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A few applications to fMRI data.
A few words on software.

 Additional Resources to learn more.



FLm What is Machine Learning?

Field of study that gives computers the ability to learn without being explicitly
programmed. [Samuel, 1959]

A computer is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improved with
experience E. [Mitchell, 1998]

UNSUPERVISED LEARNING
Algorithms whose input has no labels/true

SUPERVISED LEARNING

Algorithms that require ground
truth during training

values, and whose objective is to find
hidden structure in the data

Problems that ML can solve:

* Predict an integer rating

* Predict a label (out of a limited set)

* Discover structure in the data, e.g., groups
* Reduce the dimensionality of the data

* Anomaly detection




FIM Supervised Learning

Algorithms used to draw inferences from labeled datasets

REGRESSION CLASSIFICATION
Predict a Continuous Variable Predict a Discrete Variable
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The Independent variables/features can be voxel intensity, connectivity values, etc.
Regression:

* Dependent Variable can be a behavioral or psychiatric score, etc.
Classification:

* Dependent Variable can be a task type, stimulus type, a patient group, etc.



CLUSTERING ALGORITHMS

A
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K-Means, Fuzzy K-means,

Hierarchical Clustering, DBSCAN, ...

Unsupervised Learning

Algorithms used to draw inferences from unlabeled datasets
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PCA, ICA, SVD, ...




N‘J Univariate Linear Regression in Machine Learning Terms

X fulx) y
Features » Class Label/Real Value
MODEL: Univariate Linear Regression fn(x
fw(x) =Wy + wiXx
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FIM Cost Function

X fulx), J(w) y

Features » Class Label/Real Value

Choose w,, w; so that f,(x) is close to y for all training examples

Objective Function: mlvy 5o z (f(x(l)) y(l))
1 i=m
Cost Function: ](WO' Wl) — % (f(x(i)) _ y(i))z
=1

Squared Error Function
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” Gradient Descend (how to learn)

In this context, learning means: to find [w,, ..., w,] that minimizes our cost function J(w)

min ](WOJ Wl)
Wo,W1

One algorithm to do such learning is GRADIENT DESCEND:
 Start with some random values of w, and w;,
* Keep changing them, until we find the minimum of J(w, w,)




FIM Gradient Descend: Learning Rate (l)

r
COST FUNCTION OBIJECTIVE FUNCTION
i=m
1 . N2 :
Jwo,wp) == ) (F(x®) = y©) min ] (wo, ws)
i=1

WHAT GRADIENT DESCEND DOES

Repeat until convergence {

d
Wi = Wj — _](W01W1)
J J @dW]

I Update all parameters simultaneously

Learning Rate
Controls how big a step we take on each iteration of gradient descend

If a is too small 2 GD may take too long to converge.
If a is too large = GD may fail to converge.



FiM)

J(w)

Gradient Descend — Learning Rate (ll)

a seems to be correct as cost goes down with every iteration.
Looks like 400 iterations is sufficient for convergence.
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FIM Logistic Regression

-
X fulx), J(w) y
Features > Real Value 1
Univariate Linear Regression: fiw (@) =w, + wyx x ="
Xnd
Multivariate Linear Regression:  fi,(xq, ..., X,) = W, + wyx; + -+ w,x, = wlx WZ'
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Cost Function: Jw) = — (y . log(fw(x)) +(1-y): log(l — fw(x)))




Logistic Regression — Linear Decision Boundary

We will predict “y=1" if

fr(x) = 05——=g(wTx) > 0.5——w'x >0
We will predict “y=0" if

fw(x) < 0.5——g(w'x) <0.5——w'x <0

Let’s imagine a case with:

Two features: (x,, x,)
A training set
A logistic regression classifier
Trained Solution: w'=[-4, 1, 1]

fw(x) — 1/1 + e—(W0+W1x1+W2x2)

X “Y=1"if —4+x;+2, 20
X5
q ., . “y=0"if —4+4+x +x,<0
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N‘J Logistic Regression - Non-Linear Decision Boundary
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w Overfitting

OVERFITTING: When too many features and an excessively complex model leads to an
extremely good fit for the training data, but poor generalization for any additional data.

fulx)
fulx)
fulx)

REGRESSION

X X
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UM Overfitting — Potential Solutions
\wr‘d"
1. Reducing the number of features:
* Model Selection Algorithms.
* Need to be careful not to throw away useful information.

2. Regularization:
* Keep all features, but enforce very low or zero w for those least informative.
* Implemented by adding a “regularization term” to the cost function.

WITHOUT REGULARIZATION

LINEAR REGRESSION fiw(X) = Wy + wix + wox? + wax® +wyx

y /N '
_ ) Q)
N |lzmgoeer
WITH REGULARIZATION
\ fw(X) = w, + wix + wyx? + wix3 +w,x?

x |1 min =XE=7(F(x®) — y©)*+1,000- w; + 1,000 -

Wo,W1 2m




UM Regularization (cont.)

- -~ —

Promoting small values for learning parameters will:
* Enforce the adoption of “simpler” models / smoother functions
* Be more robust against overfitting

In fMRI, maybe our feature space is composed of over 100 voxels...

* Feature Space: x( =[x, x0,, x5, ... X0, 50]

e Linear Regression Model: fw(X) = W, + wixg+..+Wig0X100

* Objective Function: min i (f(x(‘)) y(‘)) +@Z wf
Wo m

I
Regularization Term

A is the regularization parameter
e Controls the tradeoff between fitting the data as best as possible (first term of
the cost function) and keeping the model simple (regularization term).
» A excessively high = all w will be close to zero (even good ones) / Underfitting
* Model selection algorithms can help us select A automatically.



FiM Testing the Performance of a Classifier (I)

ffrme

TRAINING

OPTION 1:

* Use all data for training

» Report error training as the performance of the classifier

* INCORRECT: Prone to overfitting / Too optimistic estimates of performance

OPTION 2 (TRAINING A SINGLE MODEL):

* All meta-parameters fixed.
Divide the dataset in two subsets:

* TRAINING: We use this data to learn the model parameters (w7).

» TESTING: We use this data to estimate the performance / generality.

Controls against overfitting / overestimating performance.
Examples in each subset should be drawn randomly
Ensure a balanced presence of classes in both subsets

True accuracy: the probability that a classifier will correctly label a new example
drawn at random from the same distribution that the training examples came
from.

Accuracy on test set is an estimate of the true accuracy.

How precise this estimate is depends on the size of the test set




FIM Testing the Performance of a Classifier (1)

TRAINING ‘ VALIDATION TING

OPTION 3 (MODEL SELECTION PROBLEM):
 We want to train, but also do some sort of model selection.
 Example: Not sure which one of three linear models to use

Degree d=1 =2 f, (x) = w, + w,x,
Degree d=2 2 f (x) = w, + w,x; + W,x,?
Degree d=3 2 f (x) = w, + wx; + W,x,2 + w3x3
In addition to training each model, we want to automatically pick d

e \We need to subdivide our dataset in three subsets:

* TRAINING: We use this to train all models (estimate w’ for all models)

e VALIDATION: We use this to select the best model

 TESTING: We use this to estimate final performance (generality)




. Testing the Performance of a Classifier (Ill)

Leave One Out Cross Validation

Final Classifier Performance
N
Pi
.=1




. Testing the Performance of a Classifier (Ill)

K-Fold Cross Validation

Final Classifier Performance
Kmax
Pi
i=1
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Concepts Reviewed so far....
Types of Machine Learning: Supervised / Unsupervised
Regression vs. Classification Problems
Objective Function / Cost Function
Learning in terms of Gradient Descend
Learning Rate & How to monitor learning
Logistic Regression
Linear & Non-Linear Decision Boundaries
Feature selection (non-linear boundaries)
Overfitting
Regularization / Regularization Parameter

Training / Validation / Testing



. A word on Classifier Selection

LINEAR REGRESSION

SUPPORT VECTOR MACHINE

KERNEL SUPPORT VECTOR MACHINE

DEEP NEURONAL NETWORKS



. ML in Neuro-Imaging Workflow

DATA COLLECTIONPRE-
PROCESSING

!

What do we want to predict?
Feature set / Sample size

CLASSIFIER SELECTION

\ 4

DIVIDE DATA INTO SUBSETS

/\.

TRAINING DATASET

\ 4

FEATURE SELECTION / PREPARATION

A 4

DIMENSIONALITY REDUCTION

\ 4

TRAIN THE CLASSIFIER

TESTING DATASET

A\ 4

VALIDATION/
PERFORMANCE EVALUATION

DEPLOYMENT IN PRODUCTION ENVIRONMENT
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FIM Logistic Regression & fMRI Neurofeedback (1)

Perceptual Learning Incepted by Decoded fMRI
Neurofeedback Without Stimulus Presentation

Kazuhisa Shibata', Takeo Watanabe ', Yuka Sasaki*, Mitsuo Kawato SClence -

GOAL: Is early visual cortex sufficiently plastic to undergo visual perception learning (VPL)?

METHODS: fMRI + Neurofeedback + Logistic Regression

EXPERIMENT:

* Induce activity patterns in V1/V2 that correspond to given stimulus orientation
without stimuli/subject awareness (fMRI+NF+LR)

* Evaluate whether such induced activation caused VPL specific to that orientation.

p—— / NN\
— // /I/’ \\

10deg 70deg 130 deg
RESULTS/CONCLUSIONS:
* The induced activation caused VPL specific to the orientation.
* V1/V2is so plastic that mere induction of activity patterns can lead to VPL
* This fMRI/NF/LR technique can induce plasticity in a highly selective manner




Logistic Regression & fMRI Neurofeedback (1)

FMRI decoder
construction

Induction
(fMRI feedback)

Behavioral Performance on
orientation discrimination task

B  Gabor Report C
presentation orientation

300ms  ~2sec 10deg 70deg 130 deg

Time

Behavioral Performance on
orientation discrimination task

Shibata et al., Science 2011



N’) Logistic Regression & fMRI Neurofeedback (1)

; DATA COLLECTION: Perform task designed to maintain attention to the Gabor
- patches while fMRI signals were recorded.

Pre-test
e
FMRI decoder ’ D Resppnse
Somseion 1st Gabor  2nd Gabor 6th Gabor period
‘ % %

J

) 6 sec ) 6 sec _.
Post-test I } » Time

FEATURE SELECTION: Obtain activity patterns induced by each orientation from V1/V2.

Shibata et al., Science 2011



w_) Logistic Regression & fMRI Neurofeedback (1)

4 )

* Retinotopic mapping + V1/V2 localizer (areas to be activated by the Gabor
patches).

* Training data pre-processing: motion correction, no spatial or temporal smoothing.

* Time-courses from ref. regions were extracted and shifted by 6s (to account for
hemodynamic response delay).

* Time-courses were linearly detrended and converted to Z-scores (feature
normalization — avoid baseline differences across runs).

e Decoder input = voxel-wise average BOLD signal across the 3 volumes that
correspond to the 6s of stim. Presentation per trial.

* Automatic feature selection (only relevant V1/V2 voxels enter the final model)

 SAMPLE SIZE: 240 samples per subject
 MEAN # FEATURES: 239 +/- 29 voxels.




N’) Logistic Regression & fMRI Neurofeedback (1)
; DATA COLLECTION: Perform task designed to maintain attention to the Gabor
- patches while fMRI signals were recorded.

Pre-test
e
FMRI decoder ’ D Resppnse
Somseion 1st Gabor  2nd Gabor 6th Gabor period
‘ " "

J

) 6 sec ) 6 sec _.
Post-test I } » Time

FEATURE SELECTION: Obtain activity patterns induced by each orientation from V1/V2.

CLASSIFIER TRAINING: Construct a multinomial sparse logistic regression decoder that
would classify upcoming patterns of fMRI signals into one of three orientations.

TESTING: Perform LOOV + T-test against chance level (33%)
80

o2}
o

8

Accuracy (%)

Chance
level

Shibata et al., Science 2011

—-60 deg Target +60 deg



w_, Logistic Regression & fMRI Neurofeedback (1ll)

Induction Fixation Feedback Inter-trial

- period period period interval
Pre-test

{ o @ 5-10 days
’ RI decoder

| construction
6 sec 6 sec 2 sec 6 sec _.
) { . » Time

|
o —
Induction
(fMRI feedback)
S [l

S PURPOSE OF NF EXPERIMENT: Subject had to learn to induce activity patterns that
fise corresponded to a target orientation.

SUBJECT INSTRUCTIONS: “somehow regulate activity in the posterior part of the brain to
make the solid green disc that was presented 6 s later as large as possible (the maximum
possible size corresponds to the outer green circle)” + Payment proportional to avg. disk
size.

SUBJECTS DIDN’T KNOW: The size of the disc in the NF period corresponded to the
decoder output for the target orientation, which roughly represented how similar activity in
V1/V2 during induction period agreed with activity in V1/V2 during presentation of the
target stimuli during the decoder construction stage.

Shibata et al., Science 2011



o

Mean likelihood of each orientation (%)

Logistic Regression & fMRI Neurofeedback (1V)

NF DID INDUCE THE EXPECTED
PATTERNS OF ACTIVATION

THE TARGET ORIENTATION

+-60deg e Target a+60 deg

K 18 B '® Target

< 80 < 80

>

3 60 3 60

< -o- Pretest < -o- Pre-test
40 -~ Post-test 40 -~ Post-test

4 6 8 12 4 6 8 12
S/N ratio (%) S/N ratio (%)
1 9 10
Day

0O

Accuracy (%)

NF-INDUCED LEARNING TRANSLATED INTO
BEHAVIORAL CHANGES IN PERFORMANCE ONLY FOR

+60 deg

-o- Pre-test
-o- Post-test

4 6 8 12
S/N ratio (%)

Shibata et al., Science 2011



w Support Vector Machine for fMRI-based Sleep Staging (l)

Contents lists available at SciVerse ScienceDirect

Neurolmage

journal homepage: www.elsevier.com/locate/ynimg

Automatic sleep staging using fMRI functional connectivity data

Enzo Tagliazucchi *, Frederic von Wegner, Astrid Morzelewski, Sergey Borisov, Kolja Jahnke, Helmut Laufs

GOAL: Develop a method for automatic sleep staging based only on fMRI FC data

METHODS: fMRI + EEG + SVM

EXPERIMENT:

* Concurrent rest fMRI/EEG data was acquired continuously for approx. 50min

* Runs were segmented in periods of 60s

For each segment, sleep staging was performed with EEG (generation of labeled data)
A Multi-class SVM was trained on the fMRI data + sleep labels derived from EEG
5-Fold Cross-validation

RESULTS/CONCLUSIONS:

* 80% Accuracy achieved.

* Good generalization to two additional datasets (over 80% accuracy)

 Method may help avoid/model confounds in resting state due to fluctuations in
vigilance levels




- Support Vector Machine for fMRI-based Sleep Staging (ll)

« PREPROCESSING: head motion, spatial normalization to MNI, physio correction, spatial smoothing,
bandpass filtering.

* FEATURES: 20 functionally defined ROIs + bilateral thalamus. Decision based on previous literature

Medial visual Lateral visual Auditory

Thalamus

Tagliazucchi et al. Neurolmage 2012



“Support Vector Machine for fMRI-based Sleep Staging (I}

TRAINING PROCEDURE:
* Four classes (REM, N1, N2, N3) =» 6 Binary classification problems

Training set

Testing .
eneralization
rformance

. : - Test set #1 Test set #2
Binary SVM Multiclass Training set (wake+sleep) (all wake)

training SVM o s e
Parametric search, |:> One-against-one & ~:" . A T A
5-fold cross validation ‘;'-f'! P (O
_.; ey %

. Directed acyclic
(1,2,3,4 minutes) graph

B : Support vectors

——wTz i b=0 —_—— w)elx)+b=0

One-against-one (1 vs 1)

(Jl:ﬂ':ir«"HiJ') +b>1

(@)
O
oo O O
o wlr4h< =1 o o u')’ o(z) +b< 1
K(zi,x;) = 2T 2, K(zi, ;) = o(z:) o(x;)

The one with
most votes wins

Tagliazucchi et al. Neurolmage 2012



“Support Vector Machine for fMRI-based Sleep Staging (IV)

CLASSIFICATION VALIDATION

e W N1 N2 N3
Wo.9qo.080.02 0
2
S N1/0.280.62/0.10 0
=
8 . N2/0.100.070.77]0.05
(wa;jg&sgfeep) N3(0.05 0 [0.14/0.81
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X Wak Wak
085 W N1 N2 N3 : R‘%ﬁ n?i‘»ﬁ
080 o0go Wo.81l0.1400.05 0 s N2 :
.8110.1400. — " N2
~S e,V g » N3 N3
8 | = N1/0.11/0.780.09(0.01 0 20 40 0 20 40
S 075 X —
g N2/0.100.09/0.76/0.06 g Wake Wake I
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Moo N3(0.06/ 0 [0.10/0.85 = N o Ll
0.5, : s y Test set #1 2 Nso 20 40 N30 20 40
1 Time (min) Time (min)
Test set #2 0.99 W N1 N2 N3
R (ell wake) g W 0.87]0.100.01/0.01
Q ~
3 N1 ‘
3
< N2
N3 )
0.8 Test set #2

Window Length (min)

RBF Kernel, 1vs 1
— — —RBF Kernel, DAG
Poly Kernel, 1 vs 1
— ——Poly Kernel, DAG

Tagliazucchi et al. Neurolmage 2012



N‘) Unsupervised Learning (K-means) to cluster voxel-wise HRFs (1)

Whole-brain, time-locked activation with simple
tasks revealed using massive averaging and
model-free analysis

Javier Gonzalez-Castillo™, Ziad S. Saad®, Daniel A. Handwerker?, Souheil J. Inati, Noah Brenowitz?,
and Peter A. Bandettini®©

9Section on Functional Imaging Methods, Laboratory of Brain and Cognition, ®Scientific and Statistical Computing Core, and “Functional MRI Facility, National
Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892

PN AN

s

ARE RESPONSE SHAPES RANDOMLY DISTRIBUTED ACROSS THE BRAIN
OR
DO THEY CLUSTER IN A FUNCTIONALLY/ANTOMICALLY MEANINGFUL MANNER?



- Unsupervised Learning (K-means) to cluster voxel-wise HRFs (1)

FEATURES:

Each voxel is characterized by its response to a block of visual stimulation.
Blocks are 20s (ON) + 40s (OFF) & TR=2s =» Each voxel has 30 features (time-points)

UNSUPERVISED LEARNING:

Trying to uncover if there is some structure in the data

T

Labels are missing (Don’t have names for the different response profiles)

K-Means Clustering Algorithm

Gonzalez-Castillo et al., PNAS 2012



JFLMY) Unsupervised Learning (K-means) to cluster voxel-wise HRFs (l1l)

-
K-MEAN ALGORITHM
= Set of N examples {z} from R® = 60 Points in a 2-D space z,={X;,y1}...255={Xg0, Y60}

= Dissimilarity metric (D) = D = Euclidean Distance
= K= Number of expected clusters = 3 Clusters

K-Means algorithm generate clusters so that Within-cluster Dissimilarity is Minimized and
Across-clusters Dissimilarity is Maximized.

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/



ﬂ‘ Unsupervised Learning (K-means) to cluster voxel-wise HRFs (1V)

y - »"-_ N A.'\ .”’_ ey — ~— —— -— emmm—_ -,
» | | 1 N -~ - o L N L
SU DJCU Jd — K=20 ‘\‘\ y; - . - = N =~ = Y
\ S / - , . : 5 y - 1 M .
Y, K 4 F 1 g
& \ : e ] . X / | W . N 7 . X \ b - .
. \

NOT RANDOMLY DISTRIBUTED IN SPACE

SYMETRICAL ACROSS HEMISPHERES

FUNCTIONALLY & ANATOMICALLY MEANINGFUL

REPRODUCIBLE PARCELLATION ACROSS SUBIJECTS

Gonzalez-Castillo et al., PNAS 2012



K-Means Interpretation Issues

BAD INITIALIZATION

STUCTURE IS MISSING

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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Toolboxes: PRONTO

PATTERN RECOGNITION FOR NEUROIMAGING TOOLBOX (PRONTO)

GO  UCL Home » MLNL » PRoNTo

PRoNTo Menu Pattern Recognition for Neuroimaging Toolbox (PRoNTo)
© Introduction
© Software

£ Documentation
© Courses

© Data sets

€ Mailing list

© Credits

502 Pageviews
Jul. 09th - Aug. 09th

PRoNTo (Pattern Recognition for Neuroimaging Toolbox) is a software toolbox based on pattern recognition technigues for the
analysis of neuroimaging data. Statistical pattern recognition is a field within the area of machine learning which is concermed with
automatic discovery of regularities in data through the use of computer algorithms, and with the use of these regularities to take actions
such as classifying the data into different categories. In PRoNTo, brain scans are treated as spatial patterns and statistical learning
models are used to identify statistical properties of the data that can be used to discriminate between experimental conditions or groups of
subjects (classification models) or to predict a continuous measure (regression models).

Run on MATLAB

TOOLBOX WEBSITE: http://www.mlInl.cs.ucl.ac.uk/pronto/index.html




Toolboxes: The Decoding Toolbox

Welcome to TDT - The Decoding Toolbox

--- UPDATE ---
TDT wersion 3.98 with simpler crossnobis distance estimation (multivariate encoding).
TDT version 3.97 with prevalence analysis for valid group-lewvel analysis now available.

TDT (download ) is an easy to use, fast and versatile Matlab toolbox for the mullivariate analysis of functional and structural MRI data. It contains searchlight, region-of-interest, and whole-brain analyses, as well as many
feature selection and parameter selection methods including recursive feature eliminasion. More recent versions allow fast and efficient representational similarity analysis in a regression framework. The toolbox is
optimized for the use with SPM or AFNI and can be used with minimal or no programming experience. A simple decoding analysis can be conducted in just one line of code or in SPM with a simple graphical user
interface. At the same time, for people with a little programming background in Matiab the full functionality can be exploited very easily, and new features can be added without problem.

The key benefits of TDT are:

= Accessibility: If you classify on betas created with SPM or did run-wise deconvolutions in AFNI, you can get to run your first decoding analysis with decoding_example in minutes, and with almost no programmiing experience with decoding_tutorial in less than 10
minutes

- Speed: This is probably one of the fastest toolboxes out, with an SVM-based searchlight on runwise beta estimates, two classes and 100.000 voxels completed in 3-5 minutes. Speed is of essence if you want to quickly inspect your results

= Experience: Originally the toolbox was created in 2008 and continuously improved to be released to the public only in 2014. This means that you can trust the core functionality (but as with any tool: no guarantee ;).

= Error management: We spend a lot of Sime on optimizing ermor management, i.e. we prevent you from making many mistakes (e.g. non-independence) and you get informative feedback and not some crypSic ermor message. If you do get an ermor message you don't
understand - contact us so we can fix it

« Readability: We try to make code accessible and easy to follow and it should be no problem fo extend the toolbox for your own classifier or method

For more details and description and a basic tutorial with example code, please consult our publication: Martin N Hebart*, Kai Gérgen* and John-Dyfan Haynes (2015). The Decoding Toolbox (TDT): A 1k for muitivariate analyses of functional
imaging dafa. Front. Neuroinform. 8:88. doi: 10.338%ninf. 2014.00088. "equal contribution.

Download: Click here to download TDT or fill out the form below for immediate access.

Getting started: We believe that no tutorial is necessary, the toolbox should be self-explanatory. Just look at the README.tx in the decoding_toolbox folder, or consider our publication as reference.

Questions: Please use the TDT mailing list (please also check the ist archive).

Example dataset: We have made an example dataset for one subject available (SPM.mat and betas, ROls, structural image and description; a lower resolution version (18MB) is available here ). If you are interested in pre-processing the data yourself, we also provide
DICOM files for subject 1, for subject 2, and 2 batch script for preprocessing in SPM8. This is not a published study, data were acquired only for illustrating the use of TDT.

Happy decoding!
Kai & Martin

Runs over MATLAB
Works on both functional and anatomical datasets
Works well with SPM and AFNI datasets
Fast implementation of common linear classifiers (e.g. SVM, LDA, Logistic Regression)
One developer works here @ NIH: Martin Hebart
Local workshop in November (9t & 10" /Right before sfn)
* REGISTRATION: https://goo.gl/forms/CwWUggqTVIvTSrmcH3

TOOLBOX WEBSITE: https://sites.google.com/site/tdtdecodingtoolbox/




w Toolboxes: MATLAB Environment

AFNI MATLAB TOOLS
or
SPM

MATLAB
+

Statistics and
Machine Learning Toolbox
+

Neuronal Network Toolbox




FiM Toolboxes: Python Environment

Basic Python Environment:

* Numpy: Basic Matrix and Numerical Capabilities - ;]

* Scipy: eco-system for mathematic, science, engineering

* Matplotlib: 2D and 3D figures

* Seaborn, bokeh: Interactive, advance figure capabilities matpl:tlib

Neurolmaging Specific: _
* Nibabel: read/write access to common Neuroimaging file formats. "=
* Nipype: pre-processing pipelines for Neuroimaging data.

Machine Learning:
* Nilearn: Machine Learning for neuroimaging data/visualization
» Scikit-learn: Machine Learning in Python

Classification Regression Clustering
Identifying to which category an object belongs Predicting a continuous-valued attribute asso- Automatic grouping of similar objects into sets.
to. ciated with an object. Customer ion, Group-
Applications: Spam detection, Image recogni- Applications: Drug response, Stock prices. ing experiment outcomes
tion. Algorithms: SVR, ridge regression, Lasso, ... Algorithms: k-Means, spectral clustering,
Algorithms: SVM, nearest neighbors, random — Examples mean-shift, ... Examples
forest, ... Examples

Dimensionality reduction Model selection Preprocessing
Reducing the number of random variables to Comparing, validating and choosing parame- Feature extraction and normalization.
consider. ters and models. Application: Transforming input data such as
Applications: Visualization, Increased efficien- Goal: Improved accuracy via parameter tuning text for use with machine learning algorithms.
cy Modules: grid search, cross validation, Modules: preprocessing, feature extraction.
Algorithms: PCA, feature selection, non-nega- metrics. Examples Examples

tive matrix factorization. — Examples

Deep Learning — Model Definition & Training:
* Theano
* Tensor-flow




FLm Toolboxes: NVIDIA Digits

* Design, train and visualize deep neural networks for image classification, @Z
segmentation and object detection. NVIDIA
DIGITS

e Easy access to pre-trained models.

* Schedule, monitor, and manage neural network training jobs, and analyze
accuracy and loss in real time.

e Scale training jobs across multiple GPUs automatically.

e Available at NIH — HPC: https://hpc.nih.gov/apps/digits.html

* Simple Web-based GUI.

Dataset
nuclel_40x_db_1_64
ne hon

GPU Usage

GeForce GTX TITAN X (#0)




w Additional Resources

* Online Materials:
e Coursera Course: Machine Learning by Andrew Ng
* Udacity Course: Deep Learning by Google
* NVIDIA: Basic Tutorials on DNN & DIGITS 5.0

* Online & Hardcover Book:
* Deep Learning by lan Goodfellow, Yoshua Bengio & Aaron Courville

* Here @ NIH:

* NIMH — Machine Learning Core: http://cmn.nimh.nih.gov/mlt
Contacts: Adam Thomas, Charles Zheng

* NIMH — Data Science and Sharing Team: https://cmn.nimh.nih.gov/dsst
Contact: Adam Thomas

e Special Interest Group on Deep Learning
Contact: Sunbin Song

* Special Interest Group on Machine Learning & Brain Imaging
Contact: Javier Gonzalez-Castillo



UM Upcoming Talks in the Machine Learning & Brain Imaging Series

¢ =
Date

September, 2017
October, 2017
November, 2017
December, 2017
January, 2018
February, 2018

March, 2018

April, 2018

May, 2018

June, 2018

July, 2018

Speaker/Topic

Dr. Jessica Schrouff, UCL, London, UK
Multiple Kernel Learning for ML modeling of neuroimaging and electrophysiological data

Dr. Gael Varoquaux, NeuroSpin, France
Machine Learning for Cognitive Neuro-Imaging

Dr. Jonas Richiardi, Lausane University Hospital, Switzerland
Graph-based inference and prediction for Neurolmaging

Dr. Chris Baker, Laboratory of Brain and Cognition, NIMH
TBD

Dr. Yoshua Bengio, Montreal University, CA
Towards biologically plausible Deep Learning

Dr. Adam Marblestone, MIT, Cambridge, MA
Towards integration of Deep Learning and Neuroscience

Dr. Niko Kriegeskorte, Columbia University, NY
Modeling brain processing with Deep Learning + Representational Similarity Analysis

Dr. Aude Oliva, MIT, Cambridge, MA
Comparison of DNNs to spatio-temporal cortical dynamics of human visual object recognition
reveals hierarchical correspondence

Dr. Josh Tenenbaum, MIT, Cambridge, MA
Human-concept learning through probabilistic program induction

Dr. Marcel Van Gerven, Donders Institute, Nijmegen, Netherlands
Encoding and decoding of neural representations with artificial neural networks

Dr. Vince Calhoun, MIND Research Institute, NM
Deep Learning for Classification of Patient Populations momia‘ﬁ?:
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