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Real-time fMRI

e Usually, fMRI data is processed post acquisition
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* Real-time fMRI allows us to look at fMRI data online, during the scan



Neurofeedback

* Translating signals from the brain to a signal subjects can perceive
(visual, auditory)

* Various recording techniques:
* EEG
* |nvasive methods
* Real time fMRI



Neurofeedback
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Neurofeedback
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Preprocessing

* Register everything to a common space (anatomical and functional
data, pre-defined regions of interest)

* Motion correction

* Physiological noise regression
* Detrending
* Optimally combined echoes



Limitations of the signal

* Processing can be fast, but the fMRI signal is slow

* Slow acquisition
* BOLD is slow
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Limitations of the signal

* fMRI data is noisy!

* Global signal artifacts / real global signal

Contents lists available at ScienceDirect

Neurolmage

journal homepage: www.elsevier.com/locate/ynimg

Methods to detect, characterize, and remove motion artifact in resting ) v
state fMRI
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What can we feedback?
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What can we feedback?

* Classifier output

Trends in Cognitive Science

Volume 10, Issue 9, September 2006, Pages 424-430

Review
Beyond mind-reading: multi-voxel pattern analysis of
fMRI data

Kenneth A. Norman ' &, Sean M. Polyn 2, Greg J. Detre ', James V. Haxby
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What can we feedback?

* Correlations between regions

* Not trivial — calculating correlations
takes time




Goals of neurofeedback

* Clinical applications

* Enhance performance

nature
NEUrosCiEncCe

Article =~ Published: 09 February 2015
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Goals of neurofeedback

* Clinical applications
* Enhance performance

* Investigate causality, understand the relationships between networks
and behavior

* Do you need neurofeedback to answer your question?
* Does your planned neurofeedback experiment answer your question?



Interpreting changes following neurofeedback

Neuropsychopharmacology

Targeting the affective brain - A Randomized
Controlled Trial of real-time fMRI neurofeedback
in patients with depression

David M. A. Mehler, Moses O. Sokunbi, Isabelle Habes, Kali Barawi, Leena
Subramanian, Maxence Range, John Evans, Kerenza Hood, Michael Liihrs, Paul
Keedwell, Rainer Goebel, David E. J. Linden



HDRS-17

0 12 18
Study Period [week]

Remission Rate [%]

100

90

80

70

60

50

Study Period [week]



Caveats of task-based Neurofeedback

* Doesn’t bypass behavior, cannot address the question of causality

* Difficult to disentangle the effects of the task from the effects of the
neurofeedback

* Limited in scope, inflexible
* Potentially underestimates the extent of plasticity

* Does not necessarily require a piece of equipment as expensive as an
MRI machine



Implicit training — covert neurofeedback

 What if we don’t give subjects a strategy?



Background — Visual Perceptual Learning

* Practice or training in a particular task often substantially improves
perceptual performance. This is known as perceptual learning. Examples:
 Distinguishing between two musical notes
* Finding the ripe berries on the bush
* Reading
* Finding a tumor on an imaging scan

* Perceptual learning is often restricted to a particular task or stimulus

* Visual perceptual learning (VPL) often correlates with changes in visual
areas, but this does not prove causation, and studies have been divided on
whether these changes are in early or high order visual cortex



Example




Question

* |s early visual cortex plastic enough to cause VPL?

* Induce change in a very specific manner in early visual cortex, without
exposing to the visual stimulus this pattern represents




Experimental design
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Results — changes in fMRI signal
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Does learning have to be conscious?

Good




Voxels significantly more correlated to good>bad ROI, during NF
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Limits of explicit training

* |f networks are aberrant, mere
repetition of stimuli is akin to
strengthening the wrong
“muscles”




Aberrant networks in autism
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Target 2 minus Control, day 4 minus day 1




Conclusions

e Real-time fMRI neurofeedback is a potentially powerful tool
* Neurofeedback can change networks, even when it is implicit

e Caution must be used in the design of neurofeedback studies, and the
interpretation of their results



Open guestions

* How does changing the networks change behavior?

e Can you train any network, given the right feedback / enough

time?

* What is the mechanism for neurofeedback learning?

* Which factors influence variability between subjects?

e Whatist
e Whatist
e Whatist

ne optima
ne optima

ne optima

consciousness?

network size / complexity to train?
network feature to train?

training technique / level of



