Encoding and Decoding Models

Francisco Pereira

1

Machine Learning Team

National Institute of Mental Health

"All models are wrong, but some are useful."

George Box

"I hope you paid attention during Martin's talk..."

Francisco Pereira

activation

- GLM: general linear model
- mass univariate: regression model of each voxel from the stimulus
- refinements: nuisance regressors, graded responses, ...
- good GLM: explains voxel behavior

overview

decoding

5

- decoder: classifier, regression model, ...
- multivariate: input is pattern of activation over many voxels
- good decoder: accurate at picking correct stimulus

tools and questions

GLM

"is there a brain location that responds to the stimulus?"

decoder

"is there information about the stimulus in the pattern of activation?"

tools and questions

GLM

stimulus

(task)

"is there a brain location that responds to the stimulus?"

decoder

"is there information about the stimulus in the pattern of activation?"

... and the questions we care about

- what does brain area X do?
- is brain area X used in task Y?
- If a subject is doing Y, what does their brain represent?
- where are representations invariant to Z?
- does everyone with disease W have altered connectivity to X?

using GLMs to answer questions

"Is region X used in task Y?"

careful choice of control condition(s)

(e.g. if studying sentences, control with nonwords, scrambled words,...)

- using a meta-analysis to perform reverse inference [Poldrack 2011]
 - "how likely is task Y given region X?"
 - activation databases
 - BrainMap, NeuroSynth, NeuroVault, ...
 - activation locations, statistical maps, ...
 - fixed ontologies of neural function vs terms extracted from paper text

- restrict voxels considered in space or time
- select voxels by their behavior
- use decoders as sensors of cognitive states

restrict voxels considered in space or in time

region of interest

one accuracy result per ROI

whole-brain

one accuracy result

one accuracy result per searchlight

searchlight

[adapted from Martin Hebart]

11

select input voxels by their behavior

select input voxels by their behavior

decoders as virtual sensors of cognitive states in time...

train decoders of faces / locations / objects on study phase fMRI

face decoder

location decoder

object decoder

decoders as virtual sensors of cognitive states in time...

train decoders of faces / locations / objects on study phase fMRI

apply decoders to detect category reinstatement during free-recall fMRI

[Polyn et al 2005]

... also shed light on spatial distribution of information

voxels with the most impact on each decoding estimate

inference seems rather indirect...

GLM inference

driven by task contrasts, prior studies

decoder inference

driven by feature choices, and dissection of decoders

inference seems rather indirect...

GLM inference

driven by task contrasts, prior studies

decoder inference driven by feature choices, and dissection of decoders

... but it doesn't have to be!

what is represented in the brain as a task is performed?

- known or constrained by behavioral or animal experiments
- mathematical or computational models
- hypothesized
- learned elsewhere (text corpora, image database, ...)

. . .

representational similarity analysis

representational similarity analysis

human IT

human early visual cortex

- similarity structure between activation patterns differs by location
- different contrasts allow inference about what is represented

encoding and decoding models

encoding model

"does my representation predict activation?"

decoding model

"can I infer my representation (and stimulus) from activation?"

case study 1 (encoding)

Predicting Human Brain Activity Associated with the Meanings of Nouns

Tom M. Mitchell,¹* Svetlana V. Shinkareva,² Andrew Carlson,¹ Kai-Min Chang,^{3,4} Vicente L. Malave,⁵ Robert A. Mason,³ Marcel Adam Just³

[Science, 2008]

stimulus in each trial (3 sec + 8 sec fixation)

60 different words (12 categories x 5 exemplars)

Table

BODY PARTS	leg	arm	eye	foot	hand
FURNITURE	chair	table	bed	desk	dresser
VEHICLES	car	airplane	train	truck	bicycle
ANIMALS	horse	dog	bear	cow	cat
KITCHEN					
UTENSILS	glass	knife	bottle	cup	spoon
TOOLS	chisel	hammer	screwdriver	pliers	saw
BUILDINGS	apartment	barn	house	church	igloo
PART OF A					
BUILDING	window	door	chimney	closet	arch
CLOTHING	coat	dress	shirt	skirt	pants
INSECTS	fly	ant	bee	butterfly	beetle
VEGETABLES	lettuce	tomato	carrot	corn	celery
MAN MADE					
OBJECTS	refrigerator	key	telephone	watch	bell

model

mapping: each voxel is a linear combination of semantic features

representation

- goal: represent different aspects of meaning of a word
- 25 verbs used as proxies:
 - sensory: see, hear, listen, taste, touch, smell, fear, ...
 - motor: rub, lift, run, push, move, say, eat, ...
 - other: fill, open, ride, approach, drive, enter, ...
- 25 feature values:
 - co-occurrence of each word with 25 verbs, in a large text corpus
- e.g. "airplane" (0.87, ride, 0.29, see, 0.17, near, 0.08, run, ...)

activation semantic feature values

basis images capture the presence of each semantic feature across the brain

- learn basis images from 58 of the 60 words
- predict images for 2 left-out test words ("celery" and "airplane"),
 from their semantic feature values + basis images
- correct prediction if predicted can be matched to observed

(average accuracy across subjects 72%)

from encoding to decoding

new brain activation pattern

from encoding to decoding

case study 2 (encoding)

Identifying natural images from human brain activity

Kendrick N. Kay¹, Thomas Naselaris², Ryan J. Prenger³ & Jack L. Gallant^{1,2}

[Nature, 2008]

design

- 1750 training pictures
- 120 testing pictures

stimulus in each trial

а

model

representation: output of series of Gabor filters applied to stimulus

mapping:

each voxel is a linear combination of filter outputs

- derive representation for 120 test image stimuli
- predict activation using voxelwise mapping
- classify by similarity of predicted activation to actual activation
- accuracy out of 120 possibilities (82% on average trial data)

case study 2 (decoding)

Bayesian Reconstruction of Natural Images from Human Brain Activity

Thomas Naselaris,¹ Ryan J. Prenger,² Kendrick N. Kay,³ Michael Oliver,⁴ and Jack L. Gallant^{1,3,4,*}

[Neuron, 2009]

model

representation: output of series of Gabor filters applied to stimulus

mapping: each voxel is a linear combination of filter outputs

expanded model

representation:	mostly animate		
semantic category	human		
		many	(crowd/gathering)
labels for each		few	(body parts/portrait)
stimulus image	animal		
		mammal	(land/water)
		non-mammal	(bird/fish/other)
	mostly inanimate		
	man-mad	e	
		non-building	(vehicle/artifacts)
		building	(indoor/outdoor)
	natural		
		plant	(edible/non-edible)
		non-plant	(land/water/sky)
mapping:	texture		
each voxel is			
predicted as a function	1		
of semantic category			

 invert the model that predicts each voxel as function of visual or semantic information

stimulus

- invert the model that predicts each voxel as function of visual or semantic information
- apply it to the activation data for each test stimulus:
 - obtain posterior probability for each image in a large database (millions)
 - reconstruction is the highest probability image

stimulus

- invert the model that predicts each voxel as function of visual or semantic information
- apply it to the activation data for each test stimulus:
 - obtain posterior probability for each image in a large database (millions)
 - reconstruction is the highest probability image
- quantitative evaluation
 - correct if semantic category of reconstruction matches that of stimulus (40% on average)

stimulus

reconstruction visual visual+semantic

case study 2 (encoding redux)

Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream

Umut Güçlü and Marcel A. J. van Gerven

[J. Neuro, 2015]

model

representation:

layers in a convolutional neural network

model

representation:

layers in a convolutional neural network

mapping: each voxel is a linear combination of network outputs

- assign each voxel to the network layer that best predicts it in test stimuli
- voxels that are further in
 the ventral visual stream
 are better predicted by
 inner network layers

Layer assignment (#)

Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation

Seyed-Mahdi Khaligh-Razavi*, Nikolaus Kriegeskorte*

[PLoS Comp Bio, 2015]

similarity of human IT activation across stimuli

human IT

similarity of human IT activation across stimuli

similarity of stimulus image representation in each layer of a convolutional neural network

similarity of human IT activation across stimuli

similarity of stimulus image representation in each layer of a convolutional neural network

 $T_A(hIT) = 0.17$; $T_A(mIT) = 0.24$

 $T_A(hIT) = 0.23; T_A(mIT) = 0.29$

 $T_{A}(hIT) = 0.24$; $T_{A}(mIT) = 0.29$

 $T_A(hIT) = 0.13$; $T_A(mIT) = 0.18$

studies based on encoding/decoding models

encoding

- Thirion 2006
- Miyawaki 2008
- Kay 2008
- Mitchell 2008
- Naselaris 2009
- Just 2010
- Nishimoto 2011
- Huth 2012
- Wehbe 2014
- Güçlü 2015
- Huth 2016
- Handjaras 2016
- Anderson 2016
- Anderson 2017
- Wang 2017
- Liu 2017

53

stimuli

binary figures binary figures natural images word+drawing natural images words movie clips movie clips story (text) natural images story (audio) words (audio/text) sentences words sentences

movies/images

decoding

- Naselaris 2009
- van Gerven 2010
- Palatucci 2011
- Pereira 2011
- Horikawa 2017
- Liu 2017

. . .

Pereira 2018

representation similarity

- Kriegeskorte 2008
- Khaligh-Razavi 2014

stimuli

natural images digits word+drawing word+drawing

- natural images
- movies/images sentences

summary of encoding and decoding models

- the representation is usually complex (e.g. a vector of values)
- derived from text corpora, large databases of images, behavior,...
- the same representation can be used in either direction

summary of encoding and decoding models

- the representation is usually complex (e.g. a vector of values)
- derived from text corpora, large databases of images, behavior,...
- the same representation can be used in either direction
- learn mappings from representation + imaging of training stimuli
- evaluation relies on generalization to new stimuli
 - predict imaging data or infer representation
 - in the limit, actual reconstruction of the stimulus!
 - prior information helps (what could it be, statistics of natural images, etc)

summary of encoding and decoding models

encoding

- identify voxels/locations the model can predict
- classify predicted activation by similarity with true activation

decoding

- extract the representation from activation for novel stimuli
- reconstruct stimulus or an approximation thereof

representation similarity

- can be done in either encoding or decoding model
- compare either activation or representation similarity with reference similarities obtained in various ways

the machine learning team

we can help with

- turning stimuli into representations (automatically, if we are lucky!)
- deriving representations from behavior or other sources
- devising an encoding/decoding model strategy for your problem...
- ... or using all the methods described earlier...

email francisco.pereira@nih.gov or drop by (B10, 3D41)

Thank you!