Anatomical and Functional NeuroImaging of Animal Models

Afonso C. Silva, Ph.D.

Cerebral Microcirculation Section Laboratory of Functional and Molecular Imaging NINDS - NIH

National Institutes of Health

Advantages of Animal Models

- Comprehensive, multi-modal investigations
 - fMRI + Electrophysiology
 - fMRI + Optical Imaging
 - Pharmacological Manipulations
 - Genetics, etc.

Schölvinck et al. Proc Natl Acad Sci USA. 2010;107(22):10238-43

Schultz et al. Nat Methods. 2012;9(6):597-602

Pharmacological Inhibition of COX-2 Uncouples Hemodynamics from Neural Activity

Pharmacological Inhibition of Nitric Oxide Uncouples BOLD from CBF

Stefanovic et al. J Cereb Blood Flow Metab. 2007;27(4):741-54.

Genetic Manipulations: Optogenetics

Lee et al. Nature. 2010 Jun 10;465(7299):788-92

Kahn et al., J Neurosci. 2011 Oct 19;31(42

Advantages of Animal Models

- Technical
 - Ultra-High Field Magnets
 - up to 21T vertical
 - up to 17.6T horizontal
 - Stronger Gradients
 - Up to 1000 mT/m in 12 cm ID
 - Small FOV due to smaller brain size
 - Improved spatial resolution
 - Improved SNR with specialized RF coils

Outline

- Marmoset as an animal model of functional brain activation
 - Can be Imaged in Conscious, Awake Conditions
 - In Vivo MRI Reveals Remarkable Cortical Cytoarchitecture
 - T1-Weighted MRI
 - Awake non-human primate multisensory model of neurovascular coupling
 - Somatosensory Pathway
 - Auditory
 - Resting-State
 - Visual
 - Direct Visualization of the Neurovascular Unit in Vivo

Marmosets Retain the Primate

Anatomical and Functional Brain Organization

Human

Macaque

Marmoset

http://www.brainmuseum.org/

G. Paxinos et al. The Marmoset Brain in Stereotaxic Coordinates, 2011

Web caret, Washington University St. Louis, MO, USA

Marmosets are an Excellent Model in Neuroscience Research

Human

Macaque

Marmoset

Rat

Mouse

Zebrafish

Sasaki et al, Nature. 2009

Simpler

Neural circuitry Genetic Manipulation Complexity

Marmosets are Lissencephalic

fMRI

Optical Imaging

Electrophysiology

MRI of Marmosets

- Two types of setup
 - Anesthetized Animals
 - Isoflurane (anatomic studies)
 - Propofol + Fentanyl (functional studies)
 - Awake
 - Anatomical or functional Studies
- Extensive Physiological Monitoring
 - Temperature
 - Heart Rate
 - Pulse oximetry
 - ETCO₂

Anatomical and Functional MRI in Conscious, Awake Marmosets

Individual Helmet

Setup for fMRI of Conscious Awake Marmosets

In-Helmet Embedded RF Coil Arrays

Circuit Diagram

Embedded helmet array and preamps

In vivo SNR Maps

fMRI in Conscious, Awake Marmosets 250 x 250 x 1000 μm³

D. Papoti, C.C. Yen, J. Mackel, H.Merkle, A. Silva, NMR in Biomed., 2013

-S1 -S2

Anatomical MRI of the Marmoset Brain

in vivo T1w-MPRAGE 150 µm³

ex vivo DTI 150 μ m³

T1-Weighted MRI Reveals Cortical Myeloarchitecture

Bock et al., J Neurosci Methods. 2009;185(1):15-22

Cortical Myeloarchitecture Map

Voxel size 150 μm^3

Flattened View

Bock et al., J Neurosci Methods. 2009 185(1):15-22

Reproducible and Quantitative Myeloarchitecture

Region	Surface Area (mm ²)		Surface Area (%)
	Left	Right	Surface Area (70)
Cortex	1005 ± 21	1007 ± 34	100
V1	219 ± 12	222 ± 3	22
S1	28 ± 4	30 ± 4	3
MT	17 ± 3	19 ± 2	2
A1 and R	11 ± 3	11 ± 3	1
DM	8 ± 1	7 ± 1	1

- Agrees well with histological measures of areas:
 - V1: 200-205 mm²: Fritsches and Rosa 1996 JCN 372:264-82; Missler, Wolff 1993 JCN 333:53-67
 - MT: 14 mm²: Pessoa et al. 1992 Exp. Brain Res. 2: 459–462.
 - DM: no well defined borders.
- More than ¼ of the marmoset cortex dedicated to processing of visual information

Bock Ann N Y Acad Sci. 2011 1225 Suppl 1:E171-81

Liu et al . Neuroimage. 2013 78:186-95.

Liu et al . Neuroimage. 2013 78:186-95.

fMRI Response Overlaid on Myeloarchitecture

Liu et al . Neuroimage. 2013 78:186-95.

BOLD Response to Hand Stimulation

TE = 27 ms & TR = 200 ms

BOLD Response to Hand Stimulation

BOLD Response to Hand Stimulation

Laminar Profile of T2* Changes

Somatosensory Stimulation Leads to Robust Activation of S1, S2 and Caudate

Tonotopic Mapping in Marmoset

Auditory Cortex

t>1.5

Time

Resting State Networks In Conscious Marmosets

High Order Visual Cortex V3, V4, A19, A19DI **Basal Ganglia Primary Visual Cortex** Dorsomedial Somatomotor High Order Visual Cortex V4, V5, V6, FST, TE3 High Order Visual Cortex V2, A19M, V6(DM)

Default Mode Network	
Salience	
Orbitofrontal Cortex	
Cerebellum	
Ventrolateral Somatomotor	
Frontal Pole	

Belcher J Neurosci. 2013 33(42):16796 -16804

fMRI/ECoG during visual stimulation

C.-C. Hung et al Neuroimage 2015;120(10):1-11. C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

Experimental paradigm for fMRI of Visual System

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

Typical behavior of awake marmoset to a stimulus block

Positive reinforcement Infra-red eye-tracking

Visual Stimulus

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

Visual responses in cortical and sub-cortical areas

C.-C. Hung et al Neuroimage 2015 120(10):1-11

Face-selective patches along ventral visual pathway

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

ECoG measures event-related potentials

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

Time-frequency Analysis (An example site)

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

2

1

0

Energy change(dB)

Spatial layout of the high-gamma responses

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

Good spatial correspondence between fMRI and ECoG in marmoset extrastriate visual pathway

A ECoG

B fMRI

C.-C. Hung et al J Neurosci 2015 35(3):1160-72

Using Two-Photon Microscopy to Directly Visualize the Neurovascular Unit in Vivo

- FITC- labeled cerebral microcirculation of mouse cortex
- FOV: $600 \times 600 \ \mu m^2$
- Depth: 725 μm

GCaMP6s Labeled Neurons and Cortical Microvasculature in Mouse

Cortex

GCaMP6s Labeled Neurons and Cortical Microvasculature in

Mouse Cortex

Glass-cover craniotomy provides optical access to image the brain

Rotatable+translatable stereotax positions marmoset with adequate stability for two-photon imaging

Using Two-Photon Microscopy to Directly Visualize the Neurovascular Unit in Vivo

- Texas-Red labeled cerebral microcirculation of awake marmoset cortex
- FOV: 1200 x 1200 μm^2
- Depth: 500 μm
- Capillary density = 5,601 capillaries/mm3

Robust expression in neurons 3 weeks after AAV1-hSyn-GCaMP5G intracranial delivery

Custom-designed cranial chamber provides optical access to somatosensory cortex for over 6 months

Two-Photon Microscopy of Neurovascular Coupling in Awake Marmoset

GCaMP5-expressing neurons firing during somatosensory stimulation

responsive

17% average fluorescence increase

Robust Neurovascular Coupling in Primary Somatosensory Cortex of Awake Marmosets

16% of GCaMP-labled neurons responsive17% average fluorescence increase

32% of arterioles responsive

14% average peak dilation at 5 s following 2s stimulation

Using Two-Photon Microscopy to Directly Visualize the Neurovascular Unit in Vivo

capillary length = $79.4\pm1.9 \mu m$ capillary density = 6,695 capillaries/mm³ capillary tortuosity (arc-chord ratio) = 1.2

Conclusions

- Advantages of Animal Models
 - Allow comprehensive, multi-modal investigations
 - Can be Performed in State of the Art MRI Systems
 - High SNR, Spatial and Temporal Resolution
- Challenges
 - Use of anesthesia is a major confound for fMRI studies
 - Training of animals to perform specialized
- Marmoset is an important experimental animal model for basic science and translational research
- High resolution MRI of the marmoset brain can be obtained with remarkable cytoarchitectonic detail
- Functional MRI can used to study various sensory system including somatosensory, auditory and visual areas.
- Lissencephalic cortex facilitates study of neuronal circuits with optical imaging techniques

Cerebral Microcirculation Section

https://www.lfmi.ninds.nih.gov/CMSWeb/cms-main.html

- Research Fellows:
 - Sang-Ho Choi (Molecular Biology, Neuroinflammation)
 - Cecil Yen (fMRI, Stroke)
- Postdoctoral Fellows:
 - Jungeun Park (Transgenic Marmosets)
 - Soo Hyun Park (David Leopold fMRI, Electrophysiology, Behavior)
- Predoctoral Fellow
 - Wen-Yang Chiang (RF Hardware)
- Post-bac IRTAS
 - Brandon Chen (2PLSM, Awake Mice)
 - Joseph Choi (Molecular Biology, CRISPER/cas9)
- Lab Technician
 - Lisa Zhang (Surgeries, Organization, Supplies, Marmoset Colony Management, Transgenic Marmoset Procedures, Training)

