U.S. Department of Health & Human Services • National Institutes of Health

National Center for Complementary and Integrative Health

FMRI of Pain Lauren Atlas

July 20, 2018

Why pain?

~116 million American adults affected by chronic pain (IOM, 2011)
Estimated cost of medical treatment +

lost work due to pain = \$635 billion/yr

Urgent opioid epidemic: >115 Americans die from overdose each day

Why pain?

Clinical significance

- Largest placebo effects in pain
- >100M US adults affected by chronic pain
- "Opioid epidemic" need better treatments, non-pharmacological interventions
- Comorbid with MDD, anxiety

Experimental model

- Subjective perception
- Sensory & affective components
- Pathways conserved across species
- Can objectively manipulate noxious stimulus
- Coordinated response across levels of NS

ROADMAP

- I. Background, definitions, philosophical issues
- II. FMRI of pain
 - a) Overview
 - b) Brain mechanisms of pain perception
 - c) Psychological pain modulation
- III. Controversies
 - a) Social pain / cingulategate
 - b) Specificity & Pain biomarkers

ROADMAP

- I. Background, definitions, philosophical issues
- II. FMRI of pain
 - a) Overview
 - b) Brain mechanisms of pain perception
 - c) Psychological pain modulation
- III. Controversies
 - a) Social pain / cingulategate
 - b) Specificity & Pain biomarkers

PAIN

"An unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage."

vs NOCICEPTION: "The neural process of encoding noxious stimuli" (e.g. autonomic, behavioral responses)

IASP Task force on taxonomy, 1994

Types of pain

<u>Transient</u>

"activation of nociceptive transducers in skin or other tissues of the body in the absence of any tissue damage" – ubiquitous, no need to seek health care

<u>Acute</u>

"substantial injury of body tissue and activation of nociceptive transducers at the site of local tissue damage"; pain ends before healing occurs; can seek treatment to reduce pain or expedite healing

- Trauma
- Surgery
- Diseases

<u>Chronic</u>

"intensity of the pain is out of proportion to the original injury or tissue damage"; "commonly triggered by an injury or disease, but may be perpetuated by factors other than the cause of the pain"

- Low back pain
- Neuropathy
- Fibromyalgia
- Phantom Limb pain

Loeser & Melzack, 1999

Pain measurement

<u>Sensory / Discriminative</u> <u>Affective / Unpleasantness</u>

Pain theories

Descartes, 1664 (drawing by La Forge)

Pain theories

Pain in the brain (before imaging)

The brain doesn't <u>contribute to pain</u>

Parietal lesions (Head & Holtz, 1911)

Pain reduction with cingulotamy, S1, SII lesions; lesions to SII create pain

S1 stim elicits pain (Horrax, 1946); PAG & thalamus stim relieves pain (Hosobuchi, 1986)

Primate electrophysiology

Brain stimulation

Lesions

S1 stim rarely elicits pain (11/800 stims) (Penfield & Boldrev, 1937)

Nociceptive neurons in thalamus, S1, area 7b (SII)

Brain imaging to the rescue!

Pain MRI/fMRI papers over time

Moayedi, Salomons, & Atlas 2018

01-

ROADMAP

- I. Background, definitions, philosophical issues
- II. FMRI of pain
 - a) Overview
 - b) Brain mechanisms of pain perception
 - c) Pain modulation
- III. Controversies
 - a) Social pain / cingulategate
 - b) Specificity & Pain biomarkers

Pain in the human brain: PET rCBF

Grill

Pain in the human brain: FMRI

fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation Davis et al., Neuroreport, 1995 Brain processing of capsaicininduced secondary hyperalgesia: A functional MRI study Baron et al., Neurology, 1999

Pain in the human brain (2000)

Functional imaging of brain responses to pain. A review and meta-analysis Peyron et al., 2000

Pain in the human brain (2013)

Duerden et al., HBM, 2013

"The pain [neuro]matrix"

Sensation

High vs Low intensity
thermal stimulation
Five studies, N = 114Lateral thalamus
SI
SIIFWE, p<.05</td>SI

Affect

Medial thalamus Anterior cingulate Anterior insula PAG Cerebellum Striatum

Considerations in pain neuroimaging

- No metal
- No movement
- Withdrawals
- Representative sample?
- Salience / specificity (later)

The Journal of Pain Available online 30 March 2018 In Press, Accepted Manuscript (2)

Focus Article

Pain Neuroimaging in Humans: a Primer for Beginners and Non-Imagers

Massieh Moayedi 1, 2, 3 × Ø, Tim V. Salomons 4, 5, Lauren Y. Atlas 6, 7

ROADMAP

- I. Background, definitions, philosophical issues
- II. FMRI of pain
 - a) Overview
 - b) Brain mechanisms of pain perception
 - c) Pain modulation
- III. Controversies
 - a) Social pain / cingulategate
 - b) Specificity & Pain biomarkers

Differentiating Cortical Areas Related to Pain Perception From Stimulus Identification: Temporal Analysis of fMRI Activity

Apkarian et al., 1999

Correlation with pain

Anterior

Posterior

Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study.

Büchel et al., 2002

Cognitive/ awareness Stim intensity Pain intensity Blichel et al. • Pain and Sensory Processing in the ACC 0.2 VA P2 pain intensity 0.5 DACC 0.4 502 P2 P3 pain intensit eri-stimulus time fal

nset motor response

Painful stimuli evoke different stimulusresponse functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study.

Bornhövd et al., 2002

Which brain pathways mediate the dynamic effects of temperature (noxious heat) on pain?

Atlas et al., 2014, Pain

Mediation model

Correlation with pain

 Temperature, not pain
 Mediator, Temp + Pain
 Pain report, not temperature

Study 1 Summary

Pain is generated by a combination of independent networks

- Increases with temp + increases predict pain (e.g. SII, "salience network")
- Decreases with temp + decreases predict pain (e.g. DMN)
- Suppression effects / negative mediators (DMPFC, mOFC)
- Pain-related without responding to temperature (e.g. DLPFC, DMPFC, OFC)

Mediation can help identify regions that link objective stimulus with subjective response

Neurologic pain signature (NPS)

Neurologic pain signature (NPS)

Wager, Atlas, et al. (2013), NEJM

Pain signatures

MPFC-NAc connectivity predicts acute to chronic pain

Neurologic Pain Signature (NPS) Wager, Atlas, et al., 2013, *NEJM*

Baliki et al., 2012

- Vicarious pain signature (Krishnan et al., 2016)
- Stimulus-Intensity Independent Pain Signature (Woo et al., 2017)
- Group-regularized Individual Prediction (Lindquist et al., 2017)
- Principal directions of mediation (Geuter et al., 2018)

Fibromyalgia Pain & Multisensory Signatures

Lopez-Sola et al., 2017

Experimental vs Chronic pain

U. Friebel et al. / NeuroImage xxx (2011) xxx-xxx

Friebel et al., 2011

ROADMAP

I. Background, definitions, philosophical issues

II. FMRI of pain

- a) Overview
- b) Brain mechanisms of pain perception
- c) Psychological pain modulation
- III. Controversies
 - a) Social pain / cingulategate
 - b) Specificity & Pain biomarkers

Psychological pain modulation

Ascending pathways
<u>Descending pathways</u>:
Emotion & Placebo

Attention

Bushnell, Ceko, Low, 2013, Nature reviews

How do expectancies shape pain?

Pain-predictive cues

Placebo analgesia

Analgesic treatments

STIMULUS EXPECTANCIES

TREATMENT EXPECTANCIES

Expectancies shape brain responses and subjective experience

Expectancies shape brain responses and subjective experience

Stimulus expectancy manipulation

High vs Low expectancy

<u>Decreases during pain:</u>

Insula, thalamus, dACC

Placebo/ Treatment expectancy manipulation

Control vs Placebo

Modulatory increases

VMPFC, DLPFC, striatum

Atlas & Wager, 2014

Expectancies shape brain responses and subjective experience

Treatment expectancy manipulation

Control vs Placebo

No placebo effect on NPS!

Zunnheimer et al., In press, JAMA Neurol

II. Expectancy effects during opioid analgesia

AIM: To isolate the role of expectancy during opioid analgesia

We fully crossed opioid analgesic treatment with expectancy and measured drug effects and expectancy effects on pain and brain responses.

Remifentanil

µ opioid receptor agonist

- analgesic at low doses
- fast-acting, known pharmacodynamics

Balanced placebo design

Behavioral study: Robser, Robser, Robser, Robser, Behavioral Study: N=20 Within-subjects design; Runs counterbalanced across subjects

"On this run, you will receive remifentanil."

"On this run, you will not receive any drug."

Drug effect

Expectancy effect

Expectancy x Drug interactions

Expectancy effects during opioid analgesia

Atlas et al., 2012, JNeurosci

pain are additive

pain are additive

Pharmacological fMRI

1) Drug effects are identical regardless of expectancy

Test for interactions

No differences in drug effects on nociceptive network

brain are additive

1) Drug effects are identical regardless of expectancy

Neurologic Pain Signature (NPS) Wager, Atlas, et al., 2013, *NEJM* 2) Instructions cause increases in dorsolateral prefrontal cortex

Brain classifiers for analgesic efficacy?

ROADMAP

- I. Background, definitions, philosophical issues
- II. FMRI of pain
 - a) Overview
 - b) Brain mechanisms of pain perception
 - c) Psychological pain modulation
- III. Controversies
 - a) Social pain / cingulategate
 - b) Specificity & Pain biomarkers

"Social pain"

Lamm et al., Neuroimage, 2011

Is rejection painful?

a set of the set of th

Eisenberger, Pain, 2006

Social pain: The reaction

Nature Neuroscience 9, 1007 - 1008 (2006) Published online: 2 July 2006 | doi:10.1038/nn1728

Anterior cingulate cortex responds differentially to expectancy violation and social rejection

Leah H Somerville¹, Todd F Heatherton¹ & William M Kelley¹

This study investigated human anterior cinculate cortex (ACC)

involvement during from social rejectio functional magnetic and receiving fictiti and consistent or in demonstrate that t whereas the ventra

Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function

ARTICLE

Received 8 May 2014 | Accepted 25 Sep 2014 | Published 17 Nov 2014

DOI: 10.1038/ncomms6380

Separate neural representations for physical pain and social rejection

Choong-Wan Woo^{1,2}, Leonie Koban^{1,2}, Ethan Kross³, Martin A. Lindquist⁴, Marie T. Banich^{1,2}, Luka Ruzic^{1,2}, Jessica R. Andrews-Hanna² & Tor D. Wager^{1,2}

#Cingulategate

The dorsal anterior cingulate cortex is selective for pain: Results from large-scale reverse inference

Yarkoni/Neurosynth, 12/05/15:

"No. the dorsal anterior cinculate is not selective for pain: comment on Lieberman and

Lieberman Psychology Today blog, 12/10/2015

"Still not selective: comment on comment on comment on Lieberman & Eisenberger (2015)"

Pain in the ACC?

Tor D. Wager, Karen Debora Tal Yarkoni

Ma

PNAS April 19, 20

Reply to Wager et al.: Pain and the dACC: The importance of hit rate-adjusted effects and posterior probabilities with fair priors

Matthew D. Lieberman, Shannon M. Burns, Jared B. Torre, and Naomi I. Eisenberger

ROADMAP

- I. Background, definitions, philosophical issues
- II. FMRI of pain
 - a) Overview
 - b) Brain mechanisms of pain perception
 - c) Pain modulation
- III. Controversies
 - a) Social pain / cingulategate
 - b) Specificity & Pain biomarkers

Reading pain from the brain?

Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations

Karen D. Davis 🖾, Herta Flor, Henry T. Greely, Gian Domenico Iannetti, Sean Mackey, Markus Ploner, Amanda Pustilnik, Irene Tracey, Rolf-Detlef Treede & Tor D. Wager

Nature Reviews Neurology 13, 624–638 (2017) Download Citation ±

Reading pain from the brain?

Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations

Karen D. Davis ^{IM}, Herta Flor, Henry T. Greely, Gian Domenico lannetti, Sean Mackey, Markus Ploner, Amanda Pustilnik, Irene Tracey, Rolf-Detlef Treede & Tor D. Wager

Nature Reviews Neurology 13, 624–638 (2017) 👘 Download Citation 보

What about Pain in Disorders of Consciousness?

C. Schnakers,^{1,2,3,4,5} C. Chatelle,^{1,3} A. Demertzi,^{1,3} S. Majerus,^{2,4} and S. Laureys^{1,3,4}

Healthy volunteers

Vegetative state / Unresponsive wakefulness syndrome

Pain vs salience

Salience Network

Menon & Uddin, 2010

Yarkoni et al., 2011

Can we even measure pain without varying salience??

Pain vs salience

Summary

Transient / Acute pain

- In the brain
- Dynamically modulated by psychological factors
- Pain neuromatrix
 - Network and pattern analyses are getting us closer

Lots left to understand!

- CHRONIC PAIN
- Leveraging animal models
- Specificity
- Multimodal integration (timescale, phfMRI, moderating factors)

Thank you! Questions?

National Institute on Drug Abuse

Additional slides

Approach

Pain neuromatrix

Fig. 2. The body-self neuromatrix. The body-self neuromatrix, which comprises a widely distributed neural network that includes somatosensory, limbic, and thalamocortical components, is schematically depicted as a circle containing smaller parallel networks that contribute to the sensory-discriminative (S), affective-motivational (A), and evaluative-cognitive (E) dimensions of pain experience. The synaptic architecture of the neuroma-

Melzack, 1999

Physiological measurements

Eye tracking / Pupil dilation

Skin conductance

Also HR, Resp, Pulse, BP NEW: Facial responses (EMG, video)

Cognitive factors shape pain

Pain Affect Encoded in Human Anterior Cingulate But Not Somatosensory Cortex

Rainville et al., Science, 1997

Hypnotic suggestion to increase or decrease pain unpleasantness

Ascending nociceptive pathways

