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Problem: 
How can we do brain-wide testing in fMRI?

Typical methods for Task-based fMRI:

• Multiple regression to get Beta Weights per condition/subject

• Test Beta Weights in a voxel-wise manner across subjects (using 
t-tests, ANOVA, correlation, etc.)

• threshold statistic and correct for voxel-wise comparisons using 
cluster-size from Monte Carlo simulations or FDR

• This holds for single whole-brain tests and can be adjusted for 
multiple tests on the same data using Bonferroni on the 
corrected p-value

But what to do for functional connectivity studies?
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Problem: 
Brain-wide testing for functional connectivity?

The number of comparisons explodes for voxel-wise tests.   Every voxel with every 
voxel is a lot of tests for 40,000 voxels:

 40,000 x 39,999 / 2 ≈ 8.0 x 108  tests
 P < .05/(8.0 x 108) = 6.125 x 10-11 (Bonferroni)

False Discovery Rate might work (if most p-values are low), but not for more 
selective differences in typical sized datasets

Other options:

• Predefined Regions of Interest
 - but might not capture the full picture

• Methods that decompose the data into smaller numbers of elements, 
 such as ICA
 - requires some assumptions about the nature of the data
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Today's Talk

Two different whole-brain approaches that are more 
purely statistical (based in cluster-size correction), 
with fewer a priori assumptions about network 
structure:

• Using average "connectedness" (centrality)

• Testing every voxel as a seed (without averaging)
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 Pro: Preserves a lot of the spatial resolution in the data,
  Regardless of the group comparison, has a shot at finding 
 "under" or "over-connected" voxels
 Con: Might miss more spatially restricted effects and mixtures 
  of under/over-connection

Compress the all-to-all voxels problem into a single map of 
"connectedness" for each subject (per condition)

Average Connectedness (Centrality)
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31 High-Functioning ASD adolescents
• Using DSM-IV criteria + ADI, ADOS

• "Triad" of impairments:
•  Impaired social functioning
•  Restricted interests/repetitive behaviors
•  Language/communication impairments

29 Typically Developing (TD) controls

Groups matched on:
 AGE: ~17 (12-24)
 IQ:  ~113 (85-143)
 Sex  95% male subjects

Scanned at rest with 3.5 sec TR for 8 min 10 sec with
1.7 x 1.7 x 3 voxels

Altered Functional Connectivity in Autism Spectrum Disorders (ASD)
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How is functional connectivity altered in ASD ?

•  Generalized disruption of all ‘circuits’ ?

  ... or System-specific disruption ?
      (e.g. circuits involved in social processing)

•  Increase in Local Interactions ?   (**)

Altered Functional Connectivity in Autism Spectrum Disorders (ASD)



The "Social Brain" 
(a la Brothers, 1990; Frith & Frith, 2007; Adolphs, 2009)



Using Group Connectedness to Find Seeds
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TD - ASD

X=-2

X=-27

Z=-16

X=+29

2.0

4.0

t-val 
(df=58)

Seeds:
• p<.05
• at least 100 voxels

Yields 14 Seeds
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Seed ROIs

TD > ASD: 
Non-seed voxels 
(p<.001, corrected)

Seeds + Seed Tests  -->  27 Total Regions of Interest
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Seeds + Seed Tests  -->  27 Total Regions of Interest

How do these areas relate to each other ?
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Cluster 1:
Social inference/affective

Cluster 2:
Control/selection-retrieval

Cluster 3:
Social perception
Form / motion
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Is this clinically relevant?

‘Functional decoupling’

Cluster 1:
Social inference/affective

Cluster 2:
Language / communication

Cluster 3:
Social perception
Form / action



Correlations of Social Responsiveness Scale (SRS) ROI x ROI correlations 
in ASD sample alone (N=29)

ASD: Correlation with SRS 
(adjusted for Age,IQ)
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Z=-14

Correlations of Social Responsiveness Scale (SRS) with Connectedness
in ASD sample alone (N=29)

L

Z=-12

X=-27

Y=-3

n.s
.

P < .01

P < .001

P<.05 (corrected)

X=-27



• At least for high-functioning ASD subjects, the largest differences in 
      correlation were concentrated among regions of the 'social brain'

• We observed a fractionation of social brain circuits into two parts

• Social/affective component (Cluster 1) was ‘functionally’ decoupled from 
      language and visuomotor components

Summary for ASD Study



Applying the same 
method to Childhood
Onset Schizophrenia
(vs. Typ. Developing)

Collaboration with:
Becky Berman
Harrison McAdams
Nitin Gogtay
Judy Rapoport
et al.
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Red cluster:
Social-cognitive

Green cluster:
Sensorimotor
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spatial overlap with seed-based symptom correlation analyses 
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Increased Resting Correlations in Primary Lateral Sclerosis (PLS)
Collaboration with Mary Kay Floeter (NINDS) and Avner Meoded (Johns Hopkins):
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Increased Resting Correlations in Primary Lateral Sclerosis (PLS)
Collaboration with Mary Kay Floeter (NINDS) and Avner Meoded (Johns Hopkins):
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Summary for Connectedness

Group tests of whole-brain connectedness, along 
with subsequent seed tests, can detect brain 
regions that are related to behavioral functions of 
interest (e.g. social ability in Autism)

However, it's still not clear that everything is being 
detected:
• problem of mixtures that cancel
• spatially restricted effects can fail to be detected
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Eliminates the averaging approach, but can take a long 
time (~ 2 weeks on a fast desktop with 32 GB of RAM)

Testing Every Voxel as a Seed

Basic Approach: Adjust Monte Carlo simulations of 
cluster-size to handle testing of all seeds
• Generate random data for N simulated subjects
• Spatially blur to match average smoothness of actual data
• Conduct correlation tests using every voxel as a seed, keeping track of the 

largest cluster ever detected surviving a particular voxel-wise p-value
• Repeat many times (e.g. 5000 iterations) to determine the cluster size 

needed for P<.05 FWE
• Do same tests on actual data using these critical thresholds to find corrected 

results



Larger ASD/TD Dataset (Martin lab)

56 ASD, 62 TD, separated into two independent sets 
(Sets 1 and 2: 28 ASD, 31 TD each) that are matched for Motion 
and Age (P>.1 for all)

All voxel-wise t-tests also include Motion and Age as covariates
(AFNI's 3dttest++, with common median centering)



P<.05 288 704 2.44
P<.01 73 200 2.74
P<.005 49 152 3.10
P<.001 22 88 4.00
P<.0005 16 72 4.50
P<.0001 8 48 6.00
P<.00005 6 40 6.67

1 test
Test All
Voxels

Factor of
Expansion

Voxelwise
P-value

Cluster-size Thresholds from Monte Carlo Simulations (5000 iterations)

P<.05

Analysis Mask
(85% of Both ASD/TD Groups)

Z=+10

X=0

L



Larger ASD/TD Dataset (Martin lab)
Set 1 (28 ASD, 31 TD)
Seed Voxels involved in significant differences for which 
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Larger ASD/TD Dataset (Martin lab)
Set 1 (28 ASD, 31 TD)
Seed Voxels involved in significant differences for which 
ASD > TD (ranging from P<.05 down to P<.00005, corrected):

Z=0

X=-50 X=+50

Z=+10 Z=+20



What is the relationship to Connectedness comparisons?

... and the previously reported results?  (Brain 2012)
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Summary
• Massive voxel-wise testing of functional connectivity data 

is indeed possible, with robust replication across 
independent datasets

• Voxel-wise seed testing does a better job than 
connectedness tests at identifying locations with mixed 
results (TD>ASD and ASD>TD), although results are not 
radically different

• Such tests do not require a priori assumptions about 
common network structure in control and clinical groups 
(as group ICA methods commonly do)

• Searches are possible for any type of test statistic for 
which p-values can be calculated (e.g. correlation with 
behavioral measures, more complex ANOVAs, etc.)
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