Data Sharing and Open Science in Neuroimaging

Adam Thomas Data Science and Sharing Team, FMRIF, NIMH

National Institute of Mental Health

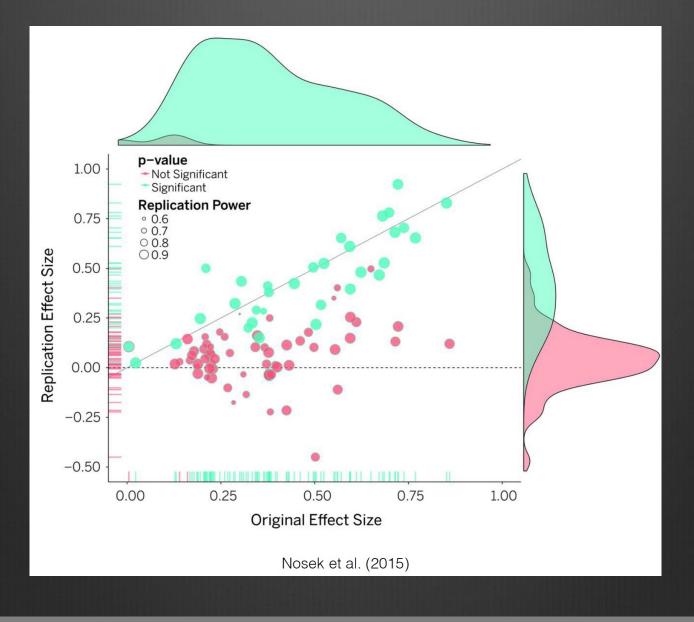
Outline

- Why do we need Open Science?
- What is Open Science?
- How do I do Open Science?

Credits

Material borrowed, adapted, and/or stolen from:

- Russ Poldrack
- Chris Gorgolewski
- Brian Nosek
- Tal Yorkoni
- Niko Kriegeskorte
- Tom Nichols
- Phil Bourne



Outline

- Why do we need Open Science?
- What is Open Science?
- How do I do Open Science?

Problems: Reproducibility

OPEN SCIENCE:

WHY

 \rightarrow

WHAT →

HOW

Problems: Wasted time & resources

"How much time do you spend handling, reorganizing, and managing your data as opposed to actually *doing* science?"

• Median answer is 80%

OPEN SCIENCE: WHY → WHAT → HOW

Problems: The big-data revolution

PERSPECTIVE

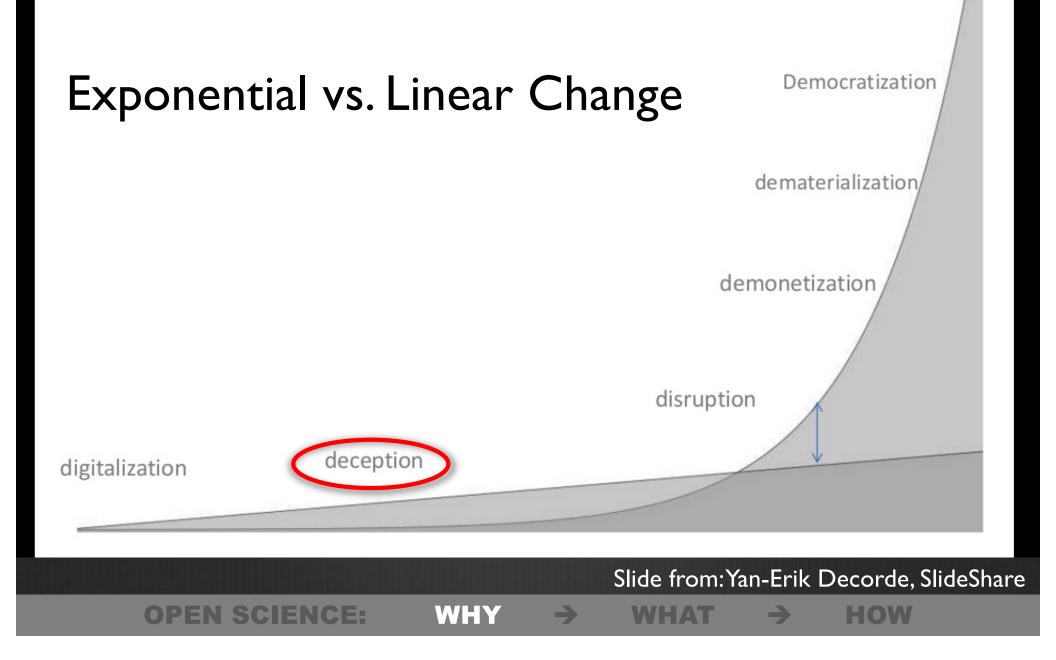
Sustaining the big-data ecosystem

Organizing and accessing biomedical big data will require quite different business models, say **Philip E. Bourne**, **Jon R. Lorsch** and **Eric D. Green**.

B iomedical big data offer tremendous potential for making discoveries, but the cost of sustaining these digital assets and the resources needed to make them useful have received relatively little attention. Research budgets are flat or declining in inflationrecorded. All of this means that absolute numbers are hard to interpret.

These caveats notwithstanding, more details of data usage are needed to inform funding decisions. Over time, such usage patterns could tell us how best to target annotation and curation efforts, establish which data should receive the most attention and therefore incur the largest cost, and determine which data should be kept in the longer term. The cost of data regeneration can also influence decisions about keeping data.

Funders should encourage the development of new metrics to ascertain the usage and value of data, and persuade data resources to provide such statistics for all of the data they maintain. We can learn here from the private sector: understanding detailed data usage patterns through data analytics forms the basis of highly successful companies such as Amazon and Netflix.

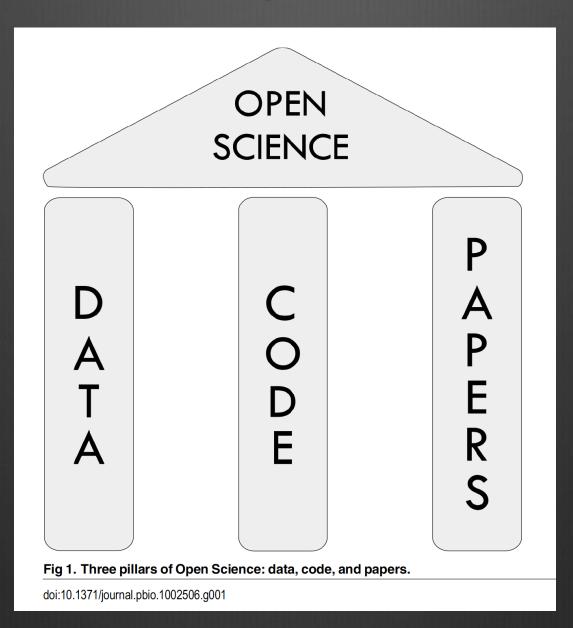

FAIR AND EFFICIENT

OPEN SCIENCE:

WHY

- F

Problems: The big-data revolution



Outline

Why do we need Open Science?

- What is Open Science?
- How do I do Open Science?

What is Open Science?

OPEN SCIENCE:

WHAT

 \rightarrow

WHY

HOW

 \rightarrow

What is Open Data?

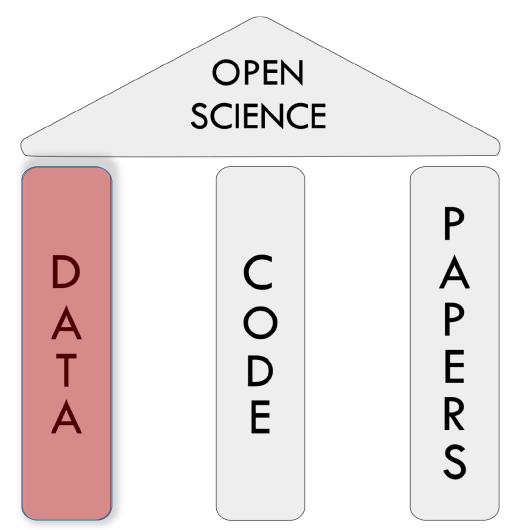


Fig 1. Three pillars of Open Science: data, code, and papers.

doi:10.1371/journal.pbio.1002506.g001

Data deposited in a public, community-recognized repository with a stable DOI

Follows FAIR Principle

- Findable
- Accessible
- Intra-operable
- Reusable

Should be deposited before publication

OPEN SCIENCE:

WHY -

- WHAT

Open Data: Community recognized Repositories

WHY

 \rightarrow

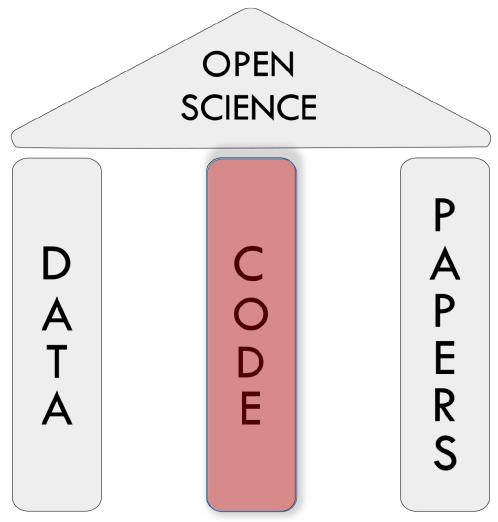
MRI Specific Repos

- OpenfMRI
- COINS
- FCP/INDI
- LONI
- LORIS
- NITRC
- XNAT Central
- ANIMA*
- BALSA*
- Neuovault*

* Statistical & derived data only

OPEN SCIENCE:

Data Agnostic Repos


- FigShare
- Dryad
- DataVerse
- Open Science
 Framework
- NIMH Data Archive

Coming soon: A dedicated MRI image repository for MRI studies conducted at intramural NIMH

HOW

WHAT

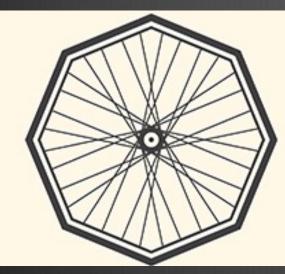
What is Open Code?

Open code enables greater reproducibility (includes non-code methods)

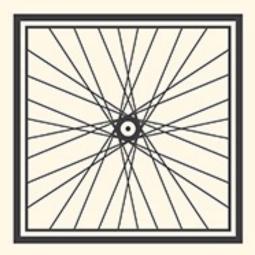
Fig 1. Three pillars of Open Science: data, code, and papers.

doi:10.1371/journal.pbio.1002506.g001

OPEN SCIENCE:


 \rightarrow

WHY


WHAT

Open Code – Don't Reinvent

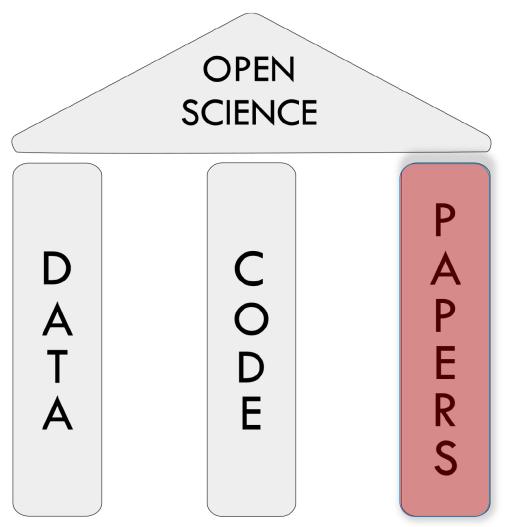
Reuse and improve

OPEN SCIENCE: WHY \rightarrow WHAT \rightarrow HOW

Open Code - Version Control

Version control systems allows you to:

- Store all of your analysis in a central repository
- Keep a history of "snapshots" of your evolving analysis
- Quickly switch between different versions of your analysis
- Adopt and modify code from other scientists
- Collaborate



OPEN SCIENCE:

WHAT

What are Open Papers?

- Preprint posting
- Open access
- Open review

Fig 1. Three pillars of Open Science: data, code, and papers.

doi:10.1371/journal.pbio.1002506.g001

OPEN SCIENCE:

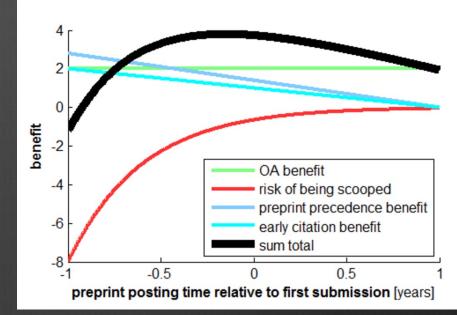
 \rightarrow

WHY

WHAT

Open Papers: Preprint posting

arXiv.org

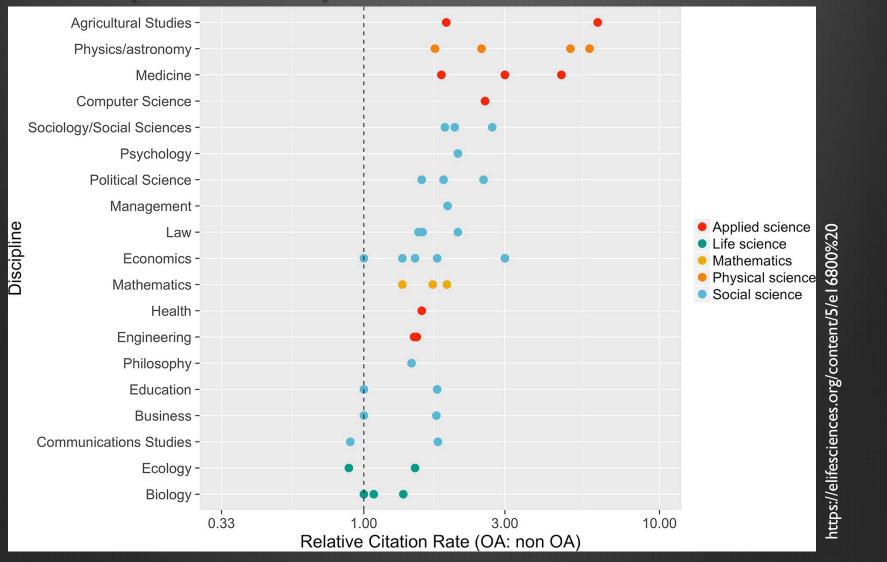

bioRxiv beta THE PREPRINT SERVER FOR BIOLOGY

WHAT

- Benefits:
 - Open access
 - Catch errors

OPEN SCIENCE:

- Earlier citation
- Earlier precedence, prevent scooping



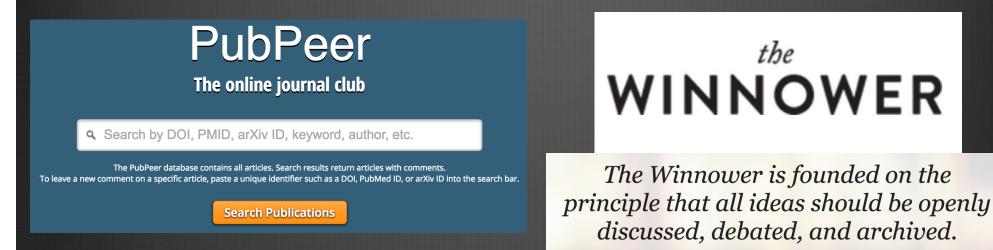
Speed and improve final submission

WHY

<riegeskorte (2016) DOI:10.15200/winn.145838.88372</pre>

Open Access Open access publication are cited more

mean citation rate of OA articles divided by mean citation rate of non-OA articles


OPEN SCIENCE:

WHY →

WHAT

ном 🖌

Open Review

- Public discussion of pros and cons of submission
- Optional anonymity
- Prevent low-quality and or biased review

Outline

- Why do we need Open Science?
- What is Open Science?
- How do I do Open Science?

OPEN SCIENCE: WHY → WHAT → HOW

How – Plan Ahead

- Get data sharing in your protocol:
 - NIMH Data Sharing Commitee
 - <u>https://open-brain-consent.readthedocs.io</u>
- When designing, collecting, and analyzing consult with standards documents:
 - Enhancing Quality and Transparency of Health Research (EQUATOR) <u>http://www.equator-network.org</u>
 - Best Practices in Data Analysis and Sharing in Neuroimaging using MRI (COBIDAS) <u>http://dx.doi.org/10.1101/054262</u>

$OPEN SCIENCE: WHY \rightarrow WHAT \rightarrow HOW$

Open Brain Consent

Standards – EQUATOR & COBIDAS

- EQUATOR: Different standards for different designs
 - RCT, crossover, observational, etc.

COBIDAS Sections

- I. Experimental Design
- 2. Image Acquisition
- 3. Preprocessing
- 4. Statistical Modeling
- 5. Results
- 6. Data Sharing
- 7. Reproducibility
- Both EQUATOR and COBIDAS focus on reporting,
- Reviewing them in advance will help you plan and design your study
- Also useful reference when reviewing papers

Standards – EQUATOR & COBIDAS

Checklists

CONSORT 2010 checklist of information to include when reporting a randomised trial*									
Section/Topic	ltem No	Checklist item		Reported on page No					
Title and abstract	1a 1b	Identification as a randomised trial in the title							
Introduction Background and	2a	Scientific background and explanation of rationale							
objectives Methods	2b	Specific objectives or hypotheses Table D.1. Experimental Design Reporting							
Trial design	3a 3b	Description of trial design (such as p Important changes to methods after	Aspect	Notes	Mandatory				
Participants	4a	Eligibility criteria for participants	Number of subjects	Elaborate each by group if have more than one group.					
Interventions	4b 5	Settings and locations where the dat The interventions for each group with	Subjects approached	N Provide reasons.					
		actually administered	Subjects consented						
Outcomes	6a	Completely defined pre-specified pri were assessed Any changes to trial outcomes after i	Subjects refused to participate						
Sample size	6b 7a		Subjects excluded	Subjects excluded after consenting but before data acquisition; provide reasons.					
Randomisation:	7a 7b	How sample size was determined When applicable, explanation of any	Subjects participated and analyzed	Provide the number of subjects scanned, number excluded after acquisition, and the number included in the data analysis. If they differ, note the number of subjects in each particular analysis.	Y				
			Inclusion criteria and descriptive statistics	Elaborate each by group if have more than one group.					
Age		Age	Mean, standard deviation and range.	Y					
			Sex	Absolute counts or relative frequencies.	Y				
			Race & ethnicity	Per guidelines of NIH or other relevant agency.	N				

OPEN SCIENCE:

WHY

 \rightarrow

WHAT

HOW

 \rightarrow

COBIDAS – Highlights

- Report scan parameters by exporting exam cards
- Preprocessing include *all* steps applied to the data before and must be reported
- For maximal transparency, report all regions of interest (ROIs) and/or experimental conditions examined as part of the research, so that the reader can gauge the degree of any HARKing
 - <u>Hypothesizing After The Results are Known</u>

EN SCIENCE

• It's OK to explore your data, just be clear that that is what you're doing

HOW

COBIDAS – 4. Statistical Modeling

- Different reporting standards for different statistical approaches (univariate, multivariate, connectivity).
 Appendix C: Translates
 - Appendix C: Translates software used to statistical language

OPEN SCIENCE:

Appendix C. Short descriptions of fMRI models

While any analysis software consists of myriad modelling decisions, an author must be able to describe the key facets of an analysis in the methods section of their paper. To facilitate this, and to suggest a level of detail that is useful to readers unfamiliar with the software yet not distractingly long, we provide short descriptions for the most commonly used statistical models in widely used software packages.

C1. Task fMRI

Summaries for AFNI⁴⁴, Freesurfer⁴⁵, FSL⁴⁶, & SPM⁴⁷ are based on versions AFNI_2011_12_21_1014, FreeSurfer 5.3, FSL 5.0.8 and SPM 12 revision 6470, respectively.

AFNI 1st level – 3dDeconvolve: Linear regression at each voxel, using ordinary least squares, drift fit with polynomial.

AFNI 1st level – 3dREMLfit: Linear regression at each voxel, using generalised least squares with a voxel-wise ARMA(1,1) autocorrelation model, drift fit with polynomial.

AFNI 2nd level – 3dTtest: Linear regression at each voxel, using ordinary least squares.

AFNI 2nd level – 3dMEMA: Linear mixed effects regression at each voxel, using generalized least squares with a local estimate of random effects variance.

AFNI 2nd level – 3dMVM: Multivariate ANOVA or ANCOVA at each voxel.

AFNI 2nd level – 3dLME: General linear mixed-effects modeling at each voxel, with separate specification of fixed and random variables.

Freesurfer 1st Level – selxavg3-sess: Linear regression at each surface element, using generalized least squares with a element-wise AR(1) autocorrelation model, drift fit with polynomial.

Freesurfer 2st Level – mri_glmfit: Linear regression at each surface element, using ordinary least squares.

HOW

COBIDAS – 5. Results

- Mass univariate analyses should report:
 - All Effects tested
 - Tables of brain coordinates,
 - Thresholded maps
 - Extracted data
- Functional Connectivity
- Multivariate and Predictive Analysis
 - Evaluation : Quality of predicted fit
 - Interpretation: What does it mean

OPEN SCIENCE: WHY \rightarrow WHAT \rightarrow HOW

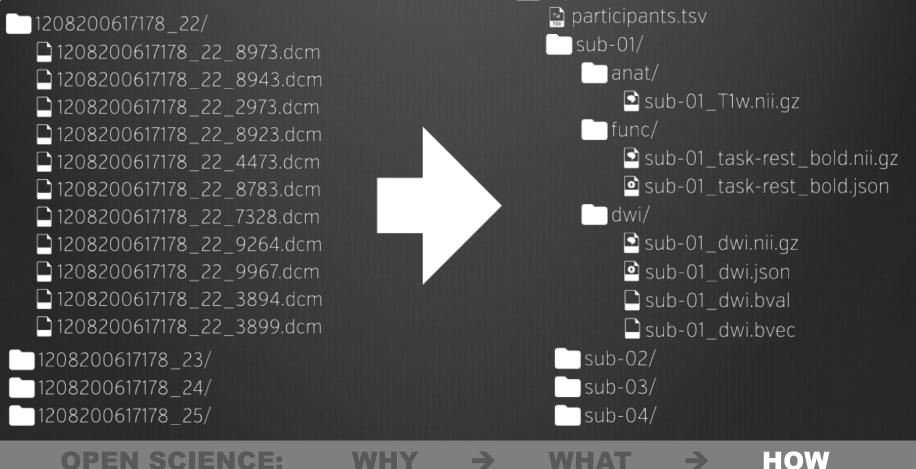
COBIDAS – 6. Data Sharing

- Planning: "Data sharing is most onerous when done as an afterthought"
 - "a comprehensive data management plan—that involves all authors, collaborators, funding agencies, and publishing entities—is essential"

COBIDAS – 7. Reproducibility

Archiving: Think long term

- Open-source software is more likely to be available long term
- URLs "decay" over time. Use Digital Object Identifiers (DOI) instead


OPEN SCIENCE: WHY → WHAT → HOW

Organizing your data - BIDS

A simple and intuitive way to organize and describe your neuroimaging and behavioral data. <u>http://bids.neuroimaging.io</u>

my_dataset/

dicomdir/

How to be Open – Choose your battles Be open when you can, as you can

Summary of the eight standards and three levels of the TOP guidelines

Levels 1 to 3 are increasingly stringent for each standard. Level 0 offers a comparison that does not meet the standard.

	LEVEL O	LEVEL 1	LEVEL 2	LEVEL 3
Citation standards	Journal encourages citation of data, code, and materials—or says nothing.	Journal describes citation of data in guidelines to authors with clear rules and examples.	Article provides appropriate citation for data and materials used, consistent with journal's author guidelines.	Article is not published until appropriate citation for data and materials is provided that follows journal's author guidelines.
Data transparency	Journal encourages data sharing—or says nothing.	Article states whether data are available and, if so, where to access them.	Data must be posted to a trusted repository. Exceptions must be identified at article submission.	Data must be posted to a trusted repository, and reported analyses will be reproduced independently before publication.
Analytic methods (code) transparency	Journal encourages code sharing—or says nothing.	Article states whether code is available and, if so, where to access them.	Code must be posted to a trusted repository. Exceptions must be identified at article submission.	Code must be posted to a trusted repository, and reported analyses will be reproduced independently before publication.
Research materials transparency	Journal encourages materials sharing—or says nothing	Article states whether materials are available and, if so, where to access them.	Materials must be posted to a trusted repository. Exceptions must be identified at article submission.	Materials must be posted to a trusted repository, and reported analyses will be reproduced independently before publication.
Design and analysis transparency	Journal encourages design and analysis transparency or says nothing.	Journal articulates design transparency standards.	Journal requires adherence to design transparency standards for review and publication.	Journal requires and enforces adherence to design transpar- ency standards for review and publication.
Preregistration of studies	Journal says nothing.	Journal encourages preregistration of studies and provides link in article to preregistration if it exists.	Journal encourages preregis- tration of studies and provides link in article and certification of meeting preregistration badge requirements.	Journal requires preregistration of studies and provides link and badge in article to meeting requirements.
Preregistration of analysis plans	Journal says nothing.	Journal encourages preanalysis plans and provides link in article to registered analysis plan if it exists.	Journal encourages preanaly- sis plans and provides link in article and certification of meeting registered analysis plan badge requirements.	Journal requires preregistration of studies with analysis plans and provides link and badge in article to meeting requirements.
Replication	Journal discourages submission of replication studies—or says nothing.	Journal encourages submission of replication studies.	Journal encourages submis- sion of replication studies and conducts blind review of results.	Journal uses Registered Reports as a submission option for replication studies with peer review before observing the study outcomes.

OPEN SCIENCE:

WHY →

WHAT

How to Open – You don't have to do it alone

• Training

software carpentry

Asking for help

Data Science and Sharing Team

Adam Thomas

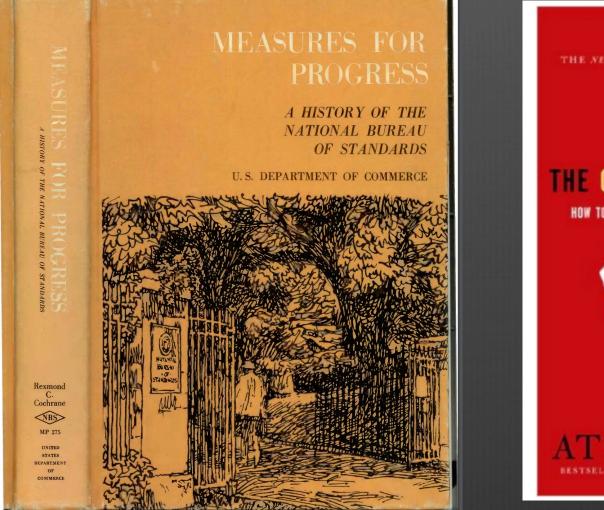
John Lee

TBD

OPEN SCIENCE: WHY \rightarrow WHAT \rightarrow HOW

Summary and Take Homes

- Science is changing (for the better) in both scope (big) and culture (open) to address future challenges
- Open science strives to maximize reproducibility and transparency of data, code, and papers
- Adopting Open Science practices yields benefits in productivity, impact, and reach
- You don't have to do it all at once, and you don't have to do it alone


Thanks!

See online slides for more URLs and references: https://fmrif.nimh.nih.gov/public/fmri-course/index_html

Questions?

The Problem

Science vs.Art: The importance of standardization

THE NEW FORK TIMES BESTSELLER THE CHECKLIST MANIFESTO HOW TO GET THINGS RIGHT C A WAY

Outline

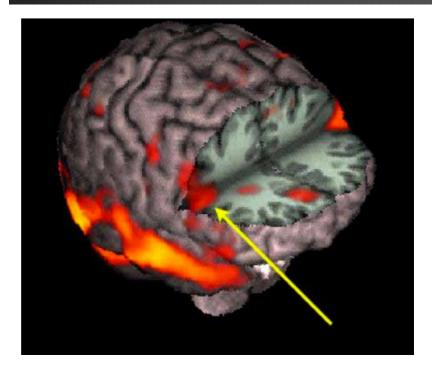
- The Problem Why do we need these?
- The Gist TL;DR.What's in the specs?
- The Future How and where are COBIDAS and BIDS going to effect me?

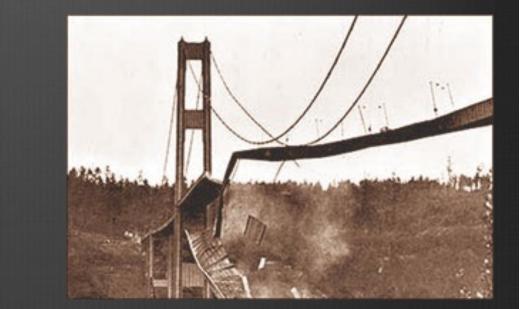
The Gist - COBIDAS

- The Seven Pillars of COBIDAS Reporting
 - I. Experimental Design
 - 2. Image Acquisition
 - 3. Preprocessing
 - 4. Statistical Modeling
 - 5. Quiz Question #2

Outline

- The Problem Why do we need these?
- The Gist TL;DR.What's in the specs?
- The Future How and where are COBIDAS and BIDS going to effect me?


Where will you encounter/use of COBIDAS & BIDS


- As a peer-reviewer and a peer-reviewee
- Uploading to and downloading from public repositories
- Training the next generation

The Problem

Mistakes in Brain Imaging and Bridge Building
Cocktail parties vs. Catastrophes

Mirror neuron activity in the right posterior inferior frontal gyrus – indicating identification and empathy - while watching the Disney/NFL ad.

Brain Imaging is maturing (finally)