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"All models are wrong, but some are useful.”
George Box
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”I hope you paid attention during Martin’s talk...”
Francisco Pereira
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overview

functional MRI active
locations

activation

§ GLM: general linear model
§ mass univariate: regression model of each voxel from the stimulus
§ refinements: nuisance regressors, graded responses, ...
§ good GLM: explains voxel behavior

GLM

t-value map

visual stimulus

time



5

overview

decoding

§ decoder: classifier, regression model, ...
§ multivariate: input is pattern of activation over many voxels
§ good decoder: accurate at picking correct stimulus

decoder

functional MRI

(...)

chair

pineapple

decoder

functional MRI

pineapple?

stimuli

(...)

chair

pineapple

(...)
train

test
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tools and questions

GLM
“is there a brain location that responds to the stimulus?“

stimulus
(task)

decoder
“is there information about the stimulus

in the pattern of activation?“ 
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tools and questions

GLM
“is there a brain location that responds to the stimulus?“

stimulus
(task)

decoder
“is there information about the stimulus

in the pattern of activation?“ 
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§ what does brain area X do?
§ is brain area X used in task Y? 
§ if a subject is doing Y, what does their brain represent?
§ where are representations invariant to Z?
§ does everyone with disease W have altered connectivity to X?
§ ...

... and the questions we care about
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”Is region X used in task Y?”

§ careful choice of control condition(s)
     (e.g. if studying sentences, control with nonwords, scrambled words,...)

§ using a meta-analysis to perform reverse inference
§ “how likely is task Y given region X?”
§ activation databases
§ BrainMap, NeuroSynth, NeuroVault, ...
§ activation locations, statistical maps, ...
§ fixed ontologies of neural function vs terms extracted from paper text

using GLMs to answer questions

[Poldrack 2011]
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§ restrict voxels considered in space or time
§ select voxels by their behavior
§ use decoders as sensors of cognitive states
§ ...

using decoders to answer questions
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restrict voxels considered in space or in time

using decoders to answer questions

whole-brain region of interest searchlight

one accuracy result one accuracy result per ROI one accuracy result per 
searchlight

[adapted from Martin Hebart]
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select input voxels by their behavior

using decoders to answer questions

baseline A B

A B C

A B C

active during task

responds consistently
to each condition

run 1

run 2
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select input voxels by their behavior

using decoders to answer questions

baseline A B A B C

A B C

A B C

A B C D

active during task selective for condition responds differently
to some conditions

responds consistently
to each condition

run 1

run 2

§ heightened danger of circularity...

[Pereira et al 2009]
[Kriegeskorte et al 2009]
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decoders as virtual sensors of cognitive states in time...

using decoders to answer questions

train decoders of faces / locations / objects on study phase fMRI

face decoder location decoder object decoder

[Polyn et al 2005]
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decoders as virtual sensors of cognitive states in time...

using decoders to answer questions

train decoders of faces / locations / objects on study phase fMRI

face decoder location decoder object decoder

[Polyn et al 2005]

apply decoders to detect category reinstatement during free-recall fMRI
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... also shed light on spatial distribution of information

using decoders to answer questions

face decoder

location decoder

object decoder

[Polyn et al 2005]

voxels with the most impact on each decoding estimate
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inference seems rather indirect...

GLM inference
driven by task contrasts, prior studies

stimulus
(task)

decoder inference
driven by feature choices,
and dissection of decoders
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inference seems rather indirect...

GLM inference
driven by task contrasts, prior studies

stimulus
(task)

decoder inference
driven by feature choices,
and dissection of decoders
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... but it doesn‘t have to be!

stimulus
(task)

what is represented in the brain as a task is performed?

§ known or constrained by behavioral or animal experiments
§ mathematical or computational models
§ hypothesized
§ learned elsewhere (text corpora, image database, ...)
§ ...

representation
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representational similarity analysis

calculate similarity
of activation patterns

[Kriegeskorte, 2008]
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representational similarity analysis

human IT human early visual cortex

§ similarity structure between activation patterns differs by location
§ different contrasts allow inference about what is represented
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encoding and decoding models

encoding model
“does my representation predict activation?“ 

stimulus
(task)

decoding model
“can I infer my representation (and stimulus) from activation?“

representation mapping

representationmapping
stimulus

(task)
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case study 1 (encoding)

[Science, 2008]
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design

Table

stimulus in each trial
(3 sec + 8 sec fixation)

60 different words (12 categories x 5 exemplars)
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model

mapping:
each voxel is a linear
combination of
semantic features

average activation
during 3 seconds

representation:
a vector of
semantic features

Table
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representation

§ goal: represent different aspects of meaning of a word

§ 25 verbs used as proxies:
§ sensory: see, hear, listen, taste, touch, smell, fear, ...
§ motor: rub, lift, run, push, move, say, eat, ...
§ other: fill, open, ride, approach, drive, enter, ...

§ 25 feature values:
§ co-occurrence of each word with 25 verbs, in a large text corpus

§   e.g. “airplane” (0.87, ride, 0.29, see, 0.17, near, 0.08, run, ...)
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mapping

“table”

“chair”

“hammer”

semantic
feature
values

activation
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mapping

“table”

“chair”

“hammer”

=

=

=
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mapping

“table”

“chair”

“hammer”

=

=

=

basis images
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mapping

30

basis images
capture the
presence of 
each semantic
feature across
the brain

semantic features
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mapping

31

semantic feature values for “celery”

the image for 
each word is 
predicted as a 
combination of 
basis images
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evaluation

32

§ learn basis images from 58 of the 60 words
§ predict images for 2 left-out test words (“celery” and “airplane”),

     from their semantic feature values + basis images
§ correct prediction if predicted can be matched to observed
        (average accuracy across subjects 72%)
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from encoding to decoding

“table”

“chair”

“hammer”

=

=

=

new brain
activation
pattern

basis images
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from encoding to decoding

“table”

“chair”

“hammer”

=

=

=

new brain
activation
pattern

vector representation of
the semantic contents in
the new activation pattern

basis images
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case study 2 (encoding)

[Nature, 2008]
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design

Table

stimulus in each trial

§ 1750 training pictures
§ 120 testing pictures
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model

mapping:
each voxel is a linear
combination of
filter outputs

representation:
output of series
of Gabor filters
applied to stimulus

filter outputs linear combination 
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evaluation

§ derive representation for 120 test image stimuli
§ predict activation using voxelwise mapping
§ classify by similarity of predicted activation to actual activation
§ accuracy out of 120 possibilities  (82% on average trial data)
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case study 2 (decoding)

[Neuron, 2009]



40

model

mapping:
each voxel is a
linear combination
of filter outputs

representation:
output of series
of Gabor filters
applied to stimulus

filter outputs linear combination 
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expanded model

mapping:
each voxel is
predicted as a function
of semantic category

representation:
semantic category
labels for each
stimulus image

mostly animate
 human
  many  (crowd/gathering)
  few  (body parts/portrait)
 animal
  mammal  (land/water)
  non-mammal (bird/fish/other)
mostly inanimate
 man-made
  non-building (vehicle/artifacts)
  building  (indoor/outdoor)
 natural
  plant  (edible/non-edible)
  non-plant  (land/water/sky)
 texture
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evaluation

§ invert the model that predicts
     each voxel as function of visual
     or semantic information

stimulus reconstruction
visual visual+semantic
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evaluation

§ invert the model that predicts
     each voxel as function of visual
     or semantic information
§ apply it to the activation data
     for each test stimulus:
§ obtain posterior probability for each
      image in a large database (millions)
§ reconstruction is the highest
      probability image

stimulus reconstruction
visual visual+semantic



44

evaluation

§ invert the model that predicts
     each voxel as function of visual
     or semantic information
§ apply it to the activation data
     for each test stimulus:
§ obtain posterior probability for each
      image in a large database (millions)
§ reconstruction is the highest
      probability image

§ quantitative evaluation
§ correct if semantic category of
      reconstruction matches that
      of stimulus (40% on average)

stimulus reconstruction
visual visual+semantic
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case study 2 (encoding redux)

[J. Neuro, 2015]
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model

representation:
layers in a 
convolutional 
neural network
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model

mapping:
each voxel is a linear
combination of
network outputs

representation:
layers in a 
convolutional 
neural network
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evaluation
§ assign each voxel to the
     network layer that best
     predicts it in test stimuli

§ voxels that are further in
     the ventral visual stream
     are better predicted by
     inner network layers
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case study 3 (RSA redux)

[PLoS Comp Bio, 2015]



50

case study 3 (RSA redux)
similarity of
human IT
activation
across stimuli
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case study 3 (RSA redux)
similarity of
human IT
activation
across stimuli

similarity of stimulus image representation
in each layer of a convolutional neural network
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case study 3 (RSA redux)
similarity of
human IT
activation
across stimuli

similarity of stimulus image representation
in each layer of a convolutional neural network
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studies based on encoding/decoding models
encoding
§ Thirion 2006
§ Miyawaki 2008
§ Kay 2008
§ Mitchell 2008
§ Naselaris 2009
§ Just 2010
§ Nishimoto 2011
§ Huth 2012
§ Wehbe 2014
§ Güçlü 2015
§ Huth 2016
§ Handjaras 2016
§ Anderson 2016
§ Anderson 2017
§ Wang 2017
§ Liu 2017 
§ ...

decoding
§ Naselaris 2009
§ van Gerven 2010
§ Palatucci 2011
§ Pereira 2011
§ Horikawa 2017
§ Liu 2017
§ Pereira 2018
§ ...

binary figures
binary figures
natural images
word+drawing
natural images
words
movie clips
movie clips
story (text)
natural images
story (audio)
words (audio/text)
sentences
words
sentences
movies/images

natural images
digits
word+drawing
word+drawing
natural images
movies/images
sentences

representation similarity
§ Kriegeskorte 2008
§ Khaligh-Razavi 2014
§ ...

stimuli stimuli
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summary of encoding and decoding models

§ the representation is usually complex (e.g. a vector of values)

§ derived from text corpora, large databases of images, behavior,...
§ the same representation can be used in either direction
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summary of encoding and decoding models

§ the representation is usually complex (e.g. a vector of values)

§ derived from text corpora, large databases of images, behavior,...
§ the same representation can be used in either direction

§ learn mappings from representation + imaging of training stimuli
§ evaluation relies on generalization to new stimuli
§ predict imaging data or infer representation 
§ in the limit, actual reconstruction of the stimulus!
§ prior information helps (what could it be, statistics of natural images, etc)
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summary of encoding and decoding models

encoding
§ identify voxels/locations the model can predict
§ classify predicted activation by similarity with true activation

decoding
§ extract the representation from activation for novel stimuli
§ reconstruct stimulus or an approximation thereof

representation similarity
§ can be done in either encoding or decoding model
§ compare either activation or representation similarity
     with reference similarities obtained in various ways
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the machine learning team

we can help with
§ turning stimuli into representations (automatically, if we are lucky!)

§ deriving representations from behavior or other sources
§ devising an encoding/decoding model strategy for your problem...
§ ... or using all the methods described earlier...

email francisco.pereira@nih.gov or drop by (B10, 3D41)

Francisco
Pereira

Charles
Zheng

Patrick
McClure

mailto:francisco.pereira@nih.gov
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Thank you!


