel, 1959]

A computer is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improved with
experience E. [Mitchell, 1998]

Problems	that	ML	can	solve:
• Predict	an	integer	rating
• Predict	a	label	(out	of	a	limited	set)
• Discover	structure	in	the	data,	e.g.,	groups
• Reduce	the	dimensionality	of	the	data
• Anomaly	detection

SUPERVISED	LEARNING
Algorithms	that	require	ground	

truth	during	training

UNSUPERVISED	LEARNING
Algorithms	whose	input	has	no	labels/true	

values,	and	whose	objective	is	to	find	
hidden	structure	in	the	data



Supervised	Learning

REGRESSION CLASSIFICATION

• The	Independent	variables/features	can	be	voxel	intensity,	connectivity	values,	etc.
• Regression:	

• Dependent	Variable	can	be	a	behavioral	or	psychiatric	score,	etc.
• Classification:	

• Dependent	Variable	can	be	a	task	type,	stimulus	type,	a	patient	group,	etc.

Predict	a	Continuous	Variable

fw(x1,..xn)	=	Real	Number	

Independent	
Variables

Dependent
Variable

Predict	a	Discrete	Variable

fw(x1,..xn)	=	Class	ID

Features Label

Algorithms	used	to	draw	inferences	from	labeled	datasets	



Unsupervised	Learning

CLUSTERING	ALGORITHMS SOURCE	SEPARATION

K-Means,	Fuzzy	K-means,	
Hierarchical	Clustering,	DBSCAN,	…

PCA,	ICA,	SVD,	…

Algorithms	used	to	draw	inferences	from	unlabeled	datasets



Univariate	Linear	Regression	in	Machine	Learning	Terms

Features	 Class	Label/Real	Value
yx

𝑓" 𝑥 = 𝑤& + 𝑤(𝑥
MODEL:	Univariate	Linear	Regression
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𝑓" 𝑥
Voxel Amplitude	(x) Test Score (y)

2104 460

1416 232

1534 315

852 178

… …

TRAINING	SET:

TRAINING:	
Obtaining	w0 and	w1	so	that	the	line	“fits	the	data	well”
We	need	a	way	to	measure	“how	well”	à Cost	Function

PREDICTING:	
Apply	fw(x) to	new	data

𝑥
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X
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xnew

Prediction

fw(x)



Cost	Function

Features	 Class	Label/Real	Value
fw(x) yx

Choose	w0	,	w1 so	that	fw(x)	is close to y for all	training examples

min
",,".

1
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Gradient	Descend	(how	to	learn)

In	this	context,	learning	means:	to	find	[wo,	…,	wn]	that	minimizes	our	cost	function	J(w)

min
",,".

𝐽 𝑤&, 𝑤(

One	algorithm	to	do	such	learning	is	GRADIENT	DESCEND:
• Start	with	some	random	values	of	w0 and	w1
• Keep	changing	them,	until	we	find	the	minimum	of	J(w0,w1)



Gradient	Descend:	Learning	Rate	(I)

𝐽 𝑤<, 𝑤( =
1
2𝑚2 𝑓 𝑥(4) − 𝑦(4) 8
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If	α	is	too	small	à GD	may	take	too	long	to	converge.
If	α is	too	large	à GD	may	fail	to	converge.

COST	FUNCTION

min
",,".

𝐽 𝑤&, 𝑤(

OBJECTIVE	FUNCTION

Repeat	until	convergence	{

}

𝑤= = 𝑤= − 𝛼
𝑑
𝑑𝑤=

𝐽 𝑤&, 𝑤(

Update	all	parameters	simultaneously

WHAT	GRADIENT	DESCEND	DOES

Learning	Rate
Controls	how	big	a	step	we	take	on	each	iteration	of	gradient	descend



W

J(w
)

1 1.5 2 2.5

𝑓" 𝑥 = 𝑤𝑥

CO
ST

Gradient	Descend	– Learning	Rate	(II)

#	Gradient	Descend	Iterations

J(w
)

100 200 300

• α seems	to	be	correct	as	cost	goes	down	with	every	iteration.
• Looks	like	400	iterations	is	sufficient	for	convergence.

400

When	α	is	too	big…

#	Gradient	Descend	Iterations

J(w
)

100 200 300 400



Logistic	Regression	

Features	
fw(x),	J(w) yx

Univariate	Linear	Regression: 𝑓" 𝑥 = 𝑤< + 𝑤(𝑥

Multivariate	Linear	Regression: 𝑓" 𝑥(, … , 𝑥A = 𝑤< + 𝑤(𝑥( + ⋯+ 𝑤A𝑥A

𝑥 =
1
𝑥(…
𝑥A

𝑤 =
𝑤&
𝑤(…
𝑤A

Logistic	Regression	à we	would	like	fw(x) to	be	so	that:	 0 ≤ 𝑓" 𝑥 ≤ 1

𝑓" 𝑥 = 𝑤E𝑥

fw(x)	=	estimated	probability	that	y=1	for	input	x

We	will	predict	“y=1”	if 𝑓" 𝑥 ≥ 0.5

𝑓" 𝑥 < 0.5We	will	predict	“y=0”	if

Cost	Function:	 𝐽 𝑤 = − 𝑦 J 𝑙𝑜𝑔 𝑓" 𝑥 + 1 − 𝑦 J 𝑙𝑜𝑔 1 − 𝑓" 𝑥

= 𝑤E𝑥

Real	Value

N O 9 .
.PQRS

𝑓" 𝑥 = g 𝑤E𝑥	

Features	 Class	Label	[0	or	1]
fw(x),	J(w) yx
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Logistic	Regression	– Linear	Decision	Boundary

z

g(z) We	will	predict	“y=1”	if

𝑓" 𝑥 ≥ 0.5

Let’s	imagine	a	case	with:
• Two	features:	(x1,	x2)
• A training	set	
• A logistic	regression	classifier	
• Trained	Solution:	wT=[-4,	1,	1]

1 2 3 4

1

2

3

4

x1

x2

𝑓" 𝑥 = 1 1 + 𝑒V ",W".X.W"YXY⁄

g 𝑤E𝑥 ≥ 0.5 𝑤E𝑥 ≥ 0

We	will	predict	“y=0”	if
𝑓" 𝑥 < 0.5 g 𝑤E𝑥 < 0.5 𝑤E𝑥 < 0

“y=1”	if		 −4 + 𝑥( + 𝑥8 ≥ 0

“y=0”	if		 −4 + 𝑥( + 𝑥8 < 0

𝑥( + 𝑥8 = 4

Decision	Boundary	



Logistic	Regression	- Non-Linear	Decision	Boundary

x1

x2

𝑓" 𝑥 = 𝑔 𝑤& + 𝑤(𝑥( + 𝑤8𝑥8 + 𝑤\𝑥(8 + 𝑤]𝑥88

𝑤E = −1,0,0,1,1

Predict	“y=1”	if	 −1 + 𝑥(8 + 𝑥88 ≥ 0

𝑥(8 + 𝑥88 = 1

Non	Linear	Decision	Boundary
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Overfitting

OVERFITTING: When too many features and an excessively complex model leads to an
extremely good fit for the training data, but poor generalization for any additional data.

𝑓" 𝑥 = 𝑤< + 𝑤(𝑥
x

f w
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)
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Overfitting	– Potential	Solutions

1. Reducing	the	number	of	features:
• Model	Selection	Algorithms.
• Need	to	be	careful	not	to	throw	away	useful	information.

2. Regularization:
• Keep	all	features,	but	enforce	very	low	or	zero	w for	those	least	informative.
• Implemented	by	adding	a	“regularization	term”	to	the	cost	function.

LINEAR	REGRESSION

y

x

𝑓" 𝑥 = 𝑤< + 𝑤(𝑥 + 𝑤8𝑥8 + 𝑤\𝑥\ +𝑤]𝑥]

min
",,".

1
2𝑚2 𝑓 𝑥(4) − 𝑦(4) 8
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WITHOUT	REGULARIZATION

𝑓" 𝑥 = 𝑤< + 𝑤(𝑥 + 𝑤8𝑥8 + 𝑤\𝑥\ +𝑤]𝑥]
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Regularization	(cont.)

Promoting	small	values	for	learning	parameters	will:
• Enforce	the	adoption	of	“simpler”	models	/	smoother	functions
• Be	more	robust	against	overfitting

In	fMRI,	maybe	our	feature	space	is	composed	of	over		100	voxels…

• Feature	Space:																													x(i) =	[x(i)1,	x(i)2,	x(i)3,	...	x(i)100]

• Linear	Regression	Model:

• Objective	Function:	

• 𝜆 is	the	regularization	parameter
• Controls	the	tradeoff	between	fitting	the	data	as	best	as	possible	(first	term	of	

the	cost	function)	and	keeping	the	model	simple	(regularization	term).
• 𝜆 excessively	high	à all	w	will	be	close	to	zero	(even	good	ones)	/	Underfitting
• Model	selection	algorithms	can	help	us	select	𝜆 automatically.

𝑓" 𝑥 = 𝑤< + 𝑤(𝑥(+…+𝑤(&&𝑥(&&

min
",,".

1
2𝑚2 𝑓 𝑥(4) − 𝑦(4) 8 +

49:
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𝜆2𝑤48
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49(

Regularization	Term



Testing	the	Performance	of	a	Classifier	(I)

OPTION	1:
• Use	all	data	for	training
• Report	error	training	as	the	performance	of	the	classifier
• INCORRECT:	Prone	to	overfitting	/	Too	optimistic	estimates	of	performance	

OPTION	2	(TRAINING	A	SINGLE	MODEL):
• All	meta-parameters	fixed.
• Divide	the	dataset	in	two	subsets:

• TRAINING:	We	use	this	data	to	learn	the	model	parameters	(wT).

• TESTING:	We	use	this	data	to	estimate	the	performance	/	generality.

• Controls	against	overfitting	/	overestimating	performance.
• Examples	in	each	subset	should	be	drawn	randomly
• Ensure	a	balanced	presence	of	classes	in	both	subsets

TR
AI
N
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G
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G

True	accuracy:	the	probability	that	a classifier	will	correctly	label	a	new	example	
drawn	at	random	from	the	same	distribution	that	the	training	examples	came	
from.
Accuracy	on	test	set	is	an	estimate	of	the	true	accuracy.
How	precise	this	estimate	is	depends	on	the	size	of	the	test	set



Testing	the	Performance	of	a	Classifier	(II)
TR

AI
N
IN
G

OPTION	3	(MODEL	SELECTION	PROBLEM):
• We	want	to	train,	but	also	do	some	sort	of	model	selection.
• Example:	Not	sure	which	one	of	three	linear	models	to	use	

Degree	d=1	à fw(x)	=	wo +	w1x1
Degree	d=2	à fw(x)	=	wo +	w1x1 +	w2x12
Degree	d=3	à fw(x)	=	wo +	w1x1 +	w2x12 +	w3x13

In	addition	to	training	each	model,	we	want	to	automatically	pick	d

• We	need	to	subdivide	our	dataset	in	three	subsets:

• TRAINING:	We	use	this	to	train	all	models	(estimate	wT for	all	models)

• VALIDATION:	We	use	this	to	select	the	best	model

• TESTING:	We	use	this	to	estimate	final	performance	(generality)
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Testing	the	Performance	of	a	Classifier	(III)
TR
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Leave	One	Out	Cross	Validation

P1 P2 P3

…

P4 PN

𝑃 =
1
𝑁2𝑃4

c

49(

Final	Classifier	Performance



Testing	the	Performance	of	a	Classifier	(III)
K-Fold	Cross	Validation

K=
1

𝑃 =
1
𝑁 2 𝑃4

defg

49(

Final	Classifier	Performance
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K=
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Concepts	Reviewed	so	far….

• Types	of	Machine	Learning:	Supervised	/	Unsupervised

• Regression	vs.	Classification	Problems

• Objective	Function	/	Cost	Function

• Learning	in	terms	of	Gradient	Descend

• Learning	Rate	&	How	to	monitor	learning

• Logistic	Regression

• Linear	&	Non-Linear	Decision	Boundaries

• Feature	selection	(non-linear	boundaries)

• Overfitting

• Regularization	/	Regularization	Parameter

• Training	/	Validation	/	Testing



A	word	on	Classifier	Selection

SUPPORT	VECTOR	MACHINE

KERNEL	SUPPORT	VECTOR	MACHINE

DEEP	NEURONAL	NETWORKS

LINEAR	REGRESSION



ML	in	Neuro-Imaging	Workflow
DATA	COLLECTIONPRE-

PROCESSING

CLASSIFIER	SELECTIONWhat	do	we	want	to	predict?
Feature	set	/	Sample	size

FEATURE	SELECTION	/	PREPARATION

DIMENSIONALITY	REDUCTION

TRAIN	THE	CLASSIFIER VALIDATION/	
PERFORMANCE	EVALUATION

DEPLOYMENT	IN	PRODUCTION	ENVIRONMENT

TRAINING	DATASET TESTING	DATASET

DIVIDE	DATA	INTO	SUBSETS



Cost	Function,	Learning	Rate,	Gradient	Descend,
Decision	Boundary,	Regularization,	etc.	

Introduction	/	Agenda

MACHINE	LEARNING	

EXPERIMENTAL	
DESIGN

DATA	
ACQUISITION

DATA	
PRE-PROCESSING

GLM	–
ACTIVATION

FUNCTIONAL	
CONNECTIVITY

GRAPH	THEORY

Logistic	Regression,	Support	Vector	Machines,
ICA,	K-Means,	Convolutional	Networks,	etc.

Centrality,	Degree,	Clustering	Coefficient,	Community,	etc.

• A	few	applications	to	fMRI	data.

• A	few	words	on	software.

• Additional	Resources	to	learn	more.



GOAL: Is	early	visual	cortex	sufficiently	plastic	to	undergo	visual	perception	learning	(VPL)?

METHODS: fMRI	+	Neurofeedback	+	Logistic	Regression

EXPERIMENT:
• Induce activity patterns in V1/V2 that correspond to given stimulus orientation

without stimuli/subject awareness (fMRI+NF+LR)
• Evaluate whether such induced activation caused VPL specific to that orientation.

RESULTS/CONCLUSIONS:
• The induced activation caused VPL specific to the orientation.
• V1/V2 is so plastic that mere induction of activity patterns can lead to VPL
• This fMRI/NF/LR technique can induce plasticity in a highly selective manner

Logistic	Regression	&	fMRI	Neurofeedback	(I)



Logistic	Regression	&	fMRI	Neurofeedback	(II)

Shibata	et	al.,	Science	2011

Behavioral	Performance	on	
orientation	discrimination	task

Behavioral	Performance	on	
orientation	discrimination	task



Logistic	Regression	&	fMRI	Neurofeedback	(II)

FEATURE	SELECTION:	Obtain	activity	patterns	induced	by	each	orientation	from	V1/V2.

DATA COLLECTION: Perform task designed to maintain attention to the Gabor
patches while fMRI signals were recorded.

Shibata	et	al.,	Science	2011



DATA COLLECTION: Perform task designed to maintain attention to the Gabor
patches while fMRI signals were recorded.

Logistic	Regression	&	fMRI	Neurofeedback	(II)

FEATURE	SELECTION:	Obtain	activity	patterns	induced	by	each	orientation	from	V1/V2.

Shibata	et	al.,	Science	2011

• Retinotopic	mapping	+	V1/V2	localizer	(areas	to	be	activated	by	the	Gabor	
patches).

• Training	data	pre-processing:	motion	correction,	no	spatial	or	temporal	smoothing.
• Time-courses	from	ref.	regions	were	extracted	and	shifted	by	6s	(to	account	for	

hemodynamic	response	delay).
• Time-courses	were	linearly	detrended and	converted	to	Z-scores	(feature	

normalization	– avoid	baseline	differences	across	runs).
• Decoder	input	=	voxel-wise	average	BOLD	signal	across	the	3	volumes	that	

correspond	to	the	6s	of	stim.	Presentation	per	trial.
• Automatic	feature	selection	(only	relevant	V1/V2	voxels	enter	the	final	model)

• SAMPLE	SIZE:	240	samples	per	subject
• MEAN	#	FEATURES:	239	+/- 29	voxels.		



Logistic	Regression	&	fMRI	Neurofeedback	(II)

FEATURE	SELECTION:	Obtain	activity	patterns	induced	by	each	orientation	from	V1/V2.

CLASSIFIER TRAINING: Construct a multinomial sparse logistic regression decoder that
would classify upcoming patterns of fMRI signals into one of three orientations.

TESTING: Perform LOOV + T-test against chance level (33%)

Shibata	et	al.,	Science	2011

DATA COLLECTION: Perform task designed to maintain attention to the Gabor
patches while fMRI signals were recorded.



Logistic	Regression	&	fMRI	Neurofeedback	(III)

5-10	days

PURPOSE OF NF EXPERIMENT: Subject had to learn to induce activity patterns that
corresponded to a target orientation.

SUBJECT INSTRUCTIONS: “somehow regulate activity in the posterior part of the brain to
make the solid green disc that was presented 6 s later as large as possible (the maximum
possible size corresponds to the outer green circle)” + Payment proportional to avg. disk
size.

SUBJECTS DIDN’T KNOW: The size of the disc in the NF period corresponded to the
decoder output for the target orientation, which roughly represented how similar activity in
V1/V2 during induction period agreed with activity in V1/V2 during presentation of the
target stimuli during the decoder construction stage.

Shibata	et	al.,	Science	2011



Logistic	Regression	&	fMRI	Neurofeedback	(IV)

NF	DID	INDUCE	THE	EXPECTED	
PATTERNS	OF	ACTIVATION

NF-INDUCED	LEARNING	TRANSLATED	INTO	
BEHAVIORAL	CHANGES	IN	PERFORMANCE	ONLY	FOR	

THE	TARGET	ORIENTATION	

Shibata	et	al.,	Science	2011



Support	Vector	Machine	for	fMRI-based	Sleep	Staging	(I)

GOAL: Develop	a	method	for	automatic	sleep	staging	based	only	on	fMRI	FC	data

METHODS: fMRI	+	EEG	+	SVM

EXPERIMENT:
• Concurrent rest fMRI/EEG data was acquired continuously for approx. 50min
• Runs were segmented in periods of 60s
• For each segment, sleep staging was performed with EEG (generation of labeled data)
• A Multi-class SVM was trained on the fMRI data + sleep labels derived from EEG
• 5-Fold Cross-validation

RESULTS/CONCLUSIONS:
• 80% Accuracy achieved.
• Good generalization to two additional datasets (over 80% accuracy)
• Method may help avoid/model confounds in resting state due to fluctuations in

vigilance levels



Support	Vector	Machine	for	fMRI-based	Sleep	Staging	(II)

Tagliazucchi et	al.	NeuroImage 2012

• PREPROCESSING:	head	motion,	spatial	normalization	to	MNI,	physio	correction,	spatial	smoothing,	
bandpass	filtering.

• FEATURES:	20	functionally	defined	ROIs	+	bilateral	thalamus.	Decision	based	on	previous	literature

1	– 4m	
epochs	

were	used	
to	construct	
samples



Support	Vector	Machine	for	fMRI-based	Sleep	Staging	(III)

Tagliazucchi et	al.	NeuroImage 2012

TRAINING	PROCEDURE:
• Four	classes	(REM,	N1,	N2,	N3)	è 6	Binary	classification	problems

N

The	one	with	
most	votes	wins



Support	Vector	Machine	for	fMRI-based	Sleep	Staging	(IV)

Tagliazucchi et	al.	NeuroImage 2012

CLASSIFICATION	VALIDATION



Unsupervised	Learning	(K-means)	to	cluster	voxel-wise	HRFs	(I)

ARE	RESPONSE	SHAPES	RANDOMLY	DISTRIBUTED	ACROSS	THE	BRAIN
OR

DO	THEY	CLUSTER	IN	A	FUNCTIONALLY/ANTOMICALLY	MEANINGFUL	MANNER?



Gonzalez-Castillo	et	al.,	PNAS	2012

FEATURES:	
• Each	voxel	is	characterized	by	its	response	to	a	block	of	visual	stimulation.
• Blocks	are	20s	(ON)	+	40s	(OFF)	&	TR=2s	è Each	voxel	has	30	features	(time-points)

UNSUPERVISED	LEARNING:	
• Trying	to	uncover	if	there	is	some	structure	in	the	data
• Labels	are	missing	(Don’t	have	names	for	the	different	response	profiles)
• K-Means	Clustering	Algorithm	

Unsupervised	Learning	(K-means)	to	cluster	voxel-wise	HRFs	(II)



§ Set	of	N	examples	{zj}	from	RP	
§ Dissimilarity	metric	(D)
§ K=	Number	of	expected	clusters

§ 60	Points	in	a	2-D	space	z1={x1,y1}…z60={x60,y60}
§ D	=	Euclidean	Distance
§ 3 Clusters

K-Means	algorithm	generate	clusters	so	that	Within-cluster	Dissimilarity	is	Minimized and	
Across-clusters	Dissimilarity	is	Maximized.

X1

X2

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Unsupervised	Learning	(K-means)	to	cluster	voxel-wise	HRFs	(III)

K-MEAN	ALGORITHM



NOT	RANDOMLY	DISTRIBUTED	IN	SPACE

SYMETRICAL	ACROSS	HEMISPHERES

FUNCTIONALLY	& ANATOMICALLY	MEANINGFUL

REPRODUCIBLE	PARCELLATION	ACROSS	SUBJECTS

SUBJECT	03	– K=20

Gonzalez-Castillo	et	al.,	PNAS	2012

Unsupervised	Learning	(K-means)	to	cluster	voxel-wise	HRFs	(IV)



K-Means	Interpretation	Issues
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https://www.naftaliharris.com/blog/visualizing-k-means-clustering/



Cost	Function,	Learning	Rate,	Gradient	Descend,
Decision	Boundary,	Regularization,	etc.	

Introduction	/	Agenda

MACHINE	LEARNING	

EXPERIMENTAL	
DESIGN

DATA	
ACQUISITION

DATA	
PRE-PROCESSING

GLM	–
ACTIVATION

FUNCTIONAL	
CONNECTIVITY

GRAPH	THEORY

Logistic	Regression,	Support	Vector	Machines,
ICA,	K-Means,	Convolutional	Networks,	etc.

Centrality,	Degree,	Clustering	Coefficient,	Community,	etc.

• A	few	applications	to	fMRI	data.

• A	few	words	on	software.

• Additional	Resources	to	learn	more.



Toolboxes:	PRONTO

Run	on	MATLAB

TOOLBOX	WEBSITE:	http://www.mlnl.cs.ucl.ac.uk/pronto/index.html



Toolboxes:	The	Decoding	Toolbox

TOOLBOX	WEBSITE:	https://sites.google.com/site/tdtdecodingtoolbox/

• Runs	over	MATLAB
• Works	on	both	functional	and	anatomical	datasets
• Works	well	with	SPM	and	AFNI	datasets
• Fast	implementation	of	common	linear	classifiers	(e.g.	SVM,	LDA,	Logistic	Regression)
• One	developer	works	here	@	NIH:	Martin	Hebart
• Local	workshop	in	November (9th &	10th /Right	before	sfn)

• REGISTRATION:	https://goo.gl/forms/CwWUqqTV9vTSrmcH3



Toolboxes:	MATLAB	Environment

AFNI	MATLAB	TOOLS	
or	
SPM

MATLAB	
+	

Statistics	and	
Machine	Learning	Toolbox	

+	
Neuronal	Network	Toolbox



Toolboxes:	Python	Environment
Basic	Python	Environment:
• Numpy:	Basic	Matrix	and	Numerical	Capabilities
• Scipy:	eco-system	for	mathematic,	science,	engineering
• Matplotlib:	2D	and	3D	figures
• Seaborn,	bokeh:	Interactive,	advance	figure	capabilities

NeuroImaging Specific:
• Nibabel:	read/write	access	to	common	Neuroimaging	file	formats.
• Nipype:	pre-processing	pipelines	for	Neuroimaging	data.

Machine	Learning:
• Nilearn:	Machine	Learning	for	neuroimaging	data/visualization
• Scikit-learn:	Machine	Learning	in	Python

Deep	Learning	– Model	Definition	&	Training:
• Theano
• Tensor-flow

NiPype



Toolboxes:	NVIDIA	Digits
• Design,	train	and	visualize	deep	neural	networks	for	image	classification,	

segmentation	and	object	detection.

• Easy	access	to	pre-trained	models.

• Schedule,	monitor,	and	manage	neural	network	training	jobs,	and	analyze	
accuracy	and	loss	in	real	time.

• Scale	training	jobs	across	multiple	GPUs	automatically.

• Available	at	NIH	– HPC:	https://hpc.nih.gov/apps/digits.html

• Simple	Web-based	GUI.



Additional	Resources
• Online	Materials:

• Coursera	Course:	Machine	Learning	by	Andrew	Ng
• Udacity Course:			Deep	Learning	by	Google
• NVIDIA:																	Basic	Tutorials	on	DNN	&	DIGITS	5.0

• Online	&	Hardcover	Book:
• Deep	Learning	by	Ian	Goodfellow,	Yoshua Bengio &	Aaron	Courville

• Here	@	NIH:

• NIMH	– Machine	Learning	Core:	http://cmn.nimh.nih.gov/mlt
Contacts:	Adam	Thomas,	Charles	Zheng

• NIMH	– Data	Science	and	Sharing	Team:	https://cmn.nimh.nih.gov/dsst
Contact:	Adam	Thomas

• Special	Interest	Group	on	Deep	Learning
Contact:	Sunbin Song

• Special	Interest	Group	on	Machine	Learning	&	Brain	Imaging
Contact:	Javier	Gonzalez-Castillo



Upcoming	Talks	in	the	Machine	Learning	&	Brain	Imaging	Series
Date Speaker/Topic

September,	2017 Dr.	Jessica	Schrouff, UCL,	London,	UK
Multiple	Kernel	Learning	for	ML	modeling	of	neuroimaging	and electrophysiological	data

October, 2017 Dr. Gael	Varoquaux,	NeuroSpin,	France
Machine	Learning for	Cognitive	Neuro-Imaging

November,	2017 Dr. Jonas	Richiardi,	Lausane University	Hospital,	Switzerland
Graph-based inference	and	prediction	for	NeuroImaging

December, 2017 Dr. Chris	Baker,	Laboratory	of	Brain	and	Cognition,	NIMH
TBD

January, 2018 Dr.	Yoshua Bengio,	Montreal	University,	CA
Towards	biologically	plausible	Deep Learning

February,	2018 Dr.	AdamMarblestone,	MIT,	Cambridge,	MA
Towards	integration	of	Deep	Learning	and	Neuroscience

March,	2018 Dr.	Niko	Kriegeskorte, Columbia	University,	NY
Modeling	brain	processing	with	Deep	Learning	+	Representational	Similarity	Analysis

April,	2018 Dr.	Aude	Oliva,MIT,	Cambridge,	MA
Comparison	of	DNNs	to	spatio-temporal	cortical	dynamics	of	human	visual	object	recognition	
reveals	hierarchical	correspondence

May,	2018 Dr.	Josh	Tenenbaum,	MIT,	Cambridge,	MA
Human-concept learning	through	probabilistic	program	induction

June, 2018 Dr. Marcel	Van	Gerven,	Donders Institute,	Nijmegen,	Netherlands
Encoding	and	decoding	of	neural	representations	with	artificial	neural	networks

July,	2018 Dr.	Vince	Calhoun,	MIND	Research	Institute,	NM
Deep Learning	for	Classification	of	Patient	Populations
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