Resting State fMRI

Catie Chang fMRI Summer Course * 2018

Resting-state fMRI

- Background & motivation
- Data analysis
- Interpretation
- Directions

Task vs. resting-state fMRI

Task-based fMRI

Resting-state fMRI

- no task/stimuli
- instructions like: "keep eyes closed" or "keep eyes open and fixate"
- usually 5-15 minutes long

Spontaneous brain activity

courtesy Zhongming Liu

- activity that cannot be attributed to experimental task/stimuli
- accounts for most of the brain's energy consumption¹
- can we learn more about brain function by studying spontaneous activity?

How to extract information from resting-state data?

- ? no (known) conditions to compare
- ? how to separate "signal" (neurally driven component) from noise/artifacts
- ? how to interpret ongoing neural activity

Functional connectivity

- FC: statistical dependence (e.g. correlation) between the time courses of different brain regions
- suggests "network" interactions, though interpretation is complicated!

Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI

Bharat Biswal, F. Zerrin Yetkin, Victor M. Haughton, James S. Hyde

Mag. Res. Med. 1995, ~5300 citations

task *activation*

resting state *correlation*

adapted from Smith et al, 2009

Resting-state "networks" resemble task-activated networks

- Suggests we may be able to map multiple functional networks without needing tasks
- Would allow for studying functional networks in populations and brain states where tasks are not feasible

"Resting State Networks"

Raichle, 2011

a.k.a. "intrinsic networks"

Sets of regions ("nodes") with mutually high functional connectivity in resting state

- often named after the functional areas with
- approx. 10-15 reliable patterns at the spatial granularity shown here
- FC/networks can be studied at multiple spatial and temporal scales

Reliability of resting-state networks

Choe et al, 2015

Van Dijk et al. 2010

Reliability of resting-state networks

Horovitz et al. 2008; Doria et al. 2010; Vincent et al. 2007; Lu et al. 2007

Variability of resting-state networks

Whitfield-Gabrieli et al. 2009

Healthy controls

Alzheimer's Disease

Individual differences

Greicius et al. 2004

Subj 1 Subj 2

Finn et al. 2015

• Potential for resting-state fMRI to yield biomarkers

Table 1. Number of publications in which iFC or resting state approaches have been used to study a variety of disorders and conditions (PubMed search on 25 January 2012)

Disorder/Condition	# studies
Schizophrenia	45
Alzheimer's Disease	44
Depression	42
Mild Cognitive Impairment (MCI)	33
Aging	39
Epilepsy	29
Substance Dependence	28
ADHD	16
Multiple Sclerosis	13
Autism	12
Parkinson's Disease	11
Pain	10
Anxiety Disorders	8
Sleep	2
Miscellaneous Neurological Disorders	10
Stroke	7
Obsessive Compulsive Disorder (OCD)	8
Posttraumatic Stress Disorder (PTSD)	8
Amnesia	4
Brain Lesions	7
Dementia	2
Seizure	3
Trauma	4
Bipolar Disorder	3
Personality Disorders	2
Cerebral Palsy	2
Fetal Alcohol Syndrome	2
Migraine	2
Psychopathy	2
Learning Disabilities	1
Tourette Syndrome	1

Default Mode Network

Raichle at el., 2001
"A default mode of brain function"

Greicius et al., 2003,

"Functional connectivity in the resting brain: a network analysis of the default mode hypothesis"

- Preferentially active when not focused on the external environment
- Possible functions include: autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others
 - review: Buckner et al., 2008 Ann N Y Acad Sci

Recap

- Resting-state fMRI scan:
 - no task or stimuli, minimal instructions
 - study spontaneous brain activity
- Can reliably identify spatial patterns of temporally correlated activity that correspond with known functional networks
 - "resting-state networks"
 - no task or task compliance needed
- Promising tool for studying natural or disease-related differences in functional organization

Resting-state fMRI

- Background & motivation
- Data analysis
 - seed-based correlation
 - independent component analysis (ICA)
 - complex network analysis
- Interpretation
- Challenges / directions

Seed-based correlation

- Which areas are most highly correlated with a region of interest ("seed")?
- Implemented with GLM (linear regression)

example questions:

- Are there any areas whose correlation with my seed ROI is significantly different in condition A v. condition B / patients v. controls?
- Any areas whose FC with my seed ROI is proportional to [behavioral measure / outcome measure, etc.]

Seed-based correlation: examples

Fox et al. 2009

Choosing the seed region

E.g., from atlas, published coordinate, structrual image, activation map (single-sub, group-level)

Klein et al. 2012

Stanford "FIND" atlas *Shirer et al. 2011*

Power et al. 2011

Differences in seed location can explain discrepancies across papers

Chen et al. 2017

Choosing the seed region

Choosing the seed region

Exploratory seed-based correlation in AFNI

http://afni.nimh.nih.gov/pub/dist/doc/misc/instacorr.pdf

-1-

AFNII InstaCorr

All data herein from Alex Martin, et al. [NIMH IRP]

On-the-fly

 instantaneous
 correlation map of resting state data with interactively selected seed voxel

- Setup phase: prepares data for correlations (several-to-10+ seconds)
- Correlation phase: you select seed voxel, correlation map appears by magic

2. Independent Component Analysis (ICA)

Independent Component Analysis (ICA)

Independent Component Analysis (ICA)

Independent Component Analysis (ICA)

- Analogy: "cocktail-party problem"
- Uses assumption of spatial independence

"Networks" from ICA

McKeown et al. 1998 <- Damoiseaux et al. 2006

ICA reveals structured neural & artifact patterns

Identifying noise components?

• FIX: "FMRIB's ICA-based Xnoiseifier"

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX

Multi-echo ICA

Kundu et al, 2012, 2013

ICA: considerations

- ICA is multivariate; extract many "networks" (components) at once
- Doesn't require seed, but need to specify some parameters
 - e.g., number of components this can greatly impact your results (networks "split" when increasing the number of components)
- Can be used for network analysis and noise reduction
 - must objectively select components
 - not all types of artifact are easily separable with ICA
- see also: **dual regression** (Filippini et al. 2009)
- Interpretation more complicated than seed-based analysis

Advances and pitfalls in the analysis and interpretation of resting-state FMRI data

3. Complex network analysis

Xia et al., 2013

Reviews: Rubinov & Sporns, 2010 Bassett & Sporns, 2017

Choice of nodes ("parcellation")

Glasser et al. 2016

Resting-state fMRI

- Background & motivation
- Data analysis
- Interpretation
- Directions

Resting-state fMRI: powerful but ambiguous

Functional connectivity is a powerful but ambiguous mapping tool (Buckner et al. 2013 Nat. Rev. Neuro)

- Resting state data: mixture of many, largely unknown processes.
- Relationship with structural connectivity & electrophysiology not straightforward
- Data are noisy & sensitive to modeling and pre-processing decisions

Head motion

Systematic differences in head motion across age groups caused spurious functional connectivity effects

Physiological effects in fMRI data

• e.g., fluctuations in breathing & heart rate correlate with fMRI

Any non-neural fluctuations shared in common across regions will create the appearance of "functional connectivity"

What is noise, what is signal?

- no task/stimulus timing to help distinguish signal from noise
- trial averaging not possible
- "functional connectivity" quantifies relationships between regions (each are signal + noise!)

Pre-processing strategies can affect results

- and it's hard to evaluate pre-processing strategies no ground truth
- saga of the global signal...

Fox et al, 2005

Pre-processing strategies can affect results

• physiological noise reduction can reveal anti-correlations

no correction

physiological noise reduction

-0.55

-0.15

0.25

0.85

Chang et al, 2009

Chai et al, 2012

Fluctuations in alertness / vigilance

Thoughts, mind-wandering

Doucet et al. 2011

Gonzalez-Castillo et al. 2015

Correspondence with anatomic connectivity

Buckner et al. 2011

Zhang et al. 2008

Correspondence with anatomic connectivity

Agenesis of the Corpus Callosum

task correlations (resting state)

Quigley et al., 2003

FEF V1 via indirect connections? HF SM PRE POST seed

Johnston et al., 2008

Correspondence with electrophysiology

Schölvinck et al. 2010 Shmuel & Leopold, 2008

Keller et al. 2013

- slow cortical potential (e.g. He et al, 2010)
- distributed across frequency bands (e.g. Mantini et al. 2007)
- broadband (e.g. Liu et al. 2014)
- review: Schölvinck, Leopold et al. 2013

Overall Summary

- Resting-state fMRI data exhibit spatio-temporal organization and is widely studied for clinical applications and basic neuroscience
- Understand analysis methods/tradeoffs
 - and stay close to the data
- Artifacts and neural variability can affect signal and connectivity measurements
- Interpretation is still not clear
 - understand neural, physiological basis

• Methods for analyzing spatio-temporal dynamics of brain activity (in rest & task)

• Methods for analyzing spatio-temporal dynamics of brain activity (in rest & task)

e.g., time-varying analysis, brain "states"

Reviews:

Hutchison et al. Neuroimage 2013 <--Calhoun et al. Neuron 2014 Keilholz et al. Brain Conn. 2017

- Methods for analyzing spatio-temporal dynamics of brain activity (in rest & task)
 - e.g., time-varying analysis, brain "states"
- Improved understanding of neural & physiological basis
 - multi-modal recordings, causal manipulation

http://fmri.uib.no

Turchi et al. 2018

Mateo et al., 2017 He et al. 2018

- Methods for analyzing spatio-temporal dynamics of brain activity (in rest & task)
 - e.g., time-varying analysis, brain "states"
- Improved understanding of neural & physiological basis
 - multi-modal recordings, causal manipulation
- Individual Differences, Clinical Applications

Drysdale et al. 2017
Subtypes of depression

Morgan et al. 2017 Epilepsy: prediction of seizure outcome

Data sharing & fMRI big data

The WU-Minn Human Connectome Project: An overview

David C. Van Essen ^{a,*}, Stephen M. Smith ^b, Deanna M. Barch ^c, Timothy E.J. Behrens ^b, Essa Yacoub ^d, Kamil Ugurbil ^d, for the WU-Minn HCP Consortium

a Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA

^b FMRIB (Oxford Centre for Functional MRI of the Brain), Oxford University, Oxford, UK

^c Psychology Department, Washington University, St. Louis, MO 63105, USA

^d Center for Magnetic Resonance Imaging, University of Minnesota, Minneapolis, MN 55455, USA

Thanks!