ANATOMICAL AND FUNCTIONAL MRI IN ANIMAL MODELS

Chern-Chyi (Cecil) Yen Cerebral Microcirculation Section, LFMI, NINDS, NIH

8/21/2017

Outline

- Animal Models
 - Translational MRI
 - Multi-modal Investigations
 - Advantages over clinical MRI
- Anatomical MRI
 - T₁ Myelination Map
 - Marmoset MRI Atlas
 - Diffusion Tensor Imaging
 - T₂* Map

- Functional MRI
 - Resting-state fMRI
 - Somatosensory fMRI
 - Auditory fMRI
 - Visual fMRI

Translational MRI

Multi-modal Investigations

- Simultaneous fMRI and electrophysiology
- Simultaneous fMRI and optical Imaging
- Pharmacological manipulations
- Transgenic animal models

Pharmacological Inhibition of Nitric Oxide Uncouples BOLD from CBF

Stefanovic et al. J Cereb Blood Flow Metab. 2007;27(4):741-54.

CBV = Cerebral Blood Volume CBF = Cerebral Blood Flow 7-NI = 7-Nitroindazole

Transgenic Animal Models

Transgenic Animal Models

Macaque

Marmoset

Rat

Mouse

Zebrafish

Neural circuitry Genetic manipulation

Sasaki et al, Nature. 2009

Advantages Over Clinical MRI

- Higher Magnetic Field
 - Animal: 21T 11cm @ UFL 2014
 - Human: 10.5T 88cm @ UMN 2014
 - SNR α B₀^1.7
- Stronger Gradients
 - Animal: 1500mT/m 6cm @ UFL 2015 & others
 - Human: 300mT/m 56cm @ Harvard 2013
 - Spatial resolution, diffusion, echo time
- Higher Coil Sensitivity
 - Animal: 15ch 2.4cm @ UWO 2017
 - Human: 96ch 5cm @ Harvard 2009
 - Better SNR for smaller brain
 - Cryogenic coils, 2 times SNR gain

MRI Setup of Marmosets

- 7T 30cm, 450mT/m 15cm
- Two types of setup
 - Anatomical MRI
 - Isoflurane anesthetized
 - Functional MRI
 - Awake/ Conscious
- Physiological Monitoring
 - Temperature
 - Heart rate and pulse oximetry
 - Reparation rate and ET-CO₂

Setup for Anesthetized Marmosets

Silva et al. Methods in Molecular Biology 2010 pp281-302

Myelination of the Marmoset Cortex

Krubitzer and Kaas J Neurosci..

T1-Weighted MRI Reveals Cortical Myeloarchitecture

Reproducible and Quantitative Myeloarchitecture

Region	Surface Area (mm ²)		Surface
	Left	Right	Area (%)
Cortex	1005 ± 21	1007 ± 34	100
V1	219 ± 12	222 ± 3	22
S1	28 ± 4	30 ± 4	3
MT (V6)	17 ± 3	19 ± 2	2
A1 and R	11 ± 3	11 ± 3	1
DM (V4)	8 ± 1	7 ± 1	1

Agrees well with histological measures of areas:

- V1: 200-205 mm²: Fritsches and Rosa 1996 JCN 372:264-82; Missler, Wolff 1993 JCN 333:53-67
- MT: 14 mm²: Pessoa et al. 1992 Exp. Brain Res. 2: 459–462.
- More than ¼ of the marmoset cortex dedicated to processing of visual information

Bock Ann N Y Acad Sci. 2011 1225 Suppl 1:E1718

Comparison of Atlas Registration

Liu et al. NeuroImage under review

Mapping fMRI Response on to Atlas

DTI: Fractional Anisotropy Maps

DTI: Microstructure of the Marmoset White Matter

Maximum b-value: 4800 s/mm², 126 directions Spatial resolution: 150µm³

Frank Q. Ye, David A. Leopold, Mustafa Irfanoglu, Carlo Pierpaoli, Afonso C. Silva

Setup for Spinal Cord Imaging

Chiang, Work in Progress

Detecting EAE Lesions in Marmoset's Spine Using MRI

Lefeuvre, Work in Progress

Setup for Awake Marmosets

Setup for Awake Marmosets

Resting-state fMRI: Default Mode Network

Resting-state fMRI: Somatosensory Network

Resting-state fMRI: Higher-order Visual Network

More Widespread Spatial Extent of Functional Regions in Awake Marmosets

Responses throughout the somatosensory pathway significantly enhanced when compared to anesthetized subjects

BOLD HRF in Awake Marmosets Has Faster Times-to-Peak

TTP shorter by ~0.5 s

Liu et al., NeuroImage 2013

fMRI Activation Regions Map Well onto Myeloarchitectonic Maps

Forearm/Wrist Stimulation: 1.5 mA, 0.3ms, 50 Hz

Cerebral Fissure

Cerebral Microcirculation Section, LFMI, NINDS, NIH

Junjie Liu, Neuroimage. 2011; 56(3):1154-63.

fMRI Activation Regions Map Well onto Myeloarchitectonic Maps

Leg Stimulation: 1.5 mA, 0.3ms, 50 Hz

Cerebral Microcirculation Section, LFMI, NINDS, NIH

Junjie Liu, Neuroimage. 2011; 56(3):1154-63.

Protocol

 Somatosensory Stimuli Paradigm

0.4ms, 1.5mA, 50Hz electrical pulses for 4s

MRI Parameters

Custom-built 4-channels phase array , Dual gradient-recalled EPI , Matrix = 128 x 48 s TE1/TE2/TR = 13.5/40.5/200 ms Resolution = 0.25 x 0.25 x 1 mm³ 1 coronal slice w/ saturation band

Cerebral Microcirculation Section, LFMI, NINDS, NIH

T2* Activation Map and Layer Profile

Cerebral Microcirculation Section, LFMI, NINDS, NIH

Averaged Laminar Responses

Cerebral Microcirculation Section, LFMI, NINDS, NIH

Tonotopic Mapping in Marmoset Auditory Cortex

Experimental paradigm for fMRI of Visual System

Typical behavior of awake marmoset to a stimulus block

Positive reinforcement Infra-red eye-tracking

Visual Stimulus

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

Visual fMRI: Object Recognition Pathway Occipital Temporal Area 0.8 0.6 change Blank 0.2 6 3.6 t-value -0.2 0.8 -2.7 -5 10 15 Ω 5 TR -9 Atlas AP -0.9 mm]

Work in progress Cecil C. Yen, Chiah-Chun Hung, Jennifer Ciuchta, David Leopold, Afonso Silva, NIH, USA Cerebral Microcirculation Section, LFMI, NINDS, NIH

Face-selective patches along ventral visual pathway

NIH

Recap

- Advantages of Animal Models
 - Allow multi-modal investigations
 - Dedicated hardware permit higher spatiotemporal resolution
- Marmoset is an important experimental animal model for translational research.
- Anatomical MRI of the marmoset brain and spine can be obtained with remarkable cytoarchitectonic detail.
- Functional MRI can be used to study functional connectivity and various sensory system including somatosensory, auditory and visual areas.

Cerebral Microcirculation Section

- Chief:
 - Afonso Silva
- Research Fellows:
 - Sang-Ho Choi
- Postdoctoral Fellows:
 - Jungeun Park
 - Cirong Liu
- Predoctoral Fellow:
 - Diego Szczupak
- Post-bac IRTAS:
 - Madeline Marcelle
 - Kathy Crystal Young
- Lab Technician
 - Lisa Zhang

Thank You!

naure

28 May 2009 | www.eat

AUTISM Genetic link confirmed CANCER Control or cure? OPTOMECHANICS Single-photon power

BIOMEDICAL SUPERMODEL

Germline transmission in a transgenic non-human primate

NATUREJOBS aterials science

