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What is Data Sharing?
The practice of making data used in scholarly research 

available to other researchers
https://en.wikipedia.org/wiki/Data_sharing

What is “data”?

Potential of Valsalva-Based Tasks for Functional Magnetic
Resonance Imaging Calibration and for Cerebrovascular and
Autonomic Assessment
The BOLD-weighted functional MRI signal is most commonly used
as an indirect measure of neural activity. However, nonneural
vascular factors, such as cerebral blood flow, hematocrit, resting
cerebral blood volume, and the size and location of veins vary

among brain regions, subjects, and disease conditions, and can
hamper accurate detection of that neural activity.1

Hypercapnic challenges induce global cerebral blood flow
global changes. By causing the BOLD-weighted signal to change
in a well-understood manner, such tests, including the breath
hold, are useful in calibrating fMRI signals, and have been used to
characterize nonneuronal hemodynamic factors, such as the

 Group Averaged Slope of Peak Magnitudes vs Chest Pressure

 Group Averaged Slope of Valley Magnitudes vs Chest Pressure

Slope (% change from 10-40 mm Hg)
0.9%-0.9%

Figure 5. Slope of pressure versus (A) peak or (B) valley magnetic resonance imaging (MRI) signal responses. Slopes were calculated for each
voxel in the same manner as in Figure 3. The data are thresholded to exclude slopes of less than 0.15%. The anatomic underlay is darkened for
voxels with no fMRI data. The slopes were steeper in gray matter than in white matter.
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caused by having subjects to hold their breath for 20 seconds can
be significantly modeled by having them instead increase chest
pressure for only 5 seconds.

DISCUSSION
We showed that it is possible to parametrically alter the
magnitude of the fMRI BOLD weighted by changing intrathoracic
pressure. By keeping the breath hold duration constant while
modulating pressure, we showed that the pressure changes alter
the BOLD-weighted response independently from hypercapnia-

based changes. The Valsalva had a bimodal response, with an
initial dip in signal magnitude at the outset of the challenge,
followed by a rise above baseline after the breath hold release.
When intrathoracic pressure increased, the magnitude of the
valley during the breath hold linearly decreased, and the peak
magnitude response linearly increased (Figures 2, 3 and 5). The
relative response magnitudes across voxels matched tissue
boundaries, and revealed a similar pattern for multiple intrathor-
acic pressures and breath hold durations (Figures 4 and 6).

Origins of the Valsalva Magnetic Resonance Imaging Response
While the precise origins of the Valsalva-induced MRI response are
unclear, aspects of the response suggest a predominantly hemo-
dynamic effect. Increases in intrathoracic load pressure caused
both increased heart rate and MRI response magnitudes. The
timing of the heart rate minima and maxima during the Valsalva
maneuver matched minimal and maximal MRI signals, suggesting
that autonomic responses during the Valsalva action are closely
coupled to these global changes; CBF changes are known to
correlate with arterial blood pressure changes throughout the
Valsalva maneuver.6,8 Functional MRI signal responses to the
Valsalva maneuver varied across tissue types, with gray-matter
regions showing greater responsiveness than white matter, but
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Figure 3. Peak (A–D) and valley (E–H) magnetic resonance imaging (MRI) signal amplitudes, scaled with Valsalva pressure in all brain tissues.
Each colored line represents data from a single subject. The solid black lines show the linear regression fits of these data across subjects. To
characterize the effect of hypercapnia versus load pressure, the breath hold ending on exhale response was subtracted from the 10 to
40mmHg responses. The dashed lines show the linear regression fits after the breath holds-on-exhalation responses were subtracted. The
slope, r2, and P-values for each regression are shown in solid lettering for the original data, and in outline lettering after subtracting the breath
hold on exhalation. CSF, cerebrospinal fluid.

Table 1. Time-to-peak and valley for different duration breath holds

5 seconds 10 seconds 15 seconds 20 seconds 25 seconds

Time-to-peak 8.6± 0.9 7.6± 1.0 7.7± 1.2 7.4± 1.2 6.9± 1.0
Time-to-valley 8.3± 1.2 11.7± 1.2 11.9± 1.6 10.8± 1.8 10.5± 1.6

Time-to-peak and time-to-valley in seconds for different duration breath
holds with a 30mmHg target intrathoracic pressure. To normalize for
different duration breath holds, time-to-peaks are the time from the end of
each breath hold, while time-to-valleys are from the start of each breath
hold. Values are mean± standard deviation values across subjects for
voxels within the cortical gray-matter ROI.
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To quantify this intrasubject relationship across the population,
linear regressions were calculated across gray-matter voxels for
each pair of conditions within each subject’s gray-matter voxels.
Voxels in gray-matter masks that showed more than a 30% signal
change were assumed to be artifacts, and excluded (0.5% to 3% of
voxels per subject). Figure 6A shows a scatter plot and the linear
fit of breath hold-after-exhalation versus a 5-second breath hold at
30mmHg from the subject with the lowest R2 for this condition.

The r values for the fit qualities were Fisher Z-transformed, and the
bar plots in Figure 6B show the peak and valley magnitude
relationships between the breath hold on exhalation trials versus
all other trials. The voxelwise linear regressions of the peak and
valley magnitudes between all pairs of trial types were significant
(P≪0.001). These data show that the relative response magnitudes
across gray matter are similar across different thoracic pressure
and breath hold durations. This means that the MRI signal changes
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Hold on exhale
Hold on inhale
Hold at 10 mm Hg
Hold at 20 mm Hg
Hold at 30 mm Hg
Hold at 40 mm Hg

20 sec Duration Holds at different pressures 30 mm Hg Pressure at different hold durations

5 sec hold

25 sec hold
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Figure 2. Group averaged responses during Valsalva and breath hold challenges. (A–G) Responses when the breath hold duration is always
20 seconds, but intrathoracic pressure is changing. The vertical dashed lines show the onset and offset of the hold, and the inset shows the
signals after the breath hold after the exhalation response is subtracted from the other responses. The inset boxes are proportionally scaled
from the larger figures. (H–N) Responses when intrathoracic pressure is always 30 mmHg, but the breath hold duration is changing. The black
dashed line is the onset of the breath hold, and the colored dashed lines mark the end of each breath hold duration. In all regions of interest,
the magnetic resonance imaging (MRI) responses decreased below baseline (the valley) during the hold, and increased to a peak after the end
of the hold. The magnitude of the responses scaled with thoracic pressure. CSF, cerebrospinal fluid.
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Fully prepocessed MRI data?
“Raw” MRI
Stimulus presentation code?
Behavioral data?
Data processing code?

What is “available”?

•  Joint%ini9a9ve%supported%by%NIMH,%NICHD,%NINDS,%and%NIEHS%
–  Federal%data%repository%
–  Contains%human%subjects%data%related%to%au9sm%(and%
control%subjects)%

–  Data%are%available%to%the%research%community%%
–  Summary%data%are%available%to%anyone%via%internet%

•  Ini9ated%in%late%2006,%first%data%uploaded%in%2008%
•  Data%types%include%demographic,%clinical%assessments,%

imaging,%and%–omics%data%%
•  Data%currently%available%from%over%80,000%subjects%%
•  ~500TB%of%imaging%and%–omics%data%are%securely%stored%in%the%

cloud%

Na6onal%Database%for%Au6sm%Research%(NDAR)%



Overview

Why share data
Why most people don’t share data
Why fMRI data sharing is improving



Why share data?
Selfish reason #1

The most important person you share data with is

Yourself

The next most important people are 
your current & future collaborators



A case study
(About a specific situation, but this story is VERY common)

• Re-examining data collected years ago
• fMRI data are in two different formats and spread out 

across several semi-arbitrary directories
• Behavioral data is on a separate computer
• Records about what happened in each scan are 

elsewhere

Just wrangling the data to a point where it was again 
useful was a big project!

If one or two key people left research lab, the data may 
have been un-usable



An even closer-to-home case study
Handwerker et al 2004 Neuroimage

The data to make the plots in 
the figures are fairly accessible 

to me and a few others

Fig. 3. Variation of HRFs across regions within each subject. The subjects are sorted from the top left to the bottom right from lowest to highest variance

across regions. The canonical HRF is included in all plots for comparison. All HRFs in this figure are normalized to start at 0 and have a peak magnitude

of 1.

Fig. 4. Variation of HRFs from M1 across subjects. Panel A shows the peak normalized HRF. Panel B shows the HRFs scaled by percent change so that

amplitude variability is observable. Although M1 HRFs exhibited the lowest variance across subjects, there is still high variability across subjects.

D.A. Handwerker et al. / NeuroImage 21 (2004) 1639–1651 1643

The full fMRI volumes are on a few external 
hard drives in a format that isn’t used anymore



How many 5-year-old studies could be 
replicated from collected data to 

publication?

How many just published studies?



Why share data?
Selfish reason #2

Sharing Data is increasingly becoming a 
requirement for publication & grants

Proceedings of the National Academy of Sciences (PNAS) 
Editorial Policies

To allow others to replicate and build on work published in PNAS, authors must 
make materials, data, and associated protocols available to readers.

http://www.pnas.org/site/authors/journal.xhtml

NIH Genomic Data Sharing Policy
As a condition of grant funding, human and non-human genomic data must be 

submitted to an NIH-designated repository in a timely manner
(with some exceptions)

http://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html



Sharing data -> Better science
A typical fMRI study
• Design a study
• Collect data from 15-30 people
• A few people in a group look at the images, 

time series, and statistical maps
• The same people (hopefully) write up their 

finding and publish
• The data are kept on a hard drive 

somewhere or archived



Sensitivity Analysis
Twenty-two (73%) of the smaller studies (n,45) and six of the

larger (n$45) (60%) papers used SPM. The remaining studies used
a variety of other software packages. In 2 cases (1 in each strata)
the software was not given. There was considerable heterogeneity
in the way clusters and foci (Talairach coordinates) but we did not
find evidence of widespread reporting of only the top three local
maxima per clusters according to sample size. In the 12 smaller
study papers where it was clear how many foci per cluster had
been reported, 9 reported only 1 focus per cluster. The remaining
three studies reported 2 to 6 foci/cluster with the number of foci
largely dependent on the size of the cluster. Among the larger
studies, 5 reported 1 focus per cluster, in the remaining five papers
it could not be determined how many foci/cluster were reported.
These analyses did not indicate that there are fewer clusters in
larger studies with more statistical power and that the converse
was the case for smaller studies. We did not find evidence of
differential reporting methods for small and large studies. When
more than one foci per cluster was reported, the number of foci
per cluster was largely driven by cluster size.

Simulation Analysis
As shown in Figure 4, the number of clusters followed a clear

positive relationship with the sample size. The relationship would
be the same if each cluster were substituted by 3 reported foci. The
results demonstrated that the number of clusters were 4, 4, 6, 7,
10, 18, 16, 25, 21 and 24, corresponding simulations for 10, 20,
30, 40, 50, 60, 70, 80, 90 and 100 participants, respectively.

Discussion

Despite the large body of fMRI literature, most published
studies have samples sizes that would be considered small by
conventional standards. Nevertheless, the number of foci claimed

to be discovered by small studies is relatively large and we found
absolutely no correlation between the sample size of a study and
the number of foci that it claims. This is counterintuitive to power
considerations and it suggests that biases that inflate the number of
claimed foci may affect disproportionately the smaller studies in
the literature. Consistent with this picture, meta-analyses identified
only slightly more total foci than single studies, despite having
sample sizes that were almost 20 times larger; thus studies with
n,45 identify far more foci per subject than meta-analyses do.
This picture persisted when we compared only single studies and
meta-analyses that used the same study-wide corrected p-value
threshold.
This evidence is consistent with the presence of selective

reporting biases causing an excess of significance in the published
literature. We cannot exclude the possibility that larger studies and
even large meta-analyses are also affected by such biases. Different
mechanisms may contribute to this excess significance.
First, smaller fMRI studies may be underpowered and inflate

the number of reported foci. The average sample size of the
retrieved studies was 13 subjects and the vast majority (94%) of
individual studies included in the meta-analyses we examined had
fewer than 30 patients. FMRI is a powerful technique to
investigate subtle neurophysiological brain changes and the
adequate sample size depends on the nature of statistical inference
requested [19]. An average sample size of 13 subjects is probably
well below the optimal sample size for an fMRI study, especially
when variability across measurements and patients are considered.
Some authors have proposed optimal sample sizes of 16-32
subjects per group [19,20,21], suggesting that between-subject
comparison studies of n,30 are too small even by liberal estimates.
A recent commentary by Friston posed ‘‘Ten Ironic Rules’’ that
claimed several fallacies to the application of classical inference to
sample size and power for functional neuroimaging studies
whereby studies with smaller sample sizes generate more reliable

Figure 3. Relationship Between Number of Foci and Sample Size per Study. Scatter plot of foci and sample size from all data sets (N = 1778)
within all meta-analyses.
doi:10.1371/journal.pone.0070104.g003

Bias in fMRI Studies

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e70104

How does this typical fMRI study limit our 
understanding of the brain?

• Minimal replication (fMRI is expensive) or 
replications with slightly different results (Not 
necessarily bad) 

• Why do results differ?
– Data quality?
– Experimental design 

decisions?
– Sample size?
– Analysis decisions? Studies with fewer data sets 

have more foci of activation
David, Ware, et. al. 2013. Potential Reporting Bias in fMRI Studies of the Brain. 

PLoS ONE doi:10.1371/journal.pone.0070104



How this changes with Sharing

• Much larger sample sizes
• Better understanding of replication attempts

If there is inconsistency, then directly compare 
data sets

• People without resources to collect high 
quality fMRI data can make important 
contributions to the field
– Experts in other areas can offer new insights
– Better ways to develop and compare analysis 

methods



More data means means more 
interesting and useful science

• Consistently identifying subtle fMRI 
magnitude differences between populations 
requires a lot of (good quality) data

• Meta-analyses using data can identify things 
that were ignored in the original studies



If we want to understand brain 
disease, we need a lot of data

NIMH Research Domain Criteria (RDoC)
We can’t study brain disorder X vs controls anymore

Insel & Cuthbert, “Brain disorders? Precisely” Science May 1, 2015



Why most people don’t share data
Selfish Reasons

1 It takes time that can be used for other things
2 I collected my data. I’m not giving it away so 

that other people can publish and take credit 
for my work



Replication is a nice goal… in theory
Discussion of replicating an experiment using superconducting bar 
magnets to detect gravity waves in the 1970’s (not MRI)

“Should the bar be cast from the same batch of metal? Should we buy 
the piezoelectric crystals form the same manufacturer as the original 
ones? Should we glue them to the bar using the same adhesive as 
before, bought from the same manufacturer? Should the amplifiers be 
identical in every visible respect, or is an amplifier build to certain 
input and output specifications “the same” as another amplifier built 
to the same specifications? Should we be making sure that the length 
and diameter of every wire is the same? Should we be making sure 
that the color of the insulation on the wires is the same? Clearly, 
somewhere one as to stop asking such questions and use a 
commonsense notion of “the same.” the trouble is that in frontier 
science, tomorrow’s common sense is still being formed.”
 Gravity’s Shadow by Harry Collins p 123



Replication is a nice goal… in theory
Discussion of replicating an experiment using superconducting bar 
magnets to detect gravity waves in the 1970’s (not MRI)

“Should the bar be cast from the same batch of metal? Should we buy 
the piezoelectric crystals form the same manufacturer as the original 
ones? Should we glue them to the bar using the same adhesive as 
before, bought from the same manufacturer? Should the amplifiers be 
identical in every visible respect, or is an amplifier build to certain 
input and output specifications “the same” as another amplifier built 
to the same specifications? Should we be making sure that the length 
and diameter of every wire is the same? Should we be making sure 
that the color of the insulation on the wires is the same? Clearly, 
somewhere one as to stop asking such questions and use a 
commonsense notion of “the same.” the trouble is that in frontier 
science, tomorrow’s common sense is still being formed.”
 Gravity’s Shadow by Harry Collins p 123

To my astonishment, on reading this passage, Gary Sanders told 
me that in 1988 or 1989 he had been in a laboratory near Tokyo 

when a Russian physicist, examining a Japanese group’s 
apparatus, declared their results on Tritum Beta decay to be 

invalid because they had used wires with red insulation! 
Apparently the red dye contains traces of radioactive uranium, 

which can confound the measurements. 



Variation in replications can be good

• Catheter diameter or length
• Cocaine dose available in each infusion
• Rate of infusion/concentration of drug
• Age, Sex, Strain, or vendor source of the rats
• Time of day in which rats are run (not just light/dark* either)
• Food restriction status & last food availability
• Pair vs single housing & “Enrichment”
• Experimenter choice of smelly personal care products
• Dirty/clean labcoat (I kid you not)
• Handling of the rats on arrival from vendor
• Fire-alarm
• Cage-change day
• Minor rat illness
• Location of operant box in the room (floor vs ceiling, near door or away)
• Ambient temperature of vivarium or test room
• Schedule- weekends off? seven days a week? 1 hr? 2hr? 6 hr? access sessions
• Schedule- are reinforcer deliveries contingent upon one lever press? five? does the 

requirement progressively increase with each successive infusion?
• Animal loss from the study for various reasons

The most replicated finding in drug abuse research is, “Rats 
will intravenously self-administer (IVSA) cocaine.”

http://scientopia.org/blogs/drugmonkey/2014/07/08/
  the-most-replicated-finding-in-drug-abuse-science/

We only know this 
because so many 

replications were done 
and documented

The types of factors that can reduce your "effect" to a null 
effect or  change the outcome include:



The promise of data sharing?
And the exciting findings are…

• Thanks to shared fMRI big datasets what have we learned 
about the brain and disease?
Seriously, what?

• (There are interesting, but not yet major findings)
Di Martino, Yan, et al, Molecular Psychiatry 2014
Laumann, Gordon et al, Neuron 2015

• (A lot of interesting & important stuff, particularly methods 
development, is happening thanks to these sharing)

• Why is this?
– The field is still young
– Sharing data is more than just posting files somewhere

We need to “harmonize” data so that it can make sense to others 



The field is still young
Building big data capabilities takes time

• USA started funding the public GeneBank in 1982
• The National Center for Biotechnology Information at NLM launched & look over GeneBank 

in 1989
• Basic Local Alignment Search Tool (BLAST) algorithm to rapidly match sequences came out in 

1990
• The first human genomes were released in 2003.
• 23andMe started commercial genome sequencing & sharing in 2007
• Nearly real time tracking of dangerous bacteria at NIH Clinical center in 2012 (Snitken, Sci Transl Med 2012)

Images from: http://www.davelunt.net/evophylo/2012/12/printing-out-genbank-nucleotide-sequences-1984/



General challenges
• Universal big data issues
– Giving multiple people quick access to data

(The amount of data was an issue, but, except for unreconstructed 
fMRI data, fMRI is smaller than a lot standard big data applications)

– Security: Different types of data need different levels of protection

• Application specific issues
– Quality control with less human interaction
• If it’s enough data to be interesting, it’s too much to have 

each group examine everything interactively
–Meaningful queries of data
– Documentation and provenance



Almost this whole talk could be generic 
data sharing, but the type of data matters

The Organization for Human Brain Mapping created the 
Committee on Best practices in Data Analysis & Sharing 

(COBIDAS)
All they could agree on was what to report, not what to do Example:*Experimental*Design*Repor(ng*

*

subject(to(change(

From Presentation by Tom Nichols
NIMH Workshop: Harmonize This! 

6/19/2015



What to store/report?
• MRI data acquisition information
– Basic scanning parameters vs detailed pulse sequence 

descriptions?
– The strength/brand of the scanner vs full hardware specifications?
– Inglis “A checklist for fMRI acquisition methods reporting in the 

literature” The Winnower 2015 DOI:10.15200/winn.143191.17127

• Other information:
– Task designs vs presentation scripts?
– Behavioral and physiological data and keys to understand what it 

means
– Statistical maps vs reconstructed vs raw fMRI data?
– Processing steps (Neurimaging Data Model NDM) vs code
– Carp “The secret lives of experiments: Methods reporting in the 

fMRI Literature” NeuroImage 2012



The failure of the FMRI Data Center
Started in 1999

• Scientists weren’t motivated to contribute
– No social pressure
– It was really hard to enter data and information 

and submit it
• fMRIDC needed to organize data in whatever 

format it got (unorganized hard drives people 
pulled from their computers)

• Removing identifiable information
• Data shared by mail
• Short-term funding disappeared 

Van Horn, J.D., Gazzaniga, M.S., 2012.
 Why share data? Lessons learned from the fMRIDC. NeuroImage



Ethics of data sharing

• Internal review boards require every study to have 
a purpose. Data can’t be used outside the scope of 
its purpose of collection
– It can be hard to share data collected without sharing 

mentioned in the protocols
• If data sharing is clinically useful, we will learn 

unexpected things about individuals’ future health
• Anonymity is impossible to maintain by computer 

security alone



Anonymity doesn’t exist with big data

23 and You, by Virginia Hughes (12/4/2013)
https://medium.com/matter-archive/23-and-you-66e87553d22c

Sisters discovered they 
didn’t share a father

A neuroscientist who was adopted 
used 23andMe and Facebook to 

identify some probable half-siblings
 (but decided not to contact them)



MRI and anonymity

The data is publicly shared. 
Someone takes the picture, 

matches it to a slice in shared data 
and then gets the genome & 

diagnostic info linked to the study.

Facebook post:
“Hey look at this cool picture of my brain I 
got as thanks for participating in a study”

Brain slice from: http://en.wikipedia.org/wiki/Neuroimaging#mediaviewer/File:Sagittal_brain_MRI.JPG



How to prevent loss of privacy?

• MRI brain slices and genomes are not considered 
identifiable information in US health privacy law
(We talk about de-identification, not anonymization)

• Try to make this type of matching difficult
– Blur faces on high quality images
– Remove easily traceable information
– Don’t give participants the results (unethical?)

• Lock data behind data use agreements 
  (makes sharing more difficult)



Why fMRI data sharing is improving

• More examples means the hardest work is already done
– We have examples on how to organize data
– We have quality control & data analysis examples
– We have examples of language for protocols and consent forms
– We have data use agreements
– Sharing big data is now common
– The general technology needed to securely store, share, run 

computations, and visualize big fMRI data exists
• There are big investments in data sharing
– NIH repositories
– General data sharing rules for grantees
– Grants to projects with a data sharing focus



Resting State fMRI has some of the 
early logistical successes 

• Bypasses potential sources of variation associated with 
task probes

• Commonly included as an add-on in task activation studies 
– decreases perceived value 
– Increases willingness to share 

• Striking similarity in networks observed across laboratories 
• Problems: More variation than originally assumed
• Huge successes are methodological
– Automated quality assessment
– Better understanding of sources of variability
– Comparisons of data analysis tools on the same data sets

Text copied or heavily based on presentation by Michal Milham
NIMH Workshop: Harmonize This! 6/19/2015



The autism brain imaging data exchange: towards a large-scale 
evaluation of the intrinsic brain architecture in autism

Di Martino et al, Molecular Psychiatry 2014 

midline core,26 using spherical region-of-interest masks (radius¼ 4 mm)
centered at anterior medial prefrontal cortex, and posterior cingulate.26 For
each seed region, a Fisher’s Z-transformed correlation map was generated.

Group-level analyses. We used a general linear model implemented in
Data Processing Assistant for Resting-State fMRI (DPARSF)45 to examine
neuroimaging differences related to diagnosis (covariates: age, FIQ, site
and mean FD). To correct for multiple comparisons at the cluster level, we
employed Gaussian random field theory (voxel Z42.3, cluster-level
Po0.05). For parcellation-based whole-brain correlation analyses, we
corrected for multiple comparisons using false discovery rate (qo0.05).46

Secondary analyses: ‘scrubbed’ data. Given the potential for spurious
signal changes from head micromovements,18,33,47–49 primary analyses
accounted for group differences in micromovements by covarying for
mean FD at the group level.47 To verify the effectiveness of this approach,
we repeated the analyses after removing frames with FD40.2 mm
(‘scrubbing’); individuals with 450% of their time series removed were
excluded from the analyses. fALFF was not calculated with ‘scrubbed’ data
as the removal of time points disrupts the temporal structure precluding
standard Fourier transform-based approaches.14

Structural analyses. Although beyond this work’s scope, to demonstrate
the ability to conduct structural analyses using ABIDE data sets, we
computed total intracranial, white matter, gray matter and cerebrospinal
fluid volumes; no significant group differences emerged (Supplementary
Figure 2 and Supplementary Information).

RESULTS
Sample composition
Seventeen sites (Figure 1a and Supplementary Table 2) con-
tributed 20 previously collected data sets for 1112 individuals
(533 with ASDs, 579 TCs); 10 data sets (58%) were previously

unpublished with regard to ASD vs TC R-fMRI comparisons.
Contributions per site ranged from 13 to 79 participants with
ASDs and 13 to 105 TCs. Marked variation in age range across
samples was evident along with a vast predominance of male
subjects, with 25% of sites excluding female subjects by design
(Figure 1b and Supplementary Table 2). With few exceptions, sites
included individuals with average or above-average intelligence.
Mean FIQ exceeded 100 for TCs for all sites and in 17 of 20 data
sets for individuals with ASDs. Sites varied with respect to the
minimum FIQ included (ASDs: 41–95; TCs: 73–101; Figure 1d);
FIQ and verbal IQ were significantly greater for TCs than ASDs
(Po0.0001) and so was performance IQ, although it only
differed marginally (P¼ 0.067). Right-handedness was more
frequent in TCs than in ASDs (Po0.002). The male-only sample
included for imaging analyses reflected these characteristics
(Supplementary Tables 1 and 3).

Sites reached ASD diagnoses by either (1) combining clinical
judgment and ‘gold standard’ diagnostic instruments—Autism
Diagnostic Observation Schedule (ADOS) and/or Autism Diagnos-
tic Interview–Revised (n¼ 13 samples, 65% of data sets),3 (2)
clinical judgment only (n¼ 3, 15%) or (3) ‘gold standard’
diagnostic instruments only (n¼ 4, 20%). Among the 17 sites
using the ADOS and/or Autism Diagnostic Interview-Revised, 16
(94%) obtained research-reliable administrations and scorings.
Site-specific details are available at http://fcon_1000.projects.
nitrc.org/indi/abide. Given participant ages (46 years) and IQ,
most were evaluated with ADOS Modules 3 or 4. Average ADOS
total scores were similar across sites, suggesting consistency in
ASD severity. Calibrated severity scores (computed using the
new ADOS algorithm for Modules 1, 2 and 3)50 were available for
nine sites and confirmed this pattern. DSM-IV-TR diagnostic
subtypes were provided by 80% of sites. Consistent with

Figure 2. Whole-brain intrinsic functional connectivity analyses. (a) Significant group differences (that is, autism spectrum disorders (ASDs) vs
typical controls (TCs)) for intrinsic functional connectivity between each of the 112 parcellation units (56 per hemisphere) included in the
structural Harvard–Oxford Atlas. Parcellations are represented with their center of mass overlaid as spheres on glass brains. The upper panel
shows the intrinsic functional connections (blue lines) that were significantly weaker in ASD vs TC. The lower panel shows the intrinsic
functional connections that were significantly stronger in ASD relative to TC (red lines). Each Harvard–Oxford Atlas unit is colored based on its
membership in the six functional divisions as per Mesulam et al.44 (yellow¼primary sensorimotor (SM); green¼unimodal association;
blue¼heteromodal association; orange¼paralimbic; red¼ limbic; pink¼ subcortical). Interhemispheric intrinsic functional connectivity is
noted on dorsal and coronal views. Glass brains (left lateral, dorsal and coronal views, shown from left to right) are generated using BrainNet
Viewer (http://www.nitrc.org/projects/bnv/). Displayed results are corrected for multiple comparisons using false discovery rate at Po0.05. (b)
The table summarizes the absolute number and percentage of node-to-node intrinsic functional connectivity surviving statistical threshold for
group comparisons within and between functional divisions. Gray cells represent the absence of significant intrinsic functional connectivity,
blue cells represent ASD-related hypoconnectivity (Hypo: ASDoTC), while red cells represent hyperconnectivity (Hyper: ASD4TC). Blue and
red shadings decrease proportionally from the highest percentage (37%) to the lowest (B0%). See Supplementary Tables 4–6 for results
based on lobar and hemispheric divisions, as well as for those based on the Crad-200 functional parcellation and Supplementary Information
for further discussion on the approach.
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correlation coefficients were Fisher transformed to Z-scores. To facilitate
data characterization and interpretation, we sorted connections based on
lobar (that is, frontal, temporal, parietal, occipital, subcortical) and functional40

(that is, heteromodal, unimodal, primary somatosensory, paralimbic, limbic,
subcortical) classifications. In addition, following prior results,41 we sorted
findings based on hemispheric configuration (intrahemispheric, homoto-
pic, heterotopic) using the structural parcellation (Crad-200 does not
provide explicit homotopic regions).

Regional measures. The following voxel-wise regional metrics were
generated for each participant: (1) ReHo,36 which represents the average
Kendall’s Tau correlation between a given voxel’s time series and its

26 adjacent neighbors; (2) VMHC,37 which represents the correlation
between a voxel and its opposite hemisphere counterpart on a symmetric
template; (3) fALFF,32 a frequency domain metric reflecting the ratio
between the amplitude of fluctuations in the 0.01–0.1 Hz band and the
total amplitude within the sampled periodogram; and (4) DC,30,31 a
measure of the connectome graph indexing the number of direct
connections for a given node (voxel).

Default network iFC. To demonstrate the utility of the large-scale
aggregate data set in testing existing hypotheses, we conducted a
targeted seed-based correlation examination to test previous suggestions
of default network hypoconnectivity in ASD.23,25,42–44 We focused on its

Figure 1. Autism Brain Imaging Data Exchange (ABIDE) sample characteristics. (a) Total number of participants per group (green¼ typical
controls (TCs); purple¼ autism spectrum disorders (ASDs)) for each contributing site ordered as a function of sample size (labeled
alphabetically, see Supplementary Table 2 for label key). The same site labels are used for (b–f ). (b) Number of male subjects (blue-white) and
female subjects (red) for each site irrespective of diagnostic group (groups were matched for sex). (c) Age (in years) for all individuals per site
(ordered by youngest age included per site) irrespective of diagnostic group (groups were age matched). Each site’s mean is represented as a
solid red line; the median age across sites (14.7 years) is depicted with a thick red dashed line; 25th, 75th and 90th percentiles (11.7, 20.1 and
28.3 years, respectively) are represented by thin red dashed lines. (d) Distribution of full IQ (FIQ) standard scores per site (ordered by lowest
FIQ included per site) for individuals with ASDs (purple, left plot) and TCs (green, right plot), respectively. Solid black lines indicate mean FIQ
per site. (e) The Tukey’s box-whiskers plots depict the distribution of Total Autism Diagnostic Observation Scale (ADOS) scores (that is, sum of
scaled Communication and Reciprocal Social interaction subtotals) for individuals with ASDs in the 13 sites using the ADOS. (f ) Number of
probands assigned to specific ASD diagnostic categories per site. Categories were DSM-IV-TR (fourth and text revised edition of the Diagnostic
and Statistical Manual of Mental Disorders) autistic disorder (red), Asperger syndrome (aqua green), and pervasive developmental
disorder-not otherwise specified (PDD-NOS) (light blue) and individuals identified as ASD but not further differentiated into specific
DSM-IV-TR subtypes (gray). Data displayed in panel d and panel e were imputed as described in the main text.
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Functional System and Areal Organization of a Highly Sampled Individual Human Brain
Laumann, et al, Neuron 2015

http://myconnectome.org/ + 120 subjects from Washington University 

showed only local differences in functional connectivity and
essentially no long-range differences. Furthermore, a direct
comparison of RSFC maps, vertex by vertex, between the indi-
vidual and the group confirmed a group-individual discrepancy
in the example lateral frontal region of Figure 7, as well as
many other focal regions with distinct patterns of RSFC (Fig-
ure S6A, top row). To ensure that the observed differences
between the primary subject and the group were not related to
differences between scanners and fMRI sequence parameters,
an additional validation dataset (100 min eyes-closed rest) was
collected on the primary subject at the Washington University
site with the same fMRI sequence as the group data. The focal
individual versus group differences were replicated in the valida-
tion dataset (Figure S6A, second row).
To evaluate whether such focal differences are unique to this

particular highly sampled individual or a more general feature
of individual brain organization, we collected an extensive data-
set (ten runs of 30min) on an additional subject (‘‘secondary sub-
ject’’). The Infomap-based community detection result at several
edge densities are reported for this individual and comparedwith
the group system map in Figure S7. This second individual also

exhibited many of the same systems as the group data. As this
individual’s data were collected with eyes open, it should be
noted that, unlike the primary subject, this individual did not
have a separate primary visual system but did have a separate
ventral somatomotor system (Figure S7, middle rows). Further,
focal differences between this second individual and the group
were observed primarily in frontal and parietal regions (Figure S7,
bottom row), as in the primary subject, although the exact loca-
tions were different. Together, these observations illustrate the
existence of idiosyncratic topological features in functional brain
organization specific to each individual.

DISCUSSION

We present a description of the functional organization of a sin-
gle human brain, based on functional MRI measurements
repeatedly sampled over more than a year. Resting-state corre-
lation-based functional organization was highly reproducible in
this individual. The areal parcellation derived from resting state
data corresponded with aspects of retinotopically defined visual
areas and fMRI responses to task paradigms in the same
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Figure 5. Across-Session Compared with Across-Subject Variability in Resting State Correlations
(A) Top: parcel-to-parcel correlation standard deviation (SD) across sessions based on the individual subject parcellation and system assignment (see Figure S1).

Bottom: the average correlation SD for each parcel across all of its connections.

(B) Top: parcel-to-parcel correlation SD across subjects using the group parcellation and system assignment reported in Gordon et al. (2014b). Bottom: the

average correlation SD for each parcel across all of its connections.
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Mostly resting state retrospective data sharing

http://fcon_1000.projects.nitrc.org/indi/IndiRetro.html



Mostly resting state prospective data sharing

http://fcon_1000.projects.nitrc.org/indi/IndiPro.html



Examples of cross-site data collection
• Consortia with common experimental paradigms
– ADNI (Alzheimer’s Disease)
– Human Connectome Projects

• Consortia with common populations
– NDAR (National Database for Autism Research)
– FITBAR (Traumatic Brain Injury)
– dbGaP (Genotypes + phenotypes)
– ABIDE (Autism)
– ADHD-200
– ENIGMA (Imaging + Genetics)
– FBIRN (Standardization across sites)



More places to put or access data
• Full fMRI time series

– Openfmri.org
– central.xnat.org
– fcon_1000.projects.nitrc.org (and nitrc.org)
– incf.org/resources/data-space/
– COINS coins.mrn.org
– www.painrepository.org
– nidb.sourceforge.net
– ida.loni.usc.edu
– Alzheimers: gaain.org
– Pediatrics: pingstudy.ucsd.edu

• Statistical Maps or clusters
– BrainMap.org
– Neurosynth.org
– Neurovault.org
– anima.modelgui.org Meta-analyses

• Atlases & templates!



Large investments in collecting data for sharing
Centralized data collection and preliminary analyses

While important, these projects are rare, risky, and expensive



Human Connectome Project example
How do you share 50+ Terabytes of fMRI data?

• If you want the first 500 
subjects of data, they’ll 
mail you five 4 Terabyte 
drives for $750.

• Parts of the data are 
available online to 
download or explore.



National Database for Autism Research

• NDAR data lives on the aws.amazon.com
• Data is at one location
• Users need accounts & access, but don’t need 

local data
• Computer use costs money, but you can scale 

with the computational power you need & 
you don’t need to buy super-powerful local 
computers

• As fast or slow as other AWS websites



Documentation and provenance examples

• Brain Imaging Data Structure (BIDS) 
bids.neuroimaging.io

• Neuroimaging Data Model nidm.nidash.org/
– Automated ontology for understanding statistical maps

• NIF (Neuroscience Information Framework)
– Ontology for all of neuroscience

• Data processing scripts
• AFNI software realtime output and history flags 



Washington University - University of Minnesota Consortium 
of the Human Connectome Project: Data Use Agreement

(abridged)

• I will not attempt to establish the identity of or attempt to contact any of the 
included human subjects.

• I understand that under no circumstances will the code that would link these data 
to Protected Health Information be given to me, nor will any additional information 
about individual human subjects be released to me.

• I will comply with all relevant rules and regulations imposed by my institution. This 
may mean that I need my research to be approved or declared exempt by a 
committee that oversees research on human subjects, e.g. my IRB or Ethics 
Committee. The released HCP data are not considered de-identified, insofar as 
certain combinations of HCP Restricted Data (available through a separate process) 
might allow identification of individuals.

• I will acknowledge the use of WU-Minn HCP data… when publicly presenting any 
results or algorithms that benefitted from their use.

• Authors of publications or presentations using WU-Minn HCP data should cite 
relevant publications describing the methods used by the HCP…

• Failure to abide by these guidelines will result in termination of my privileges to 
access WU-Minn HCP data.



Conclusions

• fMRI data sharing is growing very rapidly
• It has the potential to greatly increase our 

understanding of the brain
• Practical, technological, financial, and ethical 

barriers remain, but are disappearing fast!



Questions?

http://xkcd.com/1403/


