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FIM Agenda

WHAT IS BOLD FUNCTIONAL CONNECTIVITY DYNAMICS?

e Original observations
e Spatial Distribution
* Relationship to Structural Connectivity

RELATIONSHIP TO COGNITION / DISEASE

e Sleep Staging based on Dynamic FC Changes.
* Cognitive State Detection based on Dynamic FC Changes.
* Disruption of Dynamic FC Patterns in patient populations.

SOME COMMENTS ON METHODOLOGY

* Interpretational Issues with Sliding Window Correlation
* Dynamic Conditional Correlation (DCC)
* Single-volume Co-Activation Patterns (CAPs)

CONCLUSIONS




WHAT IS BOLD FUNCTIONAL
CONNECTIVITY DYNAMICS



FIM fMRI Connectivity Dynamics: DEFINITION
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Seed Voxel in PCC

60 Minutes of Continuous Rest Data | TR=1s

Gonzalez-Castillo et al., Frontiers in Neuroscience 2014



p Original Observations ()

“Most studies of resting-state functional connectivity using fMRI employ methods that assume
temporal stationarity, such as correlation and data-driven decompositions computed across the
duration of the scan. However, evidence from task-based fMRI studies and animal electrophysiology

suggests that functional connectivity may exhibit changes within the time scale of seconds to
minutes....”

—PCC

Arbitrary BOLD Units

o
o

Sliding Window
Correlation

Chang & Glover, Neurolmage 2009



FIM Original Observations (1):Dynamic behavior varies across regions

“Most studies of resting-state functional connectivity using fMRI employ methods that assume
temporal stationarity, such as correlation and data-driven decompositions computed across the
duration of the scan. However, evidence from task-based fMRI studies and animal electrophysiology

suggests that functional connectivity may exhibit changes within the time scale of seconds to
minutes....”

“..Although it is unclear whether the observed coherence and phase variability can be attributed to
residual noise or modulation of cognitive state, the present results illustrate that

, and y, in
addition to average quantities, when characterizing resting state.” Chang & Glover, Neurolmage 2009



Original Observations (I1): Short Term FC can strongly deviate from Average Patterns

a) Dynamic FC
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Original Observations (111): Dynamic FC also present in anaesthetized monkeys

AWAKE HUMANS ISOFLURANE-ANESTHESIZED MONKEY
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FIM Spatial Distribution of Short Term FC Stability (I) — Most Stable Connections

A
MOST STABLE CONNECTIONS

Mostly symmetric, inter-
hemispheric connections
between homologous right/left
regions.

) o S NS e ey .
o9l 8 LR < A S Only account for 32% of intra-
L O R : R : network connections =
VENTRAL .
Networks are flexible

WINDOW LENGTH (WL) =60 Seconds

Unimodal sensory-motor
networks (VIS, AUD and MV)
seems to be among the most

stable.
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DORSAL VENTRAL ANTERIOR POSTERIOR

Gonzalez-Castillo et al., Frontiers in Neuroscience 2014



FIM Spatial Distribution of Short Term FC Stability (I) — Most Variable Connections
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MOST VARIABLE CONNECTIONS
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Most Variable Connections correspond primarily inter-network, inter-hemispheric
connections involving the fronto-parietal network and occipital regions. Also some DMN
regions.

Gonzalez-Castillo et al., Frontiers in Neuroscience 2014



. Spatial Distribution of Short Term FC Stability (Il)
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ZONE OF INSTABILITY: Set of Intrinsic Connectivity Networks with the most variable FC
based on approx. 6 min long rest scans acquired on a group of 405 young adults and using a
window length of 44 seconds.

Allen etal. Cerebral Cortex 2014



w Overlap with regions of high inter-subject variability in stationary FC

Inter-subject Variability in FC A
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cortex.
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Connectivity variability is highly

Mueller et al. Neuron, 2013



w FC Dynamics & Anatomical Connectivity (ll)

Connection type: ~ HO: Interhemispheric connections between homologous rois
ntrahemisphenc () Ha: Interhemispheric connections between non-homologous rois

heterotopic (he) . ) )
homotopic (ho) I:  Intrahemispheric connections.

Human Data: 2 Conditions Rest | Induced Negative Rumination
Macaque Data: 1 Condition Light Anesthesia

Across conditions & species, Homotopic FC is the most stable of all 3 types of connections.
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FC Dynamics & Anatomical Connectivity (ll)

Connection type: ~ HO: Interhemispheric connections between homologous rois
'r:‘;;zroet:;cpf(fg)c ()" He: Interhemispheric connections between non-homologous rois
homotopic (ho) I:  Intrahemispheric connections.

Human Data: 2 Conditions Rest | Induced Negative Rumination
Macaque Data: 1 Condition Light Anesthesia
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Temporal stability
(autocorrelation coefficient)

FC Dynamics cannot be explained simply by distance

(5) FC Stability independent of distance

macaque

=-0.05
p <0.001

Distance (mm) Distance (mm)

40

Shen etal. PNAS 2015



Reproducible Short-term patterns of FC — Connectivity States

FUNCTIONAL CONNECTIVITY STATES: a series of re-occurring short-term (in the order of
seconds) whole-brain connectivity patterns that are common across subjects.
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Reproducible Short-term patterns of FC — Connectivity States
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FIM FC Dynamics — Interim Conclusions (I)

*»* FC exhibit a rich dynamic behavior at the scale of minutes to seconds.

*»* Present both in awake humans, as well as, anesthetized macaques.

*»* Observed short-term FC patterns can deviate significantly from average/stationary FC
patterns.

*»* FC Dynamics have well defined spatial patterns:
* Interhemispheric Homotopic Connections are among the most stable.
* Heterotopic Connections are among the most variable.

+» Spatial distribution of FC Dynamics overlap with:
e Spatial maps of Between-Subject Long Term FC Stability.
* Spatial maps of evolutionary cortical expansion.

*»* There are reproducible re-ocurring patterns of whole brain connectivity common across
subjects, commonly referred to as “Functional Connectivity States”.
* Depart substantially from average connectivity patterns (networks break down).
* Have the potential to be biologically/cognitively meaningful.




RELATIONSHIP TO
COGNITIVE/MENTAL STATES
&
PRELIMINARY CLINICAL
APPLICATIONS
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Word of Caution

PCC seed

Target Voxel
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interactions, two random
time-series can show sliding
window correlation
dynamics.
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a FC Dynamics vs. Sleep Stages

Concurrent BOLD fMRI and , _
Medial visual Lateral visual Auditory

EEG Recordings. AR Ak
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3

AASM (EEG) SVM (fMRI)

FC Dynamics vs. Sleep Stages (i)

Test set #1 (wake & sleep)

20 40
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REM¢ 1 REM; ||
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N2} 1 N2}
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0 40 0
Wake -~ {Wake
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80% Accuracy for WL = 2 mins and above

Tagliazucchi et al. Neurolmage 2012



w FC Dynamics vs. Mental States Imposed by Task (1)

Mental States Imposed
by Experiment

Computation of
Windowed
FC Patterns
FC State
Detection

FC State
Timeline

Validation

Mental State
Timeline

Gonzalez-Castillo et al. PNAS 2015
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Classif. Acc. [ARI]
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FC Dynamics vs. Mental States Imposed by Task (1l)

Classification Accuracy [ARI]
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IM FC Dynamics vs. Task Outcome Prediction

e

Examined the relationship between a psychomotor vigilance task and the interacting
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[ E I M Alterations of Dynamic Connectivity & Disease (l): Schizophrenia
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and controls in which the patients are spending significantly more
time in the relatively less connected state 4. Damaraju et al. Neurolmage Clinical, 2014



FIM Interim Conclusions (Il)

+* Dynamic changes in FC at the scale of seconds to minutes can be used to:

= Reliably perform automatic sleep staging at the single subject level.
= Discriminate between externally imposed mental states at the single subject level.
= Predict Task performance on an individual basis.

*»* Huge Diversity of Experimental and Analytical Methods:

= Differences in Acquisition: scan durations / TRs / window lengths

= Differences in Pre-processing:

= Differences in Parcellation Scheme: number of ROIs / selection criteria / coverage
= Differences in Metrics used to Capture FC Dynamics

= Differences in classification/grouping algorithms: SVM / K-means / Similarity

= Differences in validation schemes: None / Tasks / Populations

+» Comparison / Consolidation of Results is quite challenging.

+* Some groups already working on potential clinical applications based on measures of

dynamic FC
= Schizophrenia, Bipolar Disorder, Alzheimer’s, Multiple Sclerosis...




SOME
METHODOLOGICAL

CONSIDERATIONS



ﬁ I ! Sliding Window Analysis

Perhaps the most commonly used strategy for examining dynamics.
| STATIONARY FC |
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ESTIMATE
COVARIANCE

What window type to use?
What window length?

What window step?

* |t seems easy to interpret.
* |t seems to capture phenomena with potential biological/neuronal relevance.

* Too small windows may render correlation estimates unreliable.
* Interpretation is more complex that it seems.



FIM Sliding Window Analysis

“... pitfall is to identify an observed value of a test statistic with its true underlying value. This means that the mere
presence of fluctuations in an observed FC time series is taken as evidence for the presence of dFC. The pitfall is that of
overlooking the fact that the observed FC values are estimates of the true (and unobservable) values, and hence, are
subject to statistical uncertainty...

...Thus, to decide whether fluctuations in an observed FC time series are due to statistical uncertainty or reflect true

changes in population FC, an appropriate statistical test has to be carried out.”
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w Sliding Window Correlation: Spurious Correlations (I)

WL < 1 Period of slower fluctuation = Spurious fluctuations in correlation traces will appear

Time-seties & Window
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WORK AROUND: to avoid this confound, we must high pass filter the data (F,,=1/WL)

according to the window lengths (WLs) used during the analysis

Leonardi et al. Neurolmage 2015
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Sliding Window Correlation: Spurious Fluctuations (Il)

Task-Driven
Cognitive States

.. RV
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1. Data Collection
7T, 2x2x2mm, TR=1.5"

7. Validation
Visual, Quantitative, & Behavioral

FC State 1 FC State 2 FC State 3 FC State 4

Data-Derived FC Patt
oo RN

6. Clustering
K-Means (k=4)

Classification Accuracy [ARI]

Same Filter for all WLs

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

180s 90s 60s 45s 30s 22.5s
Window Length [s]

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Adaptive Filter

180s 90s 60s 45s 30s 22.5s
Window Length [s]

Gonzalez-Castillo et al., PNAS 2015



w Sliding Window Correlation: Window Length vs. Amount of Fluctuation

COMMON OBSERVATION: The longer the window, the less the observed variability in
Dynamic FC.
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BE AWARE: The sliding window acts as a low pass filter with cutoff frequency F,,.,.=1/WL on
the resulting traces of dynamic connectivity (e.q., sliding window correlation traces).
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Leonardi etal. Neurolmage, 2015



ﬁ I ! Sliding Window Correlation: Window Length vs. Amount of Fluctuation

WL =50s = FMingignais = FMaXopserveddynamicconn = 0-02 Hz
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(1) Spurious fluctuations in dynFC can be limited by appropriate high pass filtering (1/WL).
(2) Remaining fluctuations in dynFC will be low-pass filtered (1/WL).

(3) Smaller windows and/or longer TR = greater influence of noise in estimation of dynFC.
Leonardi et al. Neurolmage, 2015



w Functional Connectivity States: Parcellation Selection
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Scan length (minutes)

Functionally defined ROIls seem to perform better than Anatomically defined ROls.
Shirer etal. Cerebral Cortex 2012
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7. Validation
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“More smaller ROIs” seem to perform better than “Less larger ROIS”

Gonzalez-Castillo et al., PNAS 2015



Functional Connectivity States: Clustering Algorithm

«*

Classification Accuracy [ARI]

1. Data Collection
7T, 2x2x2mm, TR=1.5"

Task-Driven QA
Cognitive States ' e i

[MEmoRY ][ maATH | viEo | |

7. Validation
Visual, Quantitative, & Behavioral

FC State 1 FC State 2 FC State 3 FC State 4

Data-Derived FC Patt
oo R

6. Clustering
K-Means (k=4)

Hierarchical Clustering

180s 90s 60s 45s 30s 22.5s
Window Length [s]

K-means

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
180s 90s 60s 45s 30s 22.5s
Window Length [s]

Gonzalez-Castillo et al., PNAS 2015



a Other Methods: Dynamic Conditional Correlation (DCC) (l)

DCC: A model for computation of time-varying variances and correlations in non-
stationary time-series borrowed from the financial literature (multivariate

volatility models).
* Does not requires a-priori selection of window length.
* Robust against previously discussed limitations of the sliding window correlation.
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Linquist et al., Neurolmage, 2014



w Other Methods: Dynamic Conditional Correlation (DCC) (i)

DCC: A model for computation of time-varying variances and correlations in non-
stationary time-series borrowed from the financial literature (multivariate

volatility models).
* Does not requires a-priori selection of window length.
* Robust against previously discussed limitations of the sliding window correlation.

Transient State Changes
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* Its ability to capture neuronal/cognitive meaningful
fluctuations ought to be tested.
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* Computation time increases linearly with number of
ROls. Linquist et al., Neurolmage, 2014



FIM Other Methods (ll): Co-Activation Patterns

+»» Co-Activation Patterns (CAPs)
Cluster selected individual BOLD volumes of a resting-state scan based on spatial
similarity.
Use resulting cluster centroids, defined as “co-activation patterns” (CAPs), to
characterize a set of representative instantaneous configurations of BOLD activity.
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Example: Decomposition of the Dorsal Attention Network in 12 CAPS Lui et Dyun, PNAS, 2013
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p General Conclusions / Open Questions

+* BOLD Functional Connectivity exhibit rich spatio-temporal dynamic behavior at the
scale of seconds to minutes.

+ Short-term patterns significantly differ from whole-scan average patterns. Some of
these short-term patterns re-occurin time and are consistent across subjects.

< Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic
neural activity patterns underlying critical aspects of cognition and behavior.

» Temporal features of FC could serve as a disease biomarker.

» Better understand which methods actually capture biologically and neuronally relevant
functional connectivity dynamics.

» It is unclear the extent to which dynamic FC is best conceptualized as a multi-stable
state space wherein multiple discrete patterns recur, or whether it simply varies along a
continuous state space.

+* The study of dynamic FC raises the issue that the concept of a “network” is rather
elusive, hinging (among other factors) upon the time-scale over which it is defined.




FIM Some Guidelines

+»» Data Acquisition

= Spatial <-> Temporal Resolution = Temporal Resolution is key.
= Consider the use of Multi-Band/Multi-Slice Acquisition Techniques.

00

Data Pre-processing

o,

= Use appropriate filtering.
= Consider using a combination of methods.
= Temporal Windows of interest ( 25s — 60s).

L)

*

Parcellation Scheme
= Functionally defined ROIs seem to outperform anatomically defined ROls.

=  “More smaller ROIs” better than “Less larger ROIs”.

’0

L)

Interpretational Challenges

= Control for obvious sources of variability: motion/physiological noise/scanner.
=  When possible, design your experiment so that you can validate results.

L)

>

Two Excellent Reviews

= Hutchison et al. “Dynamic Functional Connectivity: Promise, Issues, and Interpretations”
Neurolmage 80:360-378 (2012).

= Calhoun et al. “The Chronnectome: Time-varying connectivity networks as the next frontier in
fMRI Data Discovery” Neuron 84(2): 262 —274 (2014).
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