Multivariate Pattern Analysis &
Representational Similarity Analysis

27/08/24 Fernando Ramirez

g National Institute
www.fernando-ramirez.org | Twitter: @FRamirez R2| fernando.ramirez@nih.gov @iln g A i



http://www.fernando-ramirez.org/
mailto:fernando.ramirez@nih.govwww.fernando-ramirez.org

Goal today is to answer the following questions
|

= 1) What is meant by MVPA in neuroscience?
1.1) What kind of questions are addressed with MVPA?
1.2) Key limitations of MVPA

2) What is meant by RSA in neuroscience?
2.1) What kind of questions are addressed with RSA?

2.2) Key limitations of RSA

3) Some ways to mess up your MVPA & RSA analyses

4) Key challenges and future directions
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What is meant by MVPA in neuroscience?

First, let’s review the concept of a “massively univariate” analysis
of fMRI data (e.g., Friston etal., 1994; 1995)



Mass univariate analysis of fMRI data
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Mass univariate analysis of fMRI data
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MRI scanner

Mass univariate analysis of fMRI data
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Mass univariate analysis of fMRI data
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Mass univariate analysis of fMRI data
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Mass univariate analysis of fMRI data
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Mass univariate analysis of fMRI data
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Mass univariate analysis of fMRI data

In the 90’s, this powerful
approach to fMRI data
analysis revealed multiple
object category selective
areas in the human brain
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What is meant by MVPA in neuroscience?

MVPA stands for Multivoxel Pattern Analysis
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What is meant by MVPA in neuroscience?

MVPA stands for Multivoxel Pattern Analysis
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What is meant by MVPA in neuroscience?
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MRI scanner

What is meant by MVPA in neuroscience?
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Unlike univariate analyses, in MVVPA brain response patterns

across many voxels are JOINTLY analyzed



What is meant by MVPA in neuroscience?
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If patterns differ significantly”, we have decoded information about
the experimental conditions from that set of voxels



Why are “decoding accuracies” prevalent in MVPA studies?
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Key concept 1: Curse of dimensionality

* The curse relates to difficulties that arise when number of
datapoints is small relative to the dimensionality of the data

* Volume of a space increases rapidly with dimension, so
available data become sparse

* Amount of data to obtain reliable results (e.g., estimate
multivariate distributions) grows exponentially with
dimension

* Sophisticated ML techniques, like SVMs, exist that perform
well under such conditions



But, what is a “Decoding Accuracy”?

Decoding accuracies are obtained
from a classification procedure.

EZis 7 - B
L H H H
Ry . .
Efts . H -
i =N
34 vectors/ SVM pattern g | f?
condition “training” classifier “test” E °
KR '
Biig
1
FEGn

Fig. modified from Eger et al (2008) J Cog Neurosci



What is a “Decoding Accuracy”?

2-D representation of

. e . . pattern classifier
First, a pattern classification modelis /

trained using one part of the data
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What is a “Decoding Accuracy”?

First, a classification model is trained
using one part of the data
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What is a “Decoding Accuracy”?

First, a classification model is trained

using one part of the data The model:
A hyperplane
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What is a “Decoding Accuracy”?

Next, the model is tested on data not
used to train the model

voxel 2 activity

Procedure usually iterated with different

training and test data partitions
(e.g., “leave-one out” cross-validation) —

voxel 1 activity

Yes! Both patterns
correctly classified



What is a “Decoding Accuracy”?

o0

It modelis any good, “decoding Correct classifications
accuracy” should be “above chance” = ~50% (chance)

(E.g., for a 2-class problem = 50%) All classifications
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What is a “Decoding Accuracy”?

It model is any good, "decoding Correct classifications
accuracy” should be “above chance” Al ol —— = 82.1% (celebrate)
(E.g., for a 2-class problem = 50%) ctassirications




Key concept 2: Why is MVPA here to stay?

 Because multivariate methods are sensitive to
regularities in the data that are in principle undetectable
(and hence forever hidden) for univariate methods
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Category-selective modules or distributed brain patterns?

Distributed and Overlapping

Representations of Faces and

Objects in Ventral Temporal
Cortex

James V. Haxby,™ M. Ida Gobbini,"? Maura L. Furey,’?
Alumit Ishai,” Jennifer L. Schouten,” Pietro Pietrini®

Haxby et al (2001) Science
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Decoding grating orientation from human visual cortex

Predicting the orientation of invisible stimuli from

activity in human primary visual cortex

John-Dylan Haynes!? & Geraint Rees!?

45° detector 135° detector

Linear ensemble
orientation
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Kamitani and Tong (2005) Nat Neurosci

Decoding the visual and subjective contents
of the human brain

Yukiyasu Kamitani' & Frank Tong®3

Stimulus 1 Stimulus 2

Haynes and Rees (2005) Nat Neurosci



Mind reading?

@ NEUROIMAGING

Decoding mental states from brain
activity in humans

John-Dylan Haynes**$ and Geraint Rees*$

Haynes and Rees (2006) Nat Rev Neurosci



BINIAS

Searchlight analysis

Information-based functional brain mapping

Nikolaus Kriegeskorte**, Rainer Goebel*, and Peter Bandettini*

Kriegeskorte, Goebel, and Bandettini (2006) PNAS



Cross-decoding

* Probing for brain representations that generalize across stimulus transformations
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MVPA: Interim conclusions:

MVPA can detect information invisible to univariate analysis methods

MVPA does not tell us HOW information encoded in the brain

MVPA does tell that information about our experimental conditions
is present in the set of voxels under study



Representational Similarity Analysis



Representational Similarities
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Multi-layer neural networks (90s)



Representational Similarities

Psychology &
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Shimon Edelman

Neuroscience Computer Vision

Poggio and Edelman (1990) Nature
A network that learns to recognize three-
dimensional objects.



Representational Similarities

“Representation is representation of similarities”

Shimon Edelman

2"d order isomorphism




Representational Similarities

Psychology &
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Keiji Tanaka 1990s
Shape-tuned cortical columns
in IT cortex (opticalimaging)



Psychobiology
1998. 26 (4), 309-321

Toward direct visualization of the
internal shape representation space by fMRI

SHIMON EDELMAN
University of Sussex, Falmer, England

KALANIT GRILL-SPECTOR
Weizmann Institute of Science, Rehovot, Israel

TAMMAR KUSHNIR
The Chaim Sheba Medical Center, Tel Hashomer, Israel

and

RAFAEL MALACH
Weizmann Institute of Science, Rehovot, Israel

Reports of columnar organization of the macaque inferotemporal cortex (Tanaka, 1992, 1993a) indi-
cate that ensembles of cells responding to particular objects may be both sufficiently extensive and
properly localized to allow their detection and discrimination by means of functional magnetic reso-
nance imaging (fMRI). A recently developed theory of object representation by ensembles of coarsely
tuned units (Edelman, 1998; Edelman & Duvdevani-Bar, 1997b) and its implementation as a computer
model of recognition and categorization (Cutzu & Edelman, 1998; Edelman & Duvdevani-Bar, 1997a)
provide a computational framework in which such findings can be interpreted in a straightforward
fashion. Taken together, these developments in the study of object representation and recognition sug-
gest that direct visualization of the internal representations may be easier than was previously thought.
In this paper, we show how fMRI techniques can be used to investigate the internal representation of
objects in the human visual cortex. Our initial results reveal that the activation of most voxels in ob-
ject-related areas remains unaffected by a coarse scrambling of the natural images used as stimuli and
that a map of the representation space of object categories in individual subjects can be derived from
the distributed pattern of voxel activation in those areas.




VISUALIZING OBJECT REPRESENTATIONS BY fMRI 307
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Representational Similarities
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PHILOSOPHICAL PSYCHOLOGY, VOL. 13, NO. 1, 2000 sruny,

Content and cluster analysis: assessing
representational similarity in neural
systems

AARRE [LAAKSO & GARRISON COTTRELL

ABSTRACT If connectionism s to be an adequate theory of mind, we must have a theory of
representation for neural networks that allows for individual differences tn weighting and architecture
while preserving sameness, or at least similanity, of content. In this paper we propose a procedure for
measuring sameness of content of neural representations. We argue that the correct way to compare
neural representations is through analysis of the distances between neural activations, and we present
a method for doing so. We then use the technique to demonstrate empirically that different artificial
neural networks trained by backpropagation on the same categorization task, even with different
representational encodings of the input patterns and different numbers of hidden units, reach states in
which representarions at the hidden units are similar. We discuss how this work provides a rebuttal
to Fodor and Lepore’s critique of Pawl Churchland’s state space semantics.



Vector coding of Representational Similarities

A modest proposal

We have argued that having a method for comparing the relative positions of
concepts in one state space to the relative positions of concepts in another state
space is critical for state space semantics. The method we propose here works well
for neural networks, and may be generalizable to animals and robots. The basic idea
is to collect the activation patterns evoked by inputs and compute all possible
distances between these representations. The distances between representations
capture the structure of representational space. We then compute the correlation
between the distances between representations in one state space and the distances
between representations in the other state space. This procedure can be used to
measure the similarity between any two neural representations (be they from natural
or artificial networks, from input, output, or hidden unit representations, from the
same or different networks, with the same or different numbers of units).



1-D

Relating Representations using Distance Matrices

r=1
Perfect correlation!
(Representations are the same)




1-D

Relating Representations using Distance Matrices

r=0.3
Low correlation
(Representations different)




Representational Similarity Analysis
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A fundamental challenge for systems neuroscience is to quantitatively relate its three major
branches of research: brain-activity measurement, behavioral measurement, and computational
modeling. Using measured brain-activity patterns to evaluate computational network models
is complicated by the need to define the correspondency between the units of the model and
the channels of the brain-activity data, e.g., single-cell recordings or voxels from functional
magnetic resonance imaging (fMRI). Similar correspondency problems complicate relating
activity patterns between different modalities of brain-activity measurement (e.g., fMRI and
invasive or scalp electrophysiology), and between subjects and species. In order to bridge
these divides, we suggest abstracting from the activity patterns themselves and computing
representational dissimilarity matrices (RDMs), which characterize the information carried by
a given representation in a brain or model. Building on a rich psychological and mathematical
literature on similarity analysis, we propose a new experimental and data-analytical framework
called representational similarity analysis (RSA), in which multi-channel measures of neural activity
are quantitatively related to each other and to computational theory and behavior by comparing
RDMs. We demonstrate RSA by relating representations of visual objects as measured with
fMRI in early visual cortex and the fusiform face area to computational models spanning a
wide range of complexities. The RDMs are simultaneously related via second-level application
of multidimensional scaling and tested using randomization and bootstrap techniques. We
discuss the broad potential of RSA, including novel approaches to experimental design, and
argue that these ideas, which have deep roots in psychology and neuroscience, will allow the
integrated quantitative analysis of data from all three branches, thus contributing to a more
unified systems neuroscience.



Representational Similarity Analysis
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Representational Similarity Analysis
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Representational Similarity Analysis
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Lower triangular entries depend on the main diagonal
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Expected pattern similarities
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Influence of mean centering on RSA conclusions
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Representational Similarity Analysis
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“The most general approach to understanding the
challenges facing perceptual systems is to cast them as
problems in data analysis. For theorists, this perspective
iImmediately raises the question of the dimensionality of the
data, which strongly influences the appropriate
mathematical approaches to making sense of it.”

Shimon Edelman (2002) Nat Neurosci



The School of
Athens,
Raphael

Conclusions

The study of representational similarities has a rich history in
cognitive sciences

Representational Similarity Analysis addresses the key
challenge of putting data in a format amenable to comparisons
between species, data modalities, and computational models

The recommendation to abstract from the measurement
process, however, is impractical.

Incorporating information about signal to noise ratios and the
measurement process can help mitigate biases

Data demeaning across conditions not recommended and
previously shown to lead to erroneous conclusions



Conclusions

Multivariate Pattern Analysis (MVPA)

Can detect information invisible to mass univariate methods
Do not tell us HOW information is encoded
Cantell us that information about our conditions is present in a set of voxels

Representational Similarity Analysis (RSA)

Can help understand HOW information is encoded in the brain

May be a way forward when the “correspondence” between data channels and
model units is unknown

However, the method’s flexibility comes at a cost

RSA conclusions depend on analysis choices, such as pattern dissimilarity
measure and data normalization strategies

It is not generally advisable to “abstract from the measurement process”

Model guided approaches to RSA can help mitigate some of the method’s
limitations, as well as improve the interpretability of empirical findings
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Thank you for your attention!
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