Dynamic Resting State fMRI

Javier González-Castillo

Section on Functional Imaging Methods, NIMH, NIH

June 2016, National Institutes of Health, Bethesda, MD

FIM

Agenda

WHAT IS BOLD FUNCTIONAL CONNECTIVITY DYNAMICS?

- Original observations
- Spatial Distribution
- Relationship to Structural Connectivity

RELATIONSHIP TO COGNITION / DISEASE

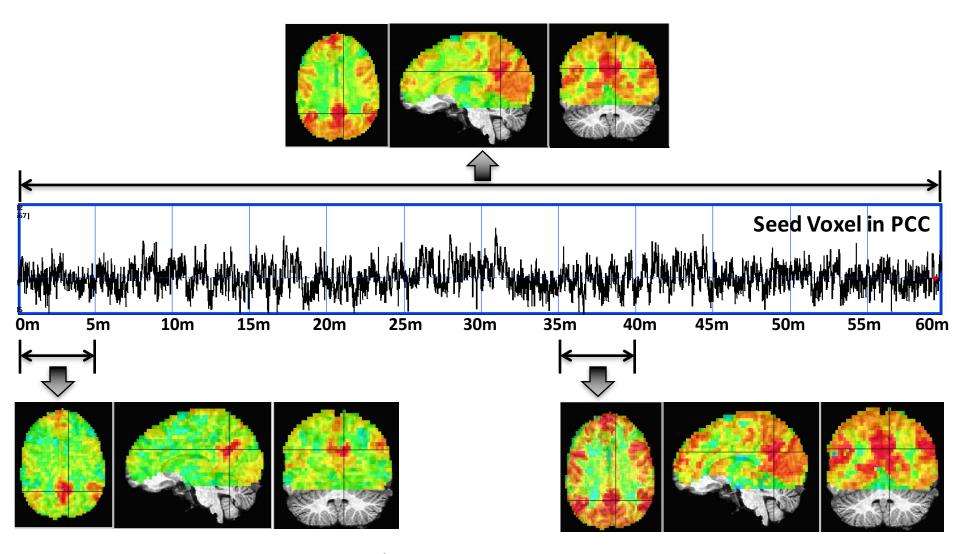
- Sleep Staging based on Dynamic FC Changes.
- Cognitive State Detection based on Dynamic FC Changes.
- Disruption of Dynamic FC Patterns in patient populations.

SOME COMMENTS ON METHODOLOGY

- Interpretational Issues with Sliding Window Correlation
- Dynamic Conditional Correlation (DCC)
- Single-volume Co-Activation Patterns (CAPs)

CONCLUSIONS

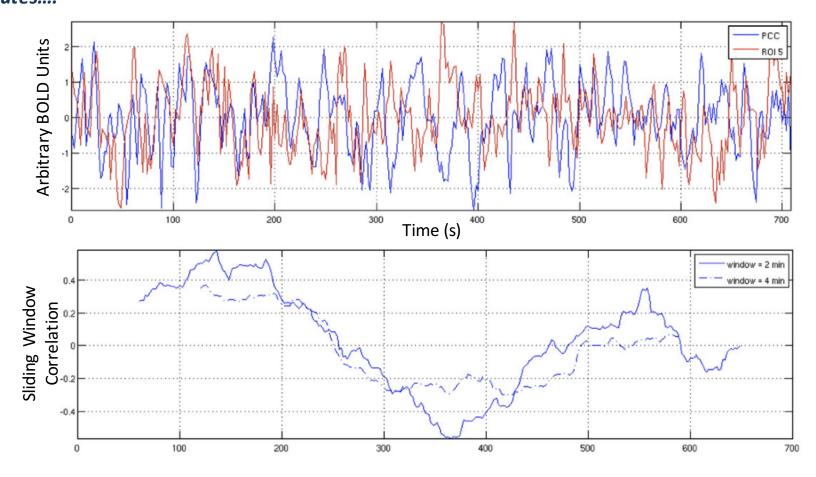
WHAT IS BOLD FUNCTIONAL CONNECTIVITY DYNAMICS



60 Minutes of Continuous Rest Data | TR = 1s

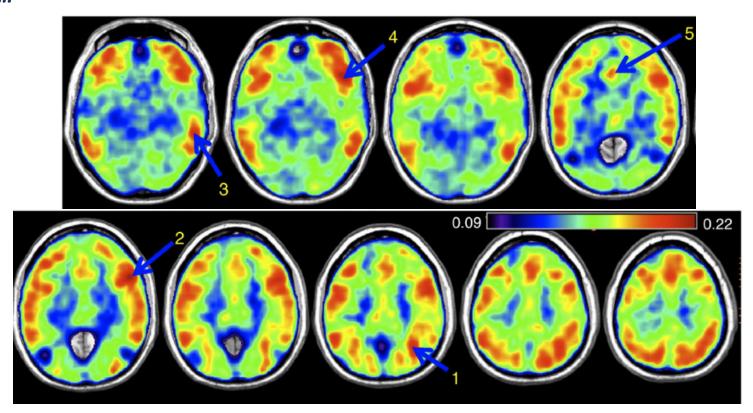
Original Observations (I)

"Most studies of resting-state functional connectivity using fMRI employ methods that assume temporal stationarity, such as correlation and data-driven decompositions computed across the duration of the scan. However, evidence from task-based fMRI studies and animal electrophysiology suggests that functional connectivity may exhibit changes within the time scale of seconds to minutes...."



Original Observations (I): Dynamic behavior varies across regions

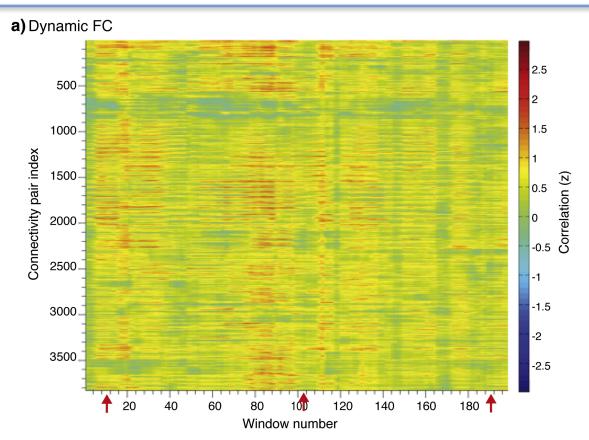
"Most studies of resting-state functional connectivity using fMRI employ methods that assume temporal stationarity, such as correlation and data-driven decompositions computed across the duration of the scan. However, evidence from task-based fMRI studies and animal electrophysiology suggests that functional connectivity may exhibit changes within the time scale of seconds to minutes...."



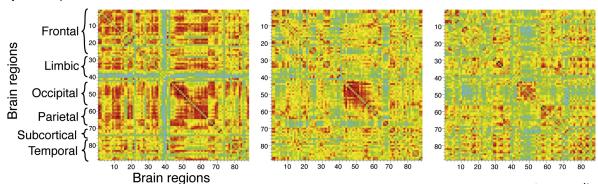
"...Although it is unclear whether the observed coherence and phase variability can be attributed to residual noise or modulation of cognitive state, the present results illustrate that resting-state functional connectivity is not static, and it may prove valuable to consider measures of variability, in addition to average quantities, when characterizing resting state."

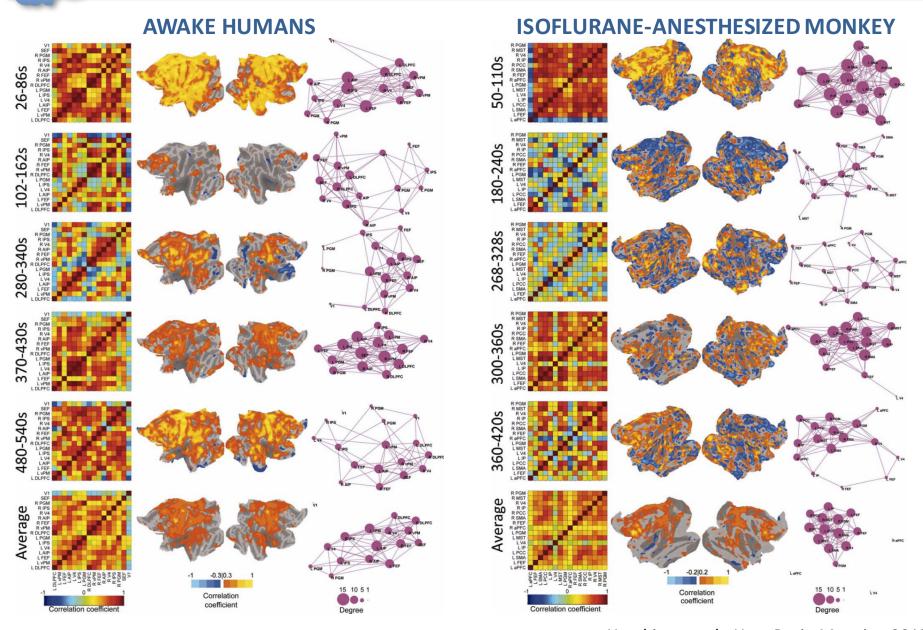
Chang & Glover, NeuroImage 2009

Original Observations (II): Short Term FC can strongly deviate from Average Patterns



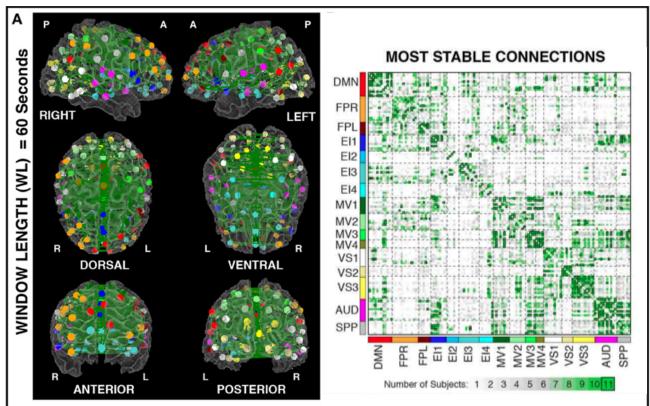
b) Example FC networks

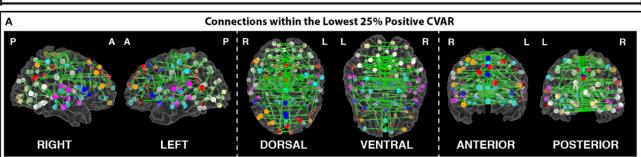




Hutchison et al., Hum Brain Mapping 2013

Spatial Distribution of Short Term FC Stability (I) – Most Stable Connections

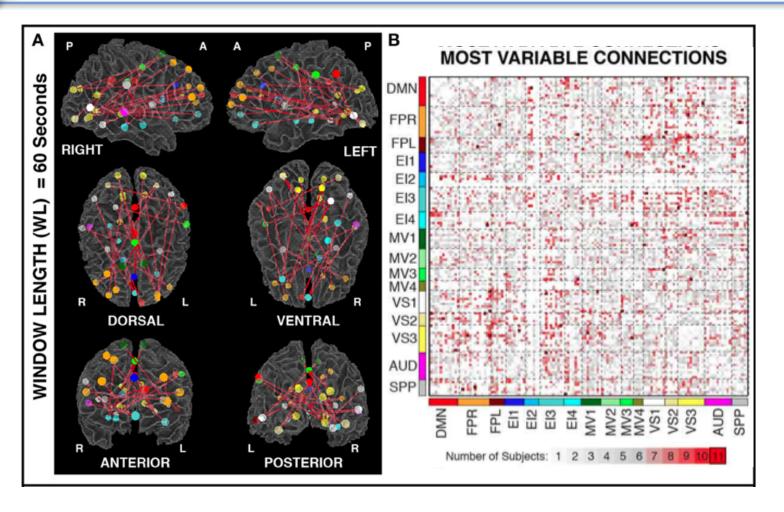




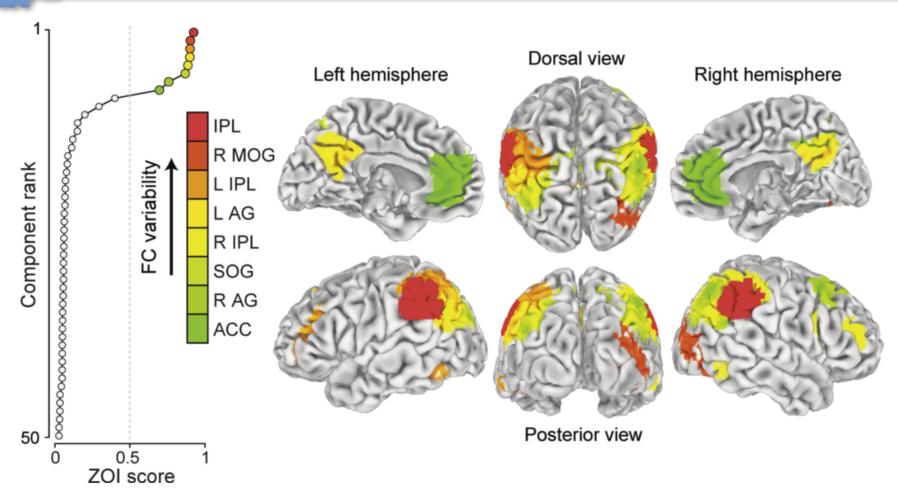
Mostly symmetric, interhemispheric connections between homologous right/left regions.

Only account for 32% of intranetwork connections → Networks are flexible

Unimodal sensory-motor networks (VIS, AUD and MV) seems to be among the most stable.

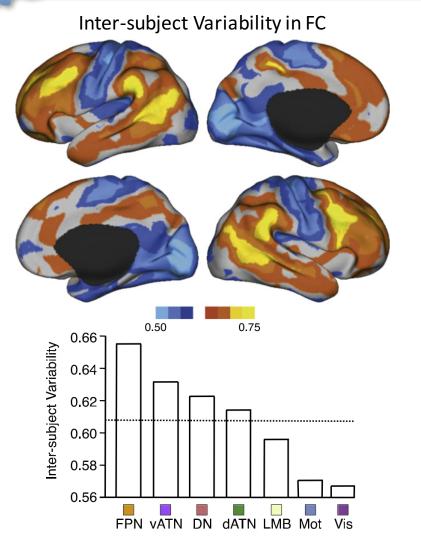


Most Variable Connections correspond primarily inter-network, inter-hemispheric connections involving the fronto-parietal network and occipital regions. Also some DMN regions.

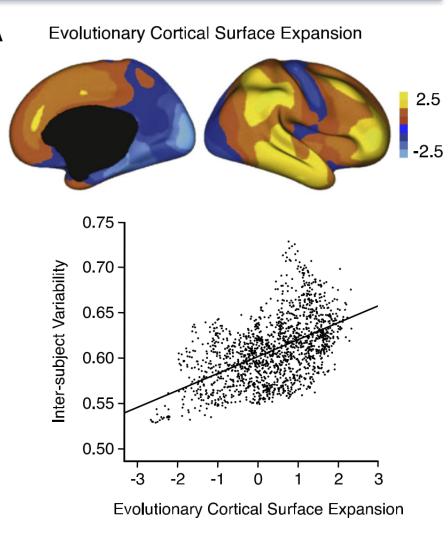


ZONE OF INSTABILITY: Set of Intrinsic Connectivity Networks with the most variable FC based on approx. 6 min long rest scans acquired on a group of 405 young adults and using a window length of 44 seconds.

Overlap with regions of high inter-subject variability in stationary FC



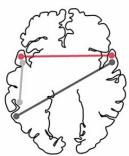
Higher inter-subject variability in FC in heteromodal association cortex and lower variability in unimodal cortex.



Functional Connectivity variability is highly correlated with evolutionary cortical surface expansion.

Mueller et al. Neuron, 2013

FC Dynamics & Anatomical Connectivity (II)



Connection type: intrahemispheric (i) heterotopic (he) homotopic (ho) Ho: Interhemispheric connections between homologous rois

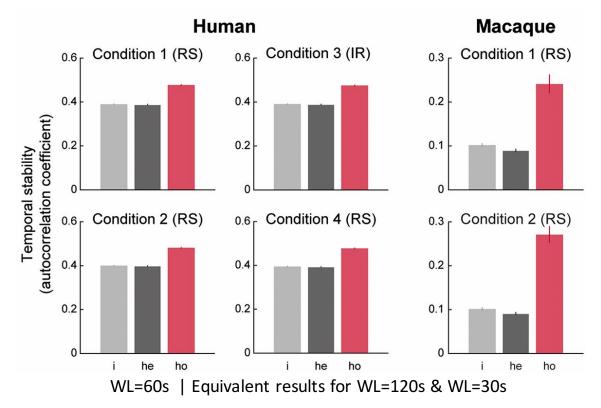
He: Interhemispheric connections between non-homologous rois

Intrahemispheric connections.

Human Data: 2 Conditions Rest | Induced Negative Rumination

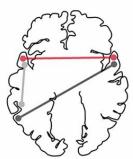
Macaque Data: 1 Condition Light Anesthesia

Across conditions & species, Homotopic FC is the most stable of all 3 types of connections.



Shen et al. PNAS 2015

FC Dynamics & Anatomical Connectivity (II)



Connection type: intrahemispheric (i) heterotopic (he) homotopic (ho) Ho: Interhemispheric connections between homologous rois

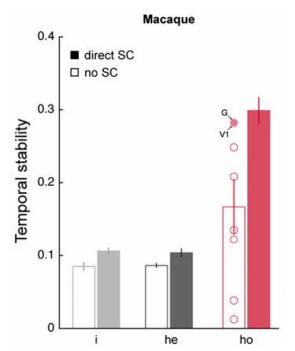
He: Interhemispheric connections between non-homologous rois

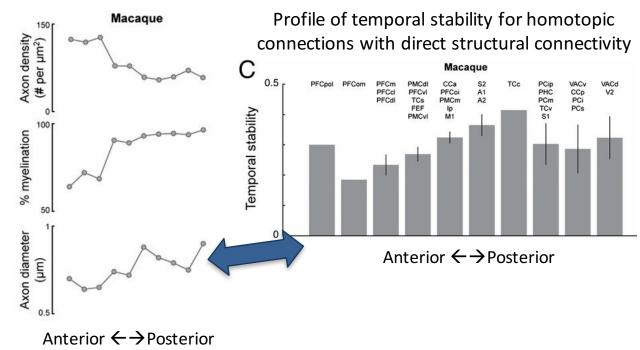
Intrahemispheric connections.

Human Data: 2 Conditions Rest | Induced Negative Rumination

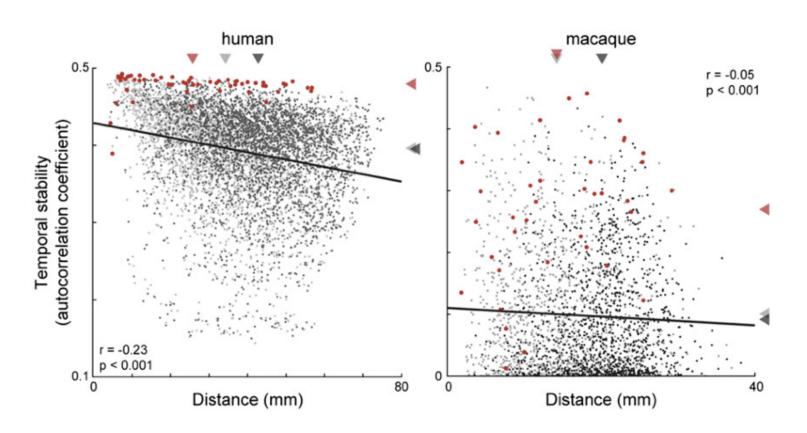
Macaque Data: 1 Condition Light Anesthesia

Temporal stability of homotopic FC is facilitated by direct anatomical projections and their conduction characteristics

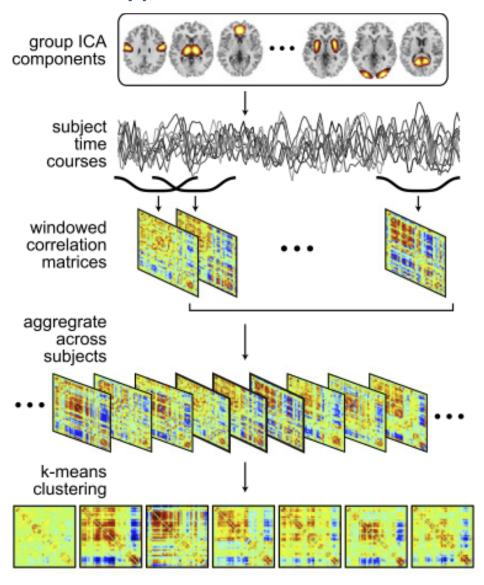




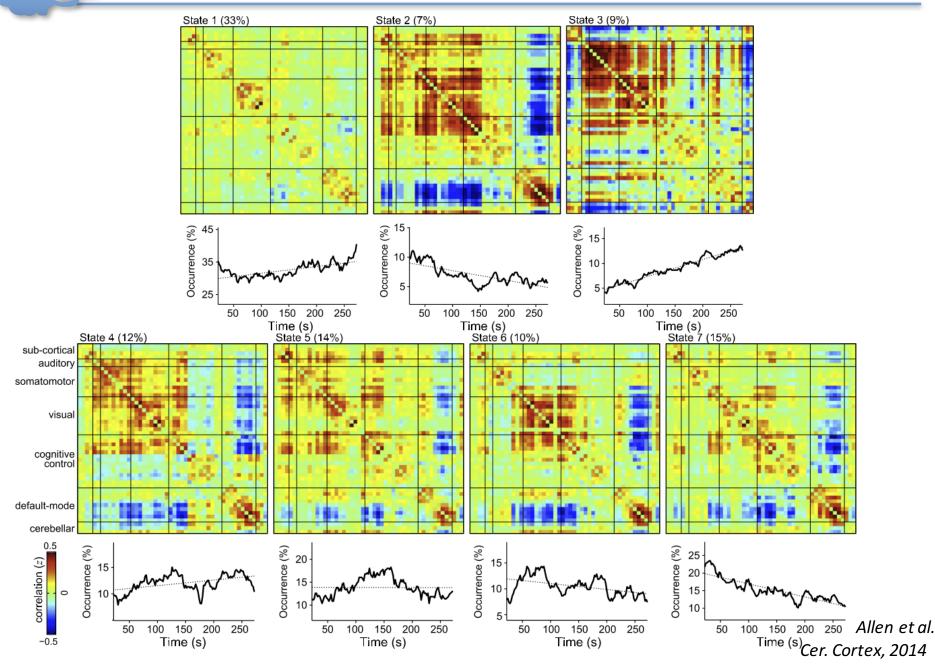
(5) FC Stability independent of distance



FUNCTIONAL CONNECTIVITY STATES: a series of re-occurring short-term (in the order of seconds) whole-brain connectivity patterns that are common across subjects.



Reproducible Short-term patterns of FC - Connectivity States

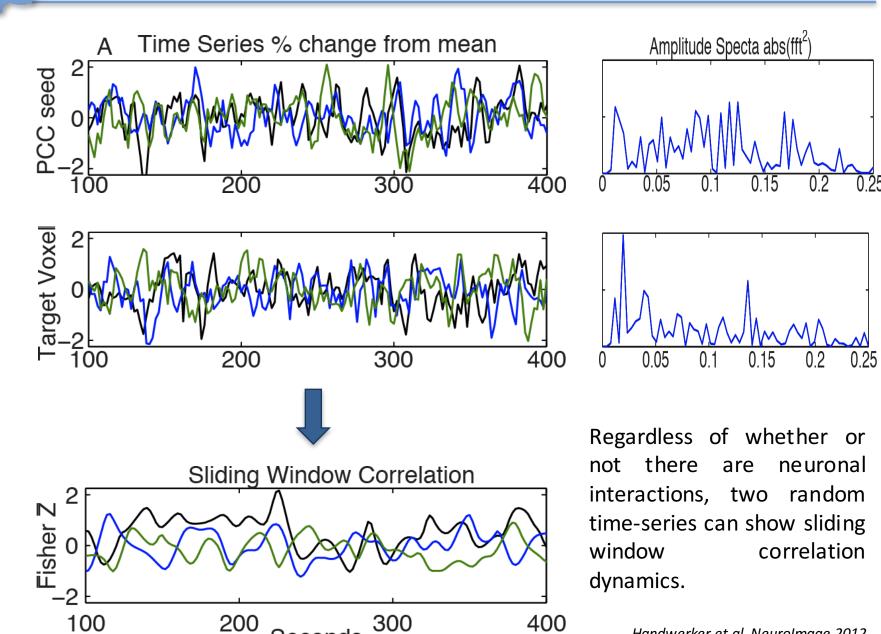


FC Dynamics – Interim Conclusions (I)

- FC exhibit a rich dynamic behavior at the scale of minutes to seconds.
- **Present both in awake humans, as well as, anesthetized macaques.**
- Observed short-term FC patterns can deviate significantly from average/stationary FC patterns.
- **FC** Dynamics have well defined spatial patterns:
 - Interhemispheric Homotopic Connections are among the most stable.
 - Heterotopic Connections are among the most variable.
- **Spatial distribution of FC Dynamics overlap with:**
 - Spatial maps of Between-Subject Long Term FC Stability.
 - Spatial maps of evolutionary cortical expansion.
- **There are reproducible re-ocurring patterns of whole brain connectivity common across subjects, commonly referred to as "Functional Connectivity States".**
 - Depart substantially from average connectivity patterns (networks break down).
 - Have the potential to be biologically/cognitively meaningful.

RELATIONSHIP TO COGNITIVE/MENTAL STATES & PRELIMINARY CLINICAL

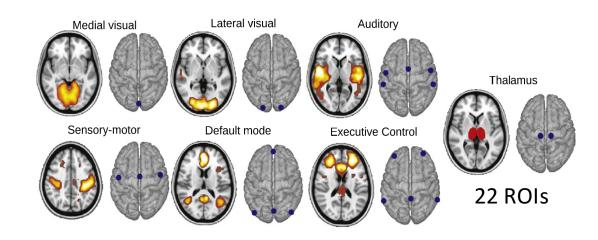
APPLICATIONS

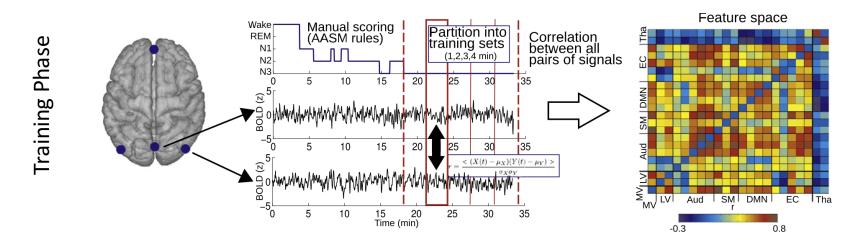


Seconds

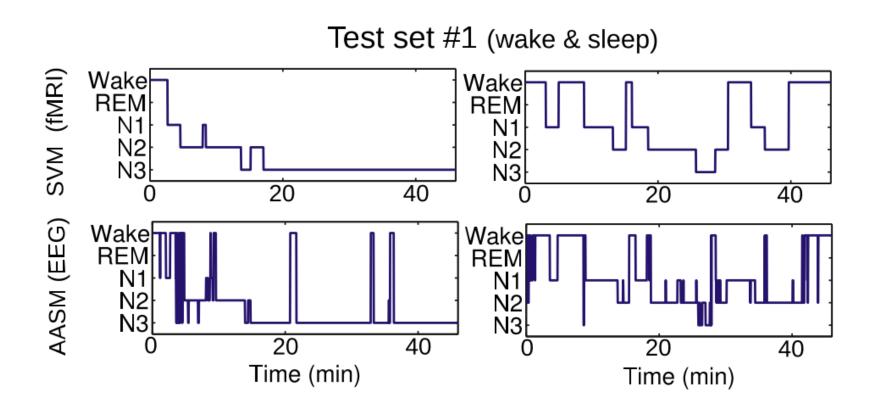
FC Dynamics vs. Sleep Stages

- Concurrent BOLD fMRI and EEG Recordings.
- Approx. 50 min long scans.
- Manual Sleep Staging based on EEG/AASM Criteria.
- WL = 60 s 4 minutes

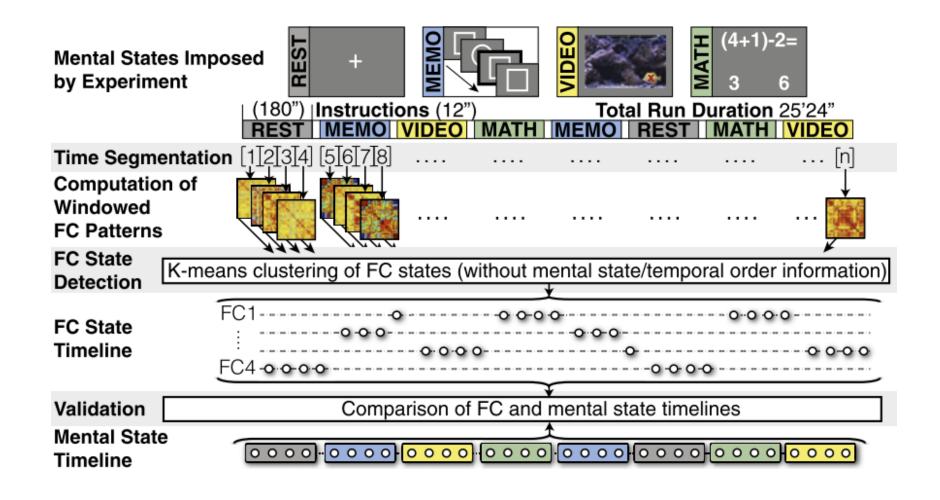




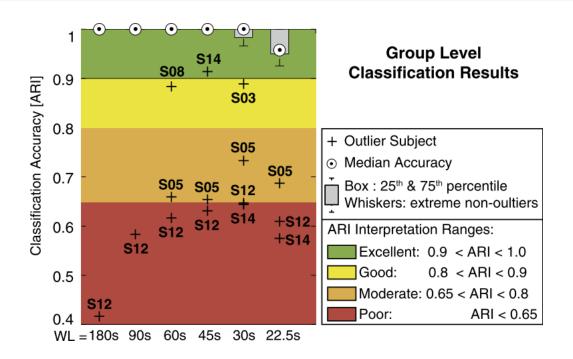
Algorithm: Multi-level Support Vector Machine

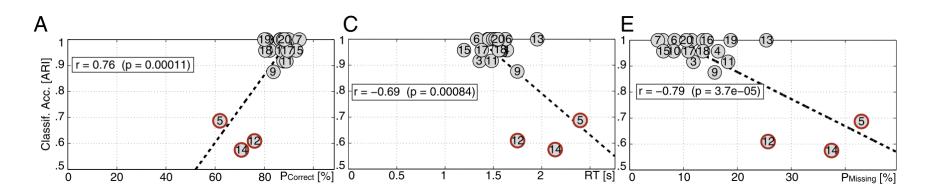


80% Accuracy for WL = 2 mins and above



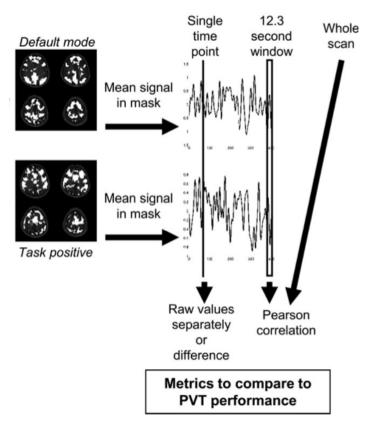
FC Dynamics vs. Mental States Imposed by Task (II)





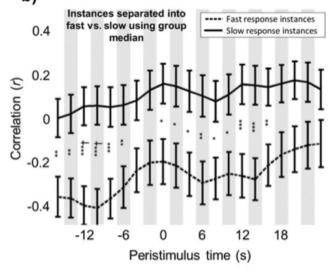
Examined the relationship between a psychomotor vigilance task and the interacting default mode and task positive networks.

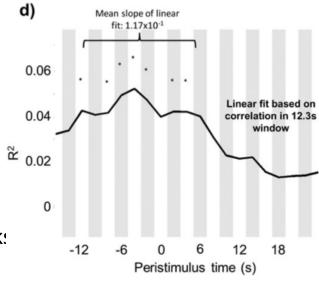
b)



TR = 300ms

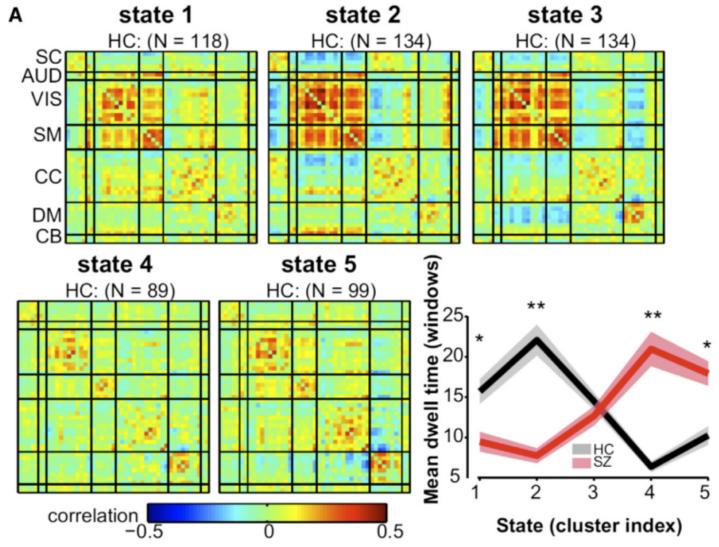
In most cases, more anti-correlation between networks was significantly related to faster performance.





Thompson et al. Human Brain Mapping 2013

Alterations of Dynamic Connectivity & Disease (I): Schizophrenia



Dynamic states in a large (n > 300) data set of schizophrenia patients and controls in which the patients are spending significantly more time in the relatively less connected state 4.

Dynamic changes in FC at the scale of seconds to minutes can be used to:

- Reliably perform automatic sleep staging at the single subject level.
- Discriminate between externally imposed mental states at the single subject level.
- Predict Task performance on an individual basis.

Huge Diversity of Experimental and Analytical Methods:

- Differences in Acquisition: scan durations / TRs / window lengths
- Differences in Pre-processing:
- Differences in Parcellation Scheme: number of ROIs / selection criteria / coverage
- Differences in Metrics used to Capture FC Dynamics
- Differences in classification/grouping algorithms: SVM / K-means / Similarity
- Differences in validation schemes: None / Tasks / Populations

Comparison / Consolidation of Results is quite challenging.

Some groups already working on potential clinical applications based on measures of dynamic FC

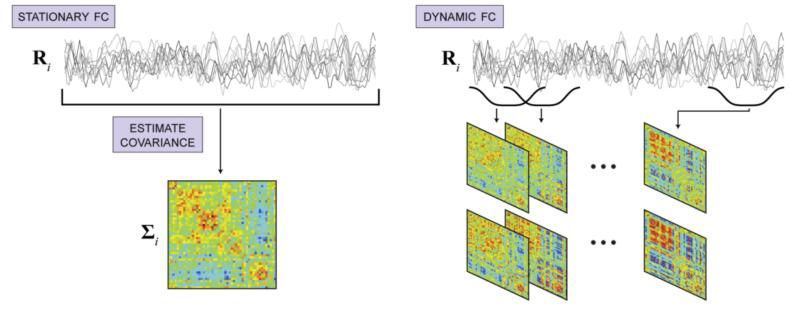
Schizophrenia, Bipolar Disorder, Alzheimer's, Multiple Sclerosis...

SOME METHODOLOGICAL CONSIDERATIONS

FIM

Sliding Window Analysis

Perhaps the most commonly used strategy for examining dynamics.



What window type to use?

What window length?

What window step?

PROS:

- It seems easy to interpret.
- It seems to capture phenomena with potential biological/neuronal relevance.

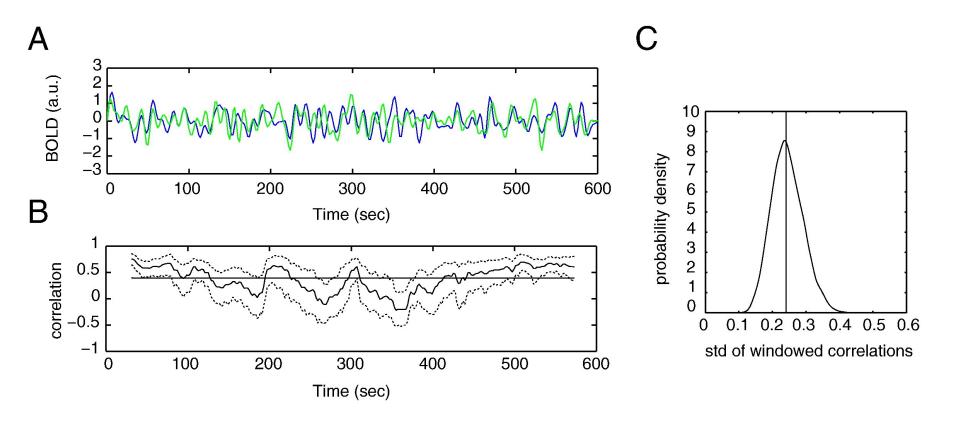
CONS:

- Too small windows may render correlation estimates unreliable.
- Interpretation is more complex that it seems.

Sliding Window Analysis

"... pitfall is **to identify an observed value of a test statistic with its true underlying value**. This means that the mere presence of fluctuations in an observed FC time series is taken as evidence for the presence of dFC. The pitfall is that of overlooking the fact that the observed FC values are estimates of the true (and unobservable) values, and hence, are subject to statistical uncertainty...

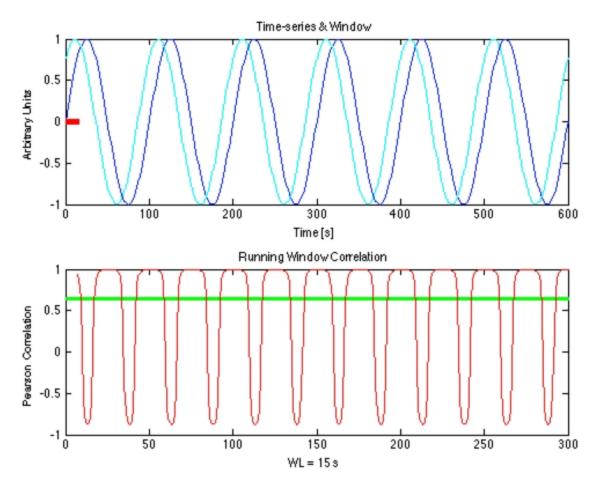
...Thus, to decide whether fluctuations in an observed FC time series are due to statistical uncertainty or reflect true changes in population FC, an appropriate statistical test has to be carried out."



Hindriks et al. NeuroImage 2016

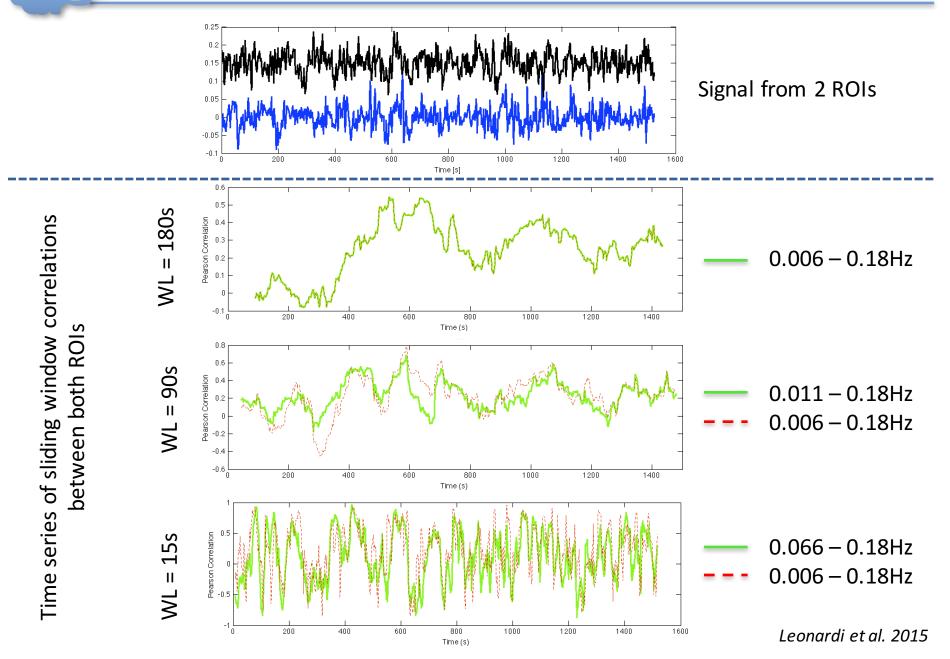
Sliding Window Correlation: Spurious Correlations (I)

WL < 1 Period of slower fluctuation → Spurious fluctuations in correlation traces will appear

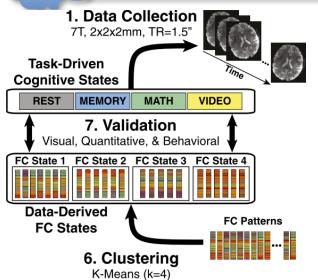


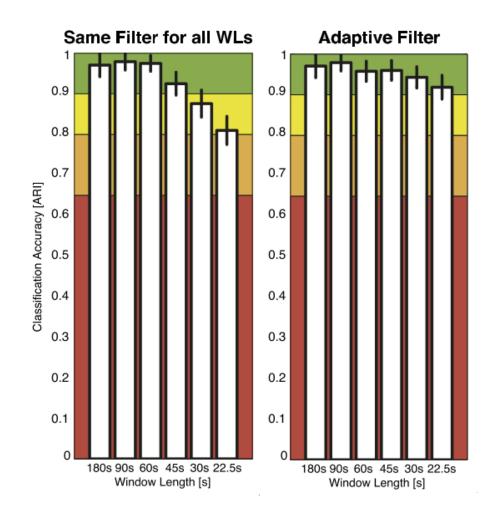
<u>WORK AROUND</u>: to avoid this confound, we must high pass filter the data $(F_{min}=1/WL)$ according to the window lengths (WLs) used during the analysis

Sliding Window Correlation: Spurious Fluctuations (II)



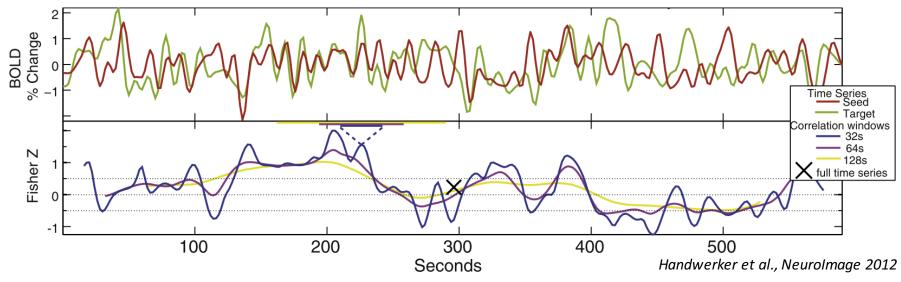
Sliding Window Correlation: Spurious Fluctuations (II)



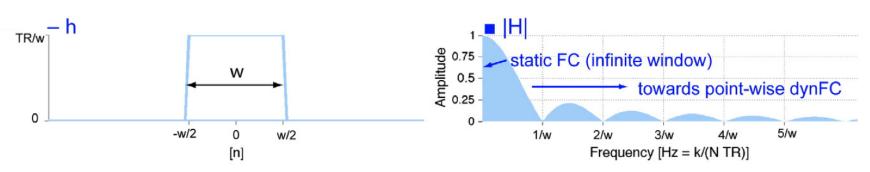


Sliding Window Correlation: Window Length vs. Amount of Fluctuation

<u>COMMON OBSERVATION</u>: The longer the window, the less the observed variability in Dynamic FC.



BE AWARE: The sliding window acts as a low pass filter with cutoff frequency F_{max} =1/WL on the resulting traces of dynamic connectivity (e.g., sliding window correlation traces).

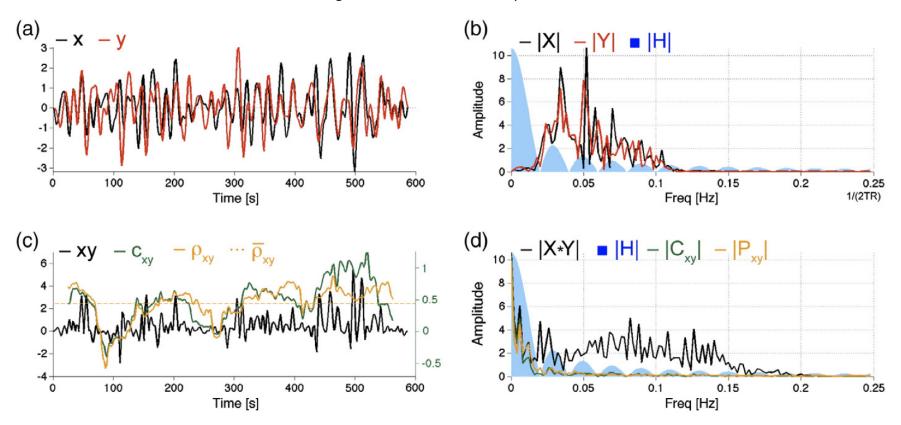


Window in Time Domain

Window in Frequency Domain

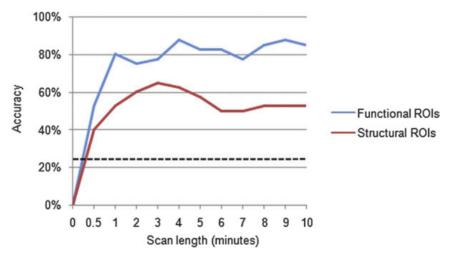
Sliding Window Correlation: Window Length vs. Amount of Fluctuation

 $WL = 50s \rightarrow Fmin_{signals} = Fmax_{observedDynamicConn} = 0.02 Hz$



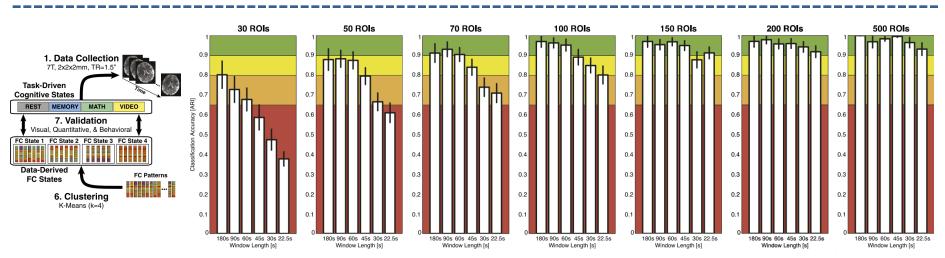
- (1) Spurious fluctuations in dynFC can be limited by appropriate high pass filtering (1/WL).
- (2) Remaining fluctuations in dynFC will be low-pass filtered (1/WL).
- (3) Smaller windows and/or longer TR \rightarrow greater influence of noise in estimation of dynFC.

Functional Connectivity States: Parcellation Selection



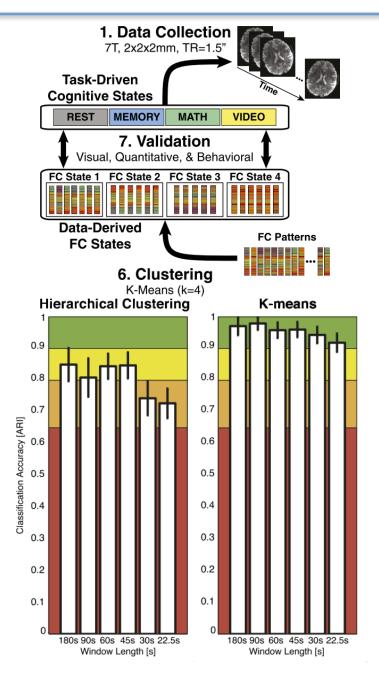
Functionally defined ROIs seem to perform better than Anatomically defined ROIs.

Shirer et al. Cerebral Cortex 2012



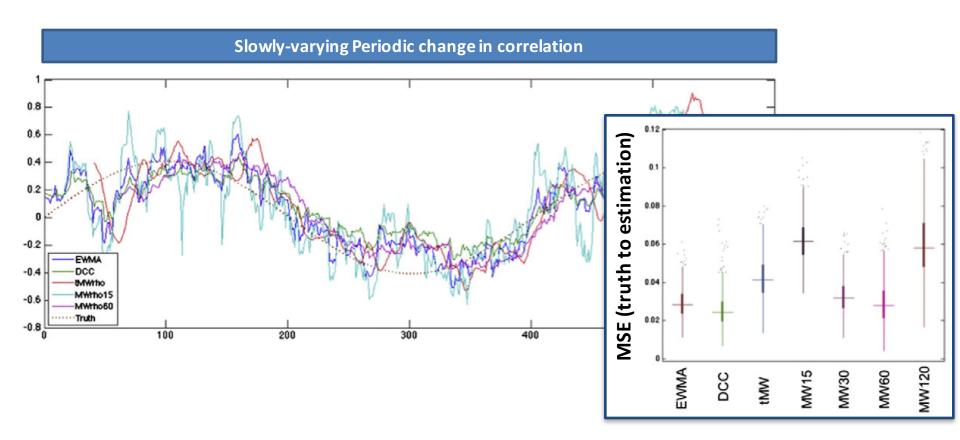
"More smaller ROIs" seem to perform better than "Less larger ROIS"

Functional Connectivity States: Clustering Algorithm



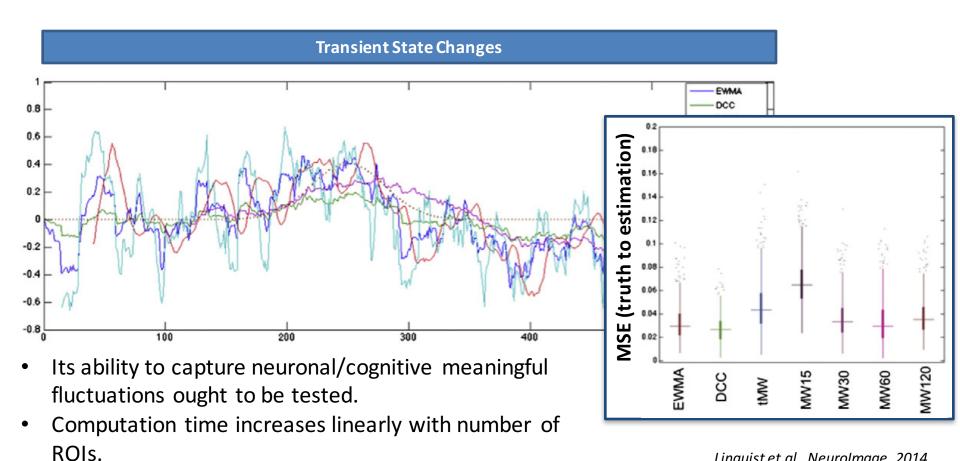
<u>DCC:</u> A model for computation of time-varying variances and correlations in non-stationary time-series borrowed from the financial literature (multivariate volatility models).

- Does not requires a-priori selection of window length.
- Robust against previously discussed limitations of the sliding window correlation.



DCC: A model for computation of time-varying variances and correlations in nonstationary time-series borrowed from the financial literature (multivariate volatility models).

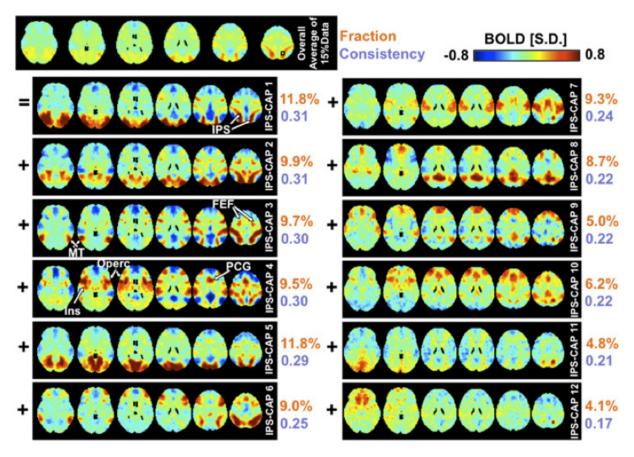
- Does not requires a-priori selection of window length.
- Robust against previously discussed limitations of the sliding window correlation.



Co-Activation Patterns (CAPs)

Cluster selected individual BOLD volumes of a resting-state scan based on spatial similarity.

Use resulting cluster centroids, defined as "co-activation patterns" (CAPs), to characterize a set of representative instantaneous configurations of BOLD activity.



FIM

General Conclusions / Open Questions

- **BOLD Functional Connectivity exhibit rich spatio-temporal dynamic behavior at the scale of seconds to minutes.**
- **Short-term patterns significantly differ from whole-scan average patterns. Some of** these short-term patterns re-occur in time and are consistent across subjects.
- * Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic neural activity patterns underlying critical aspects of cognition and behavior.
- **Temporal features of FC could serve as a disease biomarker.**

- **Better understand which methods actually capture biologically and neuronally relevant functional connectivity dynamics.**
- **★** It is unclear the extent to which dynamic FC is best conceptualized as a multi-stable state space wherein multiple discrete patterns recur, or whether it simply varies along a continuous state space.
- The study of dynamic FC raises the issue that the concept of a "network" is rather elusive, hinging (among other factors) upon the time-scale over which it is defined.

Some Guidelines

Data Acquisition

- Spatial <-> Temporal Resolution → Temporal Resolution is key.
- Consider the use of Multi-Band/Multi-Slice Acquisition Techniques.

Data Pre-processing

- Use appropriate filtering.
- Consider using a combination of methods.
- Temporal Windows of interest (25s 60s).

❖ Parcellation Scheme

- Functionally defined ROIs seem to outperform anatomically defined ROIs.
- "More smaller ROIs" better than "Less larger ROIs".

Interpretational Challenges

- Control for obvious sources of variability: motion/physiological noise/scanner.
- When possible, design your experiment so that you can validate results.

❖ Two Excellent Reviews

- Hutchison et al. "Dynamic Functional Connectivity: Promise, Issues, and Interpretations" NeuroImage 80:360-378 (2012).
- Calhoun et al. "The Chronnectome: Time-varying connectivity networks as the next frontier in fMRI Data Discovery" Neuron 84(2): 262 274 (2014).

Acknowledgements

Section on Functional Imaging Methods

Peter A. Bandettini
Daniel A. Handwerker
Puja Panwar
Dave Jangraw
Laurentius Huber
Ben Gutierrez
Adam Thomas

Functional MRI Facility

Sean Marret
Vinai Roopchansingh
Souheil Inati
Andy Derbishire

Scientific and Statistical Computing Core

Robert W. Cox Daniel Glen Richard Reynolds Gang Chen

Advanced MRI

Catie Chang

