Session III: Types of MVPA Analysis

Martin Hebart
Laboratory of Brain and Cognition
NIMH

MVPA Workflow

Overview

Types of MVPA Analysis: Overview

Wholebrain Analysis

Region of Interest Analysis

Searchlight Analysis

Multivariate Generalization (aka Cross-Decoding)

TYPES OF MVPA ANALYSIS

Types of MVPA Analysis

Wholebrain

Searchlight

Region of Interest

time-resolved

Wholebrain Analysis

All voxels are included into the classification

- All available spatial information is provided to the classifier
- ☼ No "multiple comparisons" problem
- \mathcal{D} Problem of overfitting
- No information about location of information possible

Wholebrain Analysis: Problem of Overfitting

Reduction of accuracy with large number of voxels

Wholebrain Analysis: Problem of Overfitting

Possible solution: Use sparse models (e.g. LASSO)

<u>But</u>: Sparse models find only subset of voxels with information → we miss a lot of relevant voxels

Alternative solution: Use prior to regularize smoothness

But: unclear if prior is correct

 $R^2 = 0.84$

 $R^2 = 0.83$

 $R^2 = 0.84$

Michel et al. (2011) – IEEE Trans Med Imaging

Wholebrain Analysis

Weight maps: Solution to inability to localize information?

Wholebrain Analysis

Problem: Voxel weights reflect signal (= source) and unspecific noise

Weights do not indicate source of information

But: source of information can be reconstructed

Region of Interest Analysis

Voxels are selected using spatial criteria

- Relatively precise localization of information
- Small "multiple comparisons" problem
- \mathcal{D} Selection of regions required in advance (bias?)
- \mathcal{D} Information encoded only across the distance gets lost

Region of Interest Analysis

ROIs with very different size difficult to compare

Searchlight Analysis

Sphere of voxels is moved through brain as ROI

- ♦ Very precise localization of information
- Maximization of local information
- Good for group comparisons analogous to SPM
- \mathcal{D} Informative regions possibly inflated
- \bigcirc Ideal shape and size of searchlight unknown
- Information encoded only across the distance gets lost

Searchlight Analysis

Searchlight Analysis

- Searchlight analysis acts as spatial smoothing
- Reason: Neighboring searchlights overlap a lot, i.e. have very similar information
- Extreme example: One highly informative voxel creates high accuracy in size of searchlight

Related "problem" in spatial smoothing

Interim Summary

- There are three main types of analysis: Wholebrain, ROI, and searchlight
- Each type has specific advantages and disadvantages
- For most disadvantages there are potential solutions

Multivariate Generalization

Approach that is growing in popularity to test association of cognitive states

Category A Category B Cognition A undirected approach

Category B

Cognition B

Multivariate Generalization

Multivariate equivalent to conjunction analysis

Conjunction analysis

Results: Attention and working memory activate the same regions

Generalization (multivariate)

Result: Attention and working memory <u>content</u> are encoded similarly

Cross-Classification

Idea: Cross-classification is more specific than conjunction analysis, because pattern needs to be similar in both cases

Cross-Classification

Why does cross-classification sometimes work better one way than the other?

Orthogonality more likely in higher dimensionality (i.e. more voxels)

Summary

- Generalization is a good approach for testing associations
- Cross classification is directed, cross-correlation in undirected
- Trivial explanations remain possible

Study questions

You are interested in studying consumer preferences (i.e. whether you would prefer buying A or B) and have some a priori assumptions about where in the brain you would expect this to be encoded.

Question 1: Compare these two approaches:

- (a) Run an analysis combining these ROIs and (if significant) removing individual ROIs (so called "virtual lesioning" approach)
- (b) Run individual ROI analyses

Question 2: What are the pros and cons of restricting yourself to grey matter voxels only?