Session I: Introduction to Multivariate Pattern Analysis (MVPA)

Martin N. Hebart
Laboratory of Brain and Cognition
NIMH

Neural Decoding of Visual Imagery During Sleep

T. Horikawa, 1,2 M. Tamaki, 1* Y. Miyawaki, 3,1 † Y. Kamitani 1,2 ‡

www.sciencemag.org SCIENCE VOL 340 3 MAY 2013

What is Multivariate Pattern Analysis?

Combined use of multiple variables measuring the brain (e.g. BOLD signal in multiple voxels) to predict or characterize states of the brain

Overview

Why Multivariate Pattern Analysis?

How Does MVPA work?

Activity vs. Information

Encoding vs. Decoding

Prediction vs. Interpretation

Neural Basis of MVPA

Why Multivariate Pattern Analysis?

1. Often higher sensitivity compared to "normal" univariate analyses

Example: Representation of perceptual choices

Why Multivariate Pattern Analysis?

2. Representational content in brain region rather than general activation can be studied

Example: Representation of orientations

- 1. Weak information can be combined across voxels
- → Multivariate analysis enhances signal

- 2. Covariation of voxel information can be used
- → Multivariate analysis suppresses noise

Condition A

Condition B

- 2. Covariation of voxel information can be used
- → Multivariate analysis suppresses noise

3. Information becomes accessible that is encoded only in distributed activity patterns

Condition A Condition B Condition C

ACTIVITY VS INFORMATION

Activity vs. Information

Activity: Tells us about general involvement in cognitive function (e.g. working memory)

Activity vs. Information

individual sample set

Information: Tells us about representational content (e.g. memory trace of A vs. memory trace of B)

ENCODING VS DECODING

Encoding vs. Decoding

X: Explaining variable

Example: Stimulus, response, cognitive condition

Y: Measured data

Example: BOLD signal, EEG signal, VBM intensity

Overview Over Analysis Methods

Multivariate Decoding Approach (the big picture)

- 1. Separate data in training and test data
- 2. "Train" a classifier (i.e. find a good separating line)
- 3. Apply this classifier (i.e. the line) to test data
- 4. Result: Accuracy of test data (i.e. % correct prediction)

Why Decoding?

- Decoding sounds cool
- Methods readily available from machine learning
- The principle is relatively easy to understand
- Model-based univariate approaches and RSA are typically limited to condition-rich designs (i.e. few repetitions, many conditions)
- CV-MANOVA has only been developed more recently and is not widely popularized
- Decoding for reverse inference: Poldrack (2011) Neuron
- Decoding for causal inferences: Weichwald et al (2015) Neuroimage

PREDICTION VS INTERPRETATION

Goals of Decoding: Prediction vs. Interpretation

Goals of Decoding: Prediction

Prediction: Goal is to maximize future correct predictions

→ Any information is useful as long as it increases accuracy

Medical Diagnosis

Brain-Computer-Interface

Lie Detection

Goals of Decoding: Prediction

Prediction: Goal is to maximize future correct predictions

→ Any information is useful as long as it increases accuracy

Medical Diagnosis

Brain-Computer-Interface

Neuromarketing

Goals of Decoding: Interpretation

Interpretation: Is there information about XYZ?

- → Sufficient to show above chance accuracy (statistically!)
- → Not all information sources ok, need to rule out confounds

Prediction vs. Interpretation

- Machine learning methods have been developed for prediction, but we are using them for the inference that there is information present about XYZ
- This alternative use of these methods has far reaching consequences that are underappreciated
- Many misunderstandings in MVPA originate from this, e.g.:
 - Too strong restrictions for interpretation studies (related to non-independence)
 - False sense of certainty when high decoding in study → High decoding can arise from confounds and should not be trusted more than activation studies (see Ritchie et al (2017) – bioRxiv)

Milestones of MVPA

NEURAL BASIS OF MVPA

Neural Basis of MVPA

Popular Idea: Small random sampling bias in orientation retains orientation information in voxel

Neural Basis of MVPA: Fine-scale patterns?

Does smoothing hurt decoding accuracy?

Neural Basis of MVPA: Sampling Bias?

Dominance of fine scale (evidence for "hyperacuity")

Cat: 0.3125 x 0.3125 mm resolution

Neuronal Basis of MVPA

Bias maps instead of columns in V1?

How does MVPA work – revisited

Radial bias maps, not columns explain "hyperacuity"

How does MVPA work – revisited

The debate continues...

- Chaimow et al (2011) Neuroimage
- Beckett et al (2012) Neuroimage
- Freeman et al (2013) J Neurosci
- Alink et al (2013) Front Hum Neurosci
- Carlson (2014) J Neurosci
- Clifford & Mannion (2015) Neuroimage
- Carlson & Wardle (2015) Neuroimage
- Cichy et al (2015) Neuroimage
- Maloney (2015) J Neurophysiol
- Wardle et al (2017) J Neurosci
- Alink et al (2017) Scientific Reports

Neural Basis of MVPA – Summary

- Both course and fine-grained responses can contribute to decoding results
- Orientation decoding in V1 probably does not work with "hyperacuity"
- This property may also hold for other brain regions where the coarse-scale "maps" are unknown
- But: In general decoding based on course-scale signals is fine as long as effects not driven by different feature of the results (e.g. radial bias and not orientation)

Summary

- MVPA is more sensitive than classical univariate approaches and can reveal representational content
- MVPA works by combining signal across voxels and suppressing correlated noise between voxels
- Investigating brain activity vs. informational content are two different approaches
- Encoding methods predict brain data from categories, decoding methods predict categories from brain data
- Decoding for prediction and decoding for interpretation are very different approaches
- MVPA likely relies strongly on course-scale signals

Study Questions

"A colleague comes by to ask for your methodological expertise. She studies action perception with fMRI and got a reviewer comment saying that she should distinguish brain regions that represent perceived actions from brain regions generally involved in perceiving actions."

Question 1: What does this difference mean?

Question 2: How would you tell her to do the analysis (without details, just in general)?

Question 3 (difficult): Can you think of a way of designing an experiment that addresses this issue without decoding? Can you think of a downside to this approach?