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"All models are wrong, but some are usefu

George Box



”l hope you paid attention during Martin’s talk...”

Francisco Pereira



overview

activation

visual stimulus

time —

functional MRI  t-value map active

locations

GLM: general linear model

mass univariate: regression model of each voxel from the stimulus
refinements: nuisance regressors, graded responses, ...
good GLM: explains voxel behavior



overview

decoding
chair . chair
train
(...) (...) decoder (...)
pineapple pineapple
stimuli functional MRI

test . decoder pineapple?

functional MRI

decoder: classifier, regression model, ...
multivariate: input is pattern of activation over many voxels

good decoder: accurate at picking correct stimulus



tools and questions

stimulus
 ——
(task)
GLM
“is there a brain location that responds to the stimulus?“
‘ |
decoder

“is there information about the stimulus
in the pattern of activation?”



tools and questions

stimulus
(task)

GLM

“is there a brain location that responds to the stimulus?“

[ |
- “BELIEVE IT
decoder |

“is there information about the stimulus

in the pattern of activation?”



... and the questions we care about

what does brain area X do?

is brain area X used in task Y?

if a subject is doing Y, what does their brain represent?
where are representations invariant to Z?

does everyone with disease W have altered connectivity to X?



”Is region X used in task Y?”

careful choice of control condition(s)

(e.g. if studying sentences, control with nonwords, scrambled words,...)

using a meta-analysis to perform reverse inference [Poldrack 2011]
“how likely is task Y given region X?”
activation databases
BrainMap, NeuroSynth, NeuroVault, ...
activation locations, statistical maps, ...

fixed ontologies of neural function vs terms extracted from paper text



using decoders to answer questions

restrict voxels considered in space or time
select voxels by their behavior
use decoders as sensors of cognitive states



using decoders to answer questions

restrict voxels considered in space or in time

whole-brain region of interest searchlight
one accuracy result one accuracy result per ROI one accuracy result per
searchlight

[adapted from Martin Hebart]




using decoders to answer questions

select input voxels by their behavior

]
baseline A B

active during task

run 1

run 2
A B C

responds consistently
to each condition



select input voxels by their behavior

] 1 [ 1]
baseline A B A B C A B C D
active during task selective for condition responds differently
to some conditions
run 1 ] . .
A B C heightened danger of circularity...
[Pereira et al 2009]
run 2 [Kriegeskorte et al 2009]
A B C

responds consistently
to each condition



using decoders to answer questions

decoders as virtual sensors of cognitive states in time...

train decoders of faces / locations / objects on study phase fMRI

[Polyn et al 2005]



using decoders to answer questions
decoders as virtual sensors of cognitive states in time...

train decoders of faces / locations / objects on study phase fMRI

apply decoders to detect category reinstatement during free-recall fMRI
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using decoders to answer questions
... also shed light on spatial distribution of information

voxels with the most impact on each decoding estimate

5.65

face context

location context

object context

[Polyn et al 2005]



inference seems rather indirect...

stimulus
(task)

GLM inference
driven by task contrasts, prior studies

decoder inference

driven by feature choices,
and dissection of decoders



inference seems rather indirect...

stimulus
(task)

GLM inference
driven by task contrasts, prior studies

decoder inference

driven by feature choices,
and dissection of decoders




... but it doesn‘t have to bel!

stimulus
(task)

representation

what is represented in the brain as a task is performed?

known or constrained by behavioral or animal experiments
mathematical or computational models

hypothesized

learned elsewhere (text corpora, image database, ...)



representational similarity analysis
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[Kriegeskorte, 2008]

calculate similarity
of activation patterns
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body|face |body|face
- %g Gl | 8- ia-\{Fd
wffinaNyhmcade-) ) ' IR]
1fi%ﬁm°j?. gl
‘ ‘ 4 AQSR'

h(poq
uewny

Yo~

D § @

208}

. -
L s sl -

109

Y
B

Sl Y £ O NP 3

10

Ak
L1

3
ooey|Apog

uewny jou
ajewiue

L

-
!

L0\ @@ R DN rGuomss

")
n

1

|eloyie | jeanjeu
Q2jewiueul

e‘aﬂ.?‘:’-‘.- :'!'

human IT



representational similarity analysis

animate | inanimate animate | inanimate
human |not human natural|artificial human not human natural|artificial
body|face body|face body|hce body|face
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= similarity structure between activation patterns differs by location
= different contrasts allow inference about what is represented
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encoding and decoding models

encoding model

“does my representation predict activation?“

stimulus
(task)

representation mapping

decoding model

“can | infer my representation (and stimulus) from activation?*

stimulus
(task)

mapping representation




case study 1 (encoding)

Predicting Human Brain Activity
Associated with the Meanings
of Nouns

Tom M. Mitchell,** Svetlana V. Shinkareva,” Andrew Carlson,* Kai-Min Chang,*"*
Vicente L. Malave,” Robert A. Mason,> Marcel Adam Just®

[Science, 2008]



design

BODY PARTS
FURNITURE
VEHICLES

ANIMALS

KITCHEN
UTENSILS

TOOLS

BUILDINGS

PART OF A
BUILDING

CLOTHING
INSECTS

VEGETABLES
MAN MADE

stimulus in each trial

(3 sec + 8 sec fixation)

60 different words (12 categories x 5 exemplars) Table
leg arm eye foot hand
chair table bed desk dresser
car airplane train truck bicycle
horse dog bear cow cat
glass knife bottle cup spoon
chisel hammer screwdriver pliers saw
apartment barn house church igloo
window door chimney closet arch
coat dress shirt skirt pants
fly ant bee butterfly beetle
lettuce tomato carrot corn celery
refrigerator key telephone watch bell

OBJECTS




model

—>
Table
representation:
a vector of
semantic features average activation
during 3 seconds
mapping:

each voxel is a linear
combination of
semantic features



goal: represent different aspects of meaning of a word

25 verbs used as proxies:
sensory: see, hear, listen, taste, touch, smell, fear, ...
motor: rub, lift, run, push, move, say, eat, ...
other: fill, open, ride, approach, drive, enter, ...

25 feature values:

co-occurrence of each word with 25 verbs, in a large text corpus

e.g. “airplane” (0.87, ride, 0.29, see, 0.17, near, 0.08, run, ...)



mapping

@ “table”
“chair”
“hammer”

\ J
| |

activation semantic
feature

,_
—

values



mapping
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“table”

“chair”

“hammer”



mapping
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“chair”

“hammer”
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mapping

Participant
P1

semantic features

A

((eat”

Pars opercularis
(z=24 mm)

“push”

Postcentral gyrus
(z=30 mm)

" ”»

run

Superior temporal
sulcus (posterior)
(z=12mm)

basis images
capture the
presence of
each semantic
feature across
the brain

30



mapping

semantic feature values for “celery”

“cat’ \\ “ilp

Predicte
“celery” =/0.84

high the image for
each word is

Predicted “celery”: average predicted daS d
combination of
below 0SS images

average

31



learn basis images from 58 of the 60 words

predict images for 2 left-out test words (“celery” and “airplane”),
from their semantic feature values + basis images

correct prediction if predicted can be matched to observed

(average accuracy across subjects 72%)

“celery” “airplane”

fMRI
activation

high

Predicted:

Observed:

32



from encoding to decoding

basis images

“table”

“chair”
|

“hammer”

new brain
activation
pattern

o @?@
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from encoding to decoding

basis images
\
[
“table”
@EIZ-=EI w0 | = | =
“chair”
BN - N @ [ ] ] @ [ ] @ ]
“hammer”
BT - N [ ] [ ] W ]
new brain
@ activation . . . |:| .
pattern
\ | | | }
|

HEE B vector representation of

the semantic contents in
the new activation pattern



case study 2 (encoding)

Identifying natural images from human brain activity

Kendrick N. Kay', Thomas Naselaris®, Ryan J. Prenger® & Jack L. Gallant"*

[Nature, 2008]



design

stimulus in each trial

a
= 1750 training pictures
= 120 testing pictures

ON ON ON

JupEp

OFF OFF OFF
l | |

' 1s ' 3s :




model

representation:
output of series
of Gabor filters
applied to stimulus

mapping:
each voxel is a linear
combination of

filter outputs

Spatial frequency

1 cycle/FOV 2 cycles/FOV 4 cycles/FOV 8 cycles/FOV

VAHIII

0° 22.5°

Orientation
45° 67.5° 90°

112.5°

16 cycles/FOV

135° 157.5°

filter outputs

linear combination

Z —>» 041 —>» 025
Add Response
/ DC offset
Sum



derive representation for 120 test image stimuli

predict activation using voxelwise mapping

classify by similarity of predicted activation to actual activation
accuracy out of 120 possibilities (82% on average trial data)



case study 2 (decoding)

Bayesian Reconstruction of Natural Images
from Human Brain Activity

Thomas Naselaris,! Ryan J. Prenger,? Kendrick N. Kay,2 Michael Oliver,4 and Jack L. Gallant?:3.4.*
[Neuron, 2009]



model

representation:
output of series
of Gabor filters
applied to stimulus

mapping:
each voxel is a
linear combination

of filter outputs

Spatial frequency

1 cycle/FOV 2 cycles/FOV 4 cycles/FOV 8 cycles/FOV 16 cyclesIFOV
Orientation
0° 22.5° 45° 67.5° 90° 112.5° 135° 167.5°

linear combination

filter outputs

= :
a8

F@] : : : > — 01 —> 025

Add Response
Image . / " DC offset
um
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semantic category
labels for each
stimulus image

each voxel is
predicted as a function
of semantic category

mostly animate

human
many
few
animal
mammal

non-mammal
mostly inanimate

man-made
non-building
building
natural
plant
non-plant
texture

(crowd/gathering)
(body parts/portrait)

(land/water)
(bird/fish/other)

(vehicle/artifacts)
(indoor/outdoor)

(edible/non-edible)
(land/water/sky)



evaluation

stimulus

" invert the model that predicts
each voxel as function of visual
or semantic information




evaluation stimulus

" invert the model that predicts
each voxel as function of visual
or semantic information

= apply it to the activation data
for each test stimulus:

= obtain posterior probability for each

image in a large database (millions)
= reconstruction is the highest

probability image




evaluation stimulus reconstruction
visual visual+semantic

" invert the model that predicts
each voxel as function of visual
or semantic information

= apply it to the activation data
for each test stimulus:

= obtain posterior probability for each
image in a large database (millions)
= reconstruction is the highest
probability image
" quantitative evaluation

= correct if semantic category of
reconstruction matches that

of stimulus (40% on average)




case study 2 (encoding redux)

Deep Neural Networks Reveal a Gradient in the Complexity
of Neural Representations across the Ventral Stream

Umut Gii¢lii and Marcel A. J. van Gerven
[J. Neuro, 2015]



model
A

Stimulus

deep neural network

Y

Feature

»(x)

f

representation:

layers in a
convolutional
neural network



model
A

Stimulus Feature

deep neural network linear map

x s > P(X)

o0 00O0OOGCEOOSNOSPS
0001}
sjeqe| sse|n

' convolution, 2 rectification,
3 local response normalization,
“ max pooling, ® inner product, ¢ softmax

! !

representation: mapping:
layers in a each voxel is a linear
convolutional combination of

neural network network outputs



evaluation

100

= assign each voxel to the
network layer that best

50

predicts it in test stimuli

Layer assignment (%)

=
Al V2

va LO
Visual area of S1

I I
V1 V2 V4 LO

Visual area of S2

= voxels that are further in 100
the ventral visual stream
are better predicted by

inner network layers

50

Layer assignment (%)

1 2 3 456 7 8
Layer assignment (#)



case study 3 (RSA redux)

Deep Supervised, but Not Unsupervised, Models May
Explain IT Cortical Representation

Seyed-Mahdi Khaligh-Razavi*, Nikolaus Kriegeskorte*
[PLoS Comp Bio, 2015]



case study 3 (RSA redux)
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animate | inanimate
human |not human| natural|artificial

similarity of
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similarity of stimulus image representation
in each layer of a convolutional neural network

Layer 1 (convolutional) Layer 2 (convolutional) Layer 3 (convolutional) Layer 4 (convolutional)

£

e

-

Ty(hIT) = 0.17 ; Ty(mIT) = 0.24 TA(hIT) = 0.23; Ty(mIT) = 0.29 T(hIT) = 0.24 ; T,(mIT) = 0.29 Ty(hIT) = 0.13; T(mIT) = 0.18
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animate | inanimate
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similarity of stimulus image representation
in each layer of a convolutional neural network

Layer 1 (convolutional) Layer 2 (convolutional)
3 ] L ol o “ g oL > X

Layer 3 ( tional)

3

convolu

Layer 4 (convolutional)

connected)

)

Ty(hIT) = 0.17 ; Ty(mIT) = 0.24 TA(hIT) = 0.23; Ty(mIT) = 0.29 T(hIT) = 0.24 ; T,(mIT) = 0.29 Ty(hIT) = 0.13; T(mIT) = 0.18



encoding

Thirion 2006
Miyawaki 2008
Kay 2008
Mitchell 2008
Naselaris 2009
Just 2010
Nishimoto 2011
Huth 2012
Wehbe 2014
Gucld 2015
Huth 2016
Handjaras 2016
Anderson 2016
Anderson 2017
Wang 2017

Liu 2017

stimuli
binary figures
binary figures
natural images
word+drawing
natural images
words
movie clips
movie clips
story (text)
natural images
story (audio)
words (audio/text)
sentences
words
sentences
movies/images

decoding

Naselaris 2009
van Gerven 2010
Palatucci 2011
Pereira 2011
Horikawa 2017
Liu 2017

Pereira 2018

stimuli

natural images
digits
word+drawing
word+drawing
natural images
movies/images
sentences

representation similarity

Kriegeskorte 2008

Khaligh-Razavi 2014



summary of encoding and decoding models

= the representation is usually complex (e.g. a vector of values)
= derived from text corpora, large databases of images, behavior,...
= the same representation can be used in either direction



the representation is usually complex (e.g. a vector of values)
derived from text corpora, large databases of images, behavior,...

the same representation can be used in either direction

learn mappings from representation + imaging of training stimuli
evaluation relies on generalization to new stimuli

predict imaging data or infer representation
in the limit, actual reconstruction of the stimulus!

prior information helps (what could it be, statistics of natural images, etc)



encoding
identify voxels/locations the model can predict

classify predicted activation by similarity with true activation

decoding

extract the representation from activation for novel stimuli

reconstruct stimulus or an approximation thereof

representation similarity
can be done in either encoding or decoding model

compare either activation or representation similarity

with reference similarities obtained in various ways



the machine learning team

Francisco Charles Patrick
Pereira Zheng McClure

we can help with
= turning stimuli into representations (automatically, if we are lucky!)

= deriving representations from behavior or other sources
= devising an encoding/decoding model strategy for your problem...
= ...orusing all the methods described earlier...

email francisco.pereira@nih.gov or drop by (B10, 3D41)



mailto:francisco.pereira@nih.gov

Thank you!



