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"Connectivity" in the context of MRI/FMRI studies

In the context of non-invasive neuroimaging,
"connectivity" is not really anatomical connectivity:

It's a label that stands in for a set of (pretty
complicated) measures that index anatomical
and physiological proxies for actual synaptic
connections

For physiological measures, "connectivity" is
constrained by anatomical connections but is not a
mirror image of them (due to polysynaptic and
network-level interactions)






A and C will often appear "connected" also
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"Connectivity" in the context of MRI/FMRI studies

Examples:

Structural Connectivity
- DTI

Functional Connectivity
- correlation(/regression) using BOLD EPI
- either in resting-state or task-based studies

Effective Connectivity
- weight parameters within a causal model



Overview of Talk



Overview of Talk

Basic role of connectivity in brain functioning



Overview of Talk

Basic role of connectivity in brain functioning

Spontaneous versus stimulus/task-driven activity across
multiple levels of observation



Overview of Talk

Basic role of connectivity in brain functioning

Spontaneous versus stimulus/task-driven activity across
multiple levels of observation

Connectivity measured with fMRI



Overview of Talk

Basic role of connectivity in brain functioning

Spontaneous versus stimulus/task-driven activity across
multiple levels of observation

Connectivity measured with fMRI

How do we know that we're measuring what we

want to?
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Basic Role of Brain Connectivity in Function

Basic point:
Function comes from neurons, neurons activate each
other via synaptic connections
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Each cortical neuron has a small (<1 mV) impact on any other,
which means that they must work together
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Basic Role of Brain Connectivity in Function

Basic point:

Function comes from neurons, neurons activate each
other via synaptic connections

But:

Debate for decades over discrete stages vs interactivity

—>| Stage1

—>

Stage 2

—>

Early Views from Psychology and Cognitive Science:
Discrete Stages and Modules (Marr, Fodor, etc.)
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Basic Role of Brain Connectivity in Function

Basic point:
Function comes from neurons, neurons activate each
other via synaptic connections

But:
Debate for decades over discrete stages vs interactivity

Throughout cortex, many synaptic interactions are
effectively bi-directional (e.g. V1<->V2, with
Thalamus, etc.)
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Allene et al. (2015). Trends in Neurosciences 38, 524-34.



Cartoon of Laminar Structure in the Early Visual System
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Cartoon of Laminar Structure in the Rat Somatosensory
System (Barrel Cortex)
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Poeppel et al. (2012). J Neurosci 32, 14125-31.
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Transition in thinking within the domain of language:

Poeppel et al. (2012). J Neurosci 32, 14125-31.
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But what is "connectivity" in the context of
"resting-state” or "task-based" fMRI?

Activity fluctuations and co-fluctuations
Obviously not just limited to monosynaptic relations

Sources of activity fluctuations:
Spontaneous activity
Endogenous (i.e. internal, voluntary)
Exogenous (i.e. stimulus-driven)
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Activity (Co-)Fluctuations At Multiple
Spatial Scales

What we know from methods outside of fMRI:

Brain activity (action and synaptic potentials) never
stops entirely in the absence of a stimulus.

Cells in cortex typically fire at a baseline rate of
~ 1-10 spikes/second (Hz)



Spike recordings in monkey Extrastriate Visual Cortex (V4):
(e.g. Tolias et al., 2001, Neuron)
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Spike recordings in monkey Extrastriate Visual Cortex (V4):
(e.g. Tolias et al., 2001, Neuron)

~ 10 Hz
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Spike recordings in Inferior Temporal Neurons:
(e.g. Desimone et al., 1984, ) Neurosci)




Spike recordings in Lateral Prefrontal Neurons:

(e.g. Rainer & Miller, 2000, Neuron)
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Spike recordings in Lateral Prefrontal Neurons:
(e.g. Rainer & Miller, 2000, Neuron)
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When recording from single neurons, one at a time:

e spikes appear to have somewhat random times

* multiple presentations of identical stimuli don't produce
identical spiking responses

Conclusion for a long time:

Times of spikes don't matter, only average firing rate

However, with advent of multi-neuron recordings:

Spontaneous spikes are coordinated over large populations of cells



Spike/LFP recordings in Primary Visual Cortex using large electrode grid:

(e.g. Kelly et al., 2010, J Comp Neurosci)
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Spike/LFP recordings in Primary Visual Cortex using large electrode grid:
(e.g. Kelly et al., 2010, J Comp Neurosci)
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Leopold et al. (2003). Cereb Cortex

LFPs are Coherent at Slow Frequencies
Over both Short and Long Distances
(e.g. Schélvinck et al., 2010, PNAS)
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Spontaneous fluctuations in spiking are coordinated over large
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These fluctuations are reflected as synaptic currents in the LFP
inside the head and (probably) serve as basis of EEG/MEG outside

The LFP is a good correlate of the BOLD signal in fMRI
(e.g. Logothetis et al., 2001)

Slow, spontaneous fluctuations in spikes/LFP/BOLD occur in:

Rest and Task
Under Anesthesia
In cortical slices removed from the brain



Recordings from Primary Visual Cortex, in vivo (cat) and slice in vitro (ferret):
(Sanchez-Vives & McCormick, 2000, Nat Neurosci)
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Recordings from Rat Somatosensory cortex, in vivo and in vitro (slice culture):
(Gireesh & Plenz, 2008, PNAS)
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Spontaneous fluctuations in spiking are coordinated over large
populations of cells (review: Kohn et al., 2009, Curr Opin Neurobiol)

These fluctuations are reflected as synaptic currents in the LFP
inside the head and (probably) serve as basis of EEG/MEG outside

The LFP is a good correlate of the BOLD signal in fMRI
(e.g. Logothetis et al., 2001)

Slow, spontaneous fluctuations in spikes/LFP/BOLD occur in:

Rest and Task
Under Anesthesia
In cortical slices removed from the brain



These fluctuations aren't noise, but are generated internally
by the brain itself



Example of task-based functional connectivity

measured with electrodes
Gregoriou, Gotts, Zhou, & Desimone (2009). Science 324, 1207-10.
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Example of task-based functional connectivity

measured with electrod

es

Gregoriou, Gotts, Zhou, & Desimone (2009). Science 324, 1207-10.
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Example of task-based functional connectivity

measured with electrodes
Gregoriou, Gotts, Zhou, & Desimone (2009). Science 324, 1207-10.

FEF 8016 0.14r V4
n=424

0.12

0.08

40 60 80 100 51525 40 60 80 100

FEF spikes-V4LFPs [ . 0 06'\“ spikes-FEF LFPs
n =448 0.1} n =647

0.05

0.08 -
e

Coherence
o

0.08

0.06

0.04
S —

0.06 (U6, T E O STy o o e vy
515256 51525 40 60 80 100
E = FEF spikes-V4 LFPs
0.25¢ 0.18f 0.18 0.09tNon overlapping RFs
T ! n=27
€ 02F 0.14f
@ 0.12
O =
01" 0.06f 0.06}"
S - ]

51525 40 60 80 100 51625 40 60 80 100
Frequency (Hz) Frequency (Hz)



Example of task-based functional connectivity

measured with electrodes
Gregoriou, Gotts, Zhou, & Desimone (2009). Science 324, 1207-10.
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Example of task-based functional connectivity

measured with electrodes
Gregoriou, Gotts, Zhou, & Desimone (2009). Science 324, 1207-10.
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"Effective" Connectivity
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Advantages of this type of study:

Because done with electrodes and measuring action
potentials, we're reasonably confident that what we're
measuring is co-fluctuations of neural activity

(not necessarily true in fMRI or even solely LFP/EEG/MEG)

Disadvantages:

Really no better then fMRI and other methods in terms of
inferring direct (monosynaptic) anatomical interactions

Can't look at more than a handful of locations at once



Connectivity in fMRI



Functional Connectivity of Spontaneous Activity at Rest
(i.e. "Resting State")

* very popular (easy and fast to administer)

* subjects passively view a fixation cross

 fluctuations in spontaneous activity (< .1 Hz) are correlated throughout the

brain in a spatially restricted manner

For review:

Fox & Raichle (2007).
Nat Rev Neurosci

w w
50 100 150 200 250 300
Time (sec)

Fox & Greicius (2010).
Front Syst Neurosci

Y
’
s2!

-20 -15 -10 -5 0 5 10 15 20

1]




Connectivity in fMRI



Connectivity in fMRI

Functional Connectivity fMRI in Basic Research
* Cognitive, Systems, and Developmental Neuroscience



Connectivity in fMRI

Functional Connectivity fMRI in Basic Research
* Cognitive, Systems, and Developmental Neuroscience

Functional Connectivity fMRI in Clinical Science
e Studying psychiatric disorders such as Autism and
Schizophrenia, and Mood/Affective Disorders
* Neurodegenerative Disorders (PLS), Stroke, Neurosurgery



Connectivity in fMRI

Functional Connectivity fMRI in Basic Research
* Cognitive, Systems, and Developmental Neuroscience

Functional Connectivity fMRI in Clinical Science
e Studying psychiatric disorders such as Autism and
Schizophrenia, and Mood/Affective Disorders
* Neurodegenerative Disorders (PLS), Stroke, Neurosurgery

In all cases, we'd like to separate neurogenic and artifactual
sources of variation (but no perfect way of doing it)



Connectivity in fMRI

Functional Connectivity fMRI in Basic Research
* Cognitive, Systems, and Developmental Neuroscience

Functional Connectivity fMRI in Clinical Science
e Studying psychiatric disorders such as Autism and
Schizophrenia, and Mood/Affective Disorders
* Neurodegenerative Disorders (PLS), Stroke, Neurosurgery

In all cases, we'd like to separate neurogenic and artifactual
sources of variation (but no perfect way of doing it)

Agreement of connectivity, task effects, and behavior is our best
approach currently



fMRI Connectivity in Basic Research

Examples:

Parcellating the systems/circuit-level structure of
functional interactions (e.g. Buckner and Petersen/Schlaggar labs)

Studying development (e.g. Fair)

Evaluating trait-like variation in behavioral abilities across
subjects (Face Processing, Functional Lateralization)
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Alternative Parcellation Approach:
Using Local Changes in Seed-based Correlation Maps

Nelson et al. (2010). Neuron
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Alternative Parcellation Approach:
Using Local Changes in Seed-based Correlation Maps

Nelson et al. (2010). Neuron
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Development of Functional Brain Networks

Fair et al. (2009). PLoS Comp Biol
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Adult r-values

Development of Functional Brain Networks

Fair et al. (2009). PLoS Comp Biol
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Resting-state Correlations Among Face-Selective Regions
Predict Face Processing Ability Behaviorally



Resting-state Correlations Among Face-Selective Regions
Predict Face Processing Ability Behaviorally

Zhu et al. (2011). J Neurosci
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Resting-state Correlations Among Face-Selective Regions
Predict Face Processing Ability Behaviorally

Zhu et al. (2011). J Neurosci
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Example from Our Lab:
Functional Lateralization of Verbal,
Visuospatial, and Motor Abilities
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human brain
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Do the hemispheres differ in their within- vs between-hemisphere
interactions ?

Does lateralization magnitude predict goodness of function?



Finding corresponding points in the two hemispheres:

Map of Homotopic Locations
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Finding corresponding points in the two hemispheres:
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See also Jo etal. (2012). PLoS ONE



Comparing within- vs. between-hemisphere correlation at
corresponding points:

LH Target RH Target LH Target RH Target

LH Seed Time Series

RH Seed Time Series

BOLD

..................

verag vera

Map to ‘ / - P
Homotopic & S 0.0
Locations '

Left Seed, Left Targets:

Right Seed, Right Targets:
llLLll llLRll

lIRRII

All Seed it <\ f('\‘:\‘ &"‘\" 0.4
Locations: VR ', Mo ) L) .'
Ny e ey D0
i) N3/ Y 0.0
- & e



Qualitatively Different Forms of Lateralization on Left vs Right



Qualitatively Different Forms of Lateralization on Left vs Right
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"Segregation

il

Left-lateralized Effects (P<.005):  Right-lateralized Effects (P<.005):

. LL+LR > RR+RL ("Integration") . RR+RL > LL+LR ("Integration")
. LL-LR > RR-RL ("Segregation") ~ RR-RL>LL-LR ("Segregation")

. Both
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Lateralization Magnitude Predicts Cognitive Ability



Lateralization Magnitude Predicts Cognitive Ability
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fMRI Connectivity in Clinical Research

Examples:

Psychiatric Disorders:
Autism, Schizophrenia, Bipolar Disorder

Neurological Disorders:
Primary Lateral Sclerosis (PLS), Stroke



Autism (ASD) vs. Typically Developing (TD)
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Are the largest differences in functional connectivity concentrated
among regions of the "social brain" ?



The "Social Brain"
(a la Brothers, 1990; Frith & Frith, 2007; Adolphs, 2009)




Empirical Determination of "Seeds":
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Whole-brain Differences in Functional Connectivity: TD > ASD
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Whole-brain Differences in Functional Connectivity: TD > ASD
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Agreement with Social Symptom Correlations (ASD only)
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SRS (adjusted for age,|Q)
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Applying the same
method to Childhood
Onset Schizophrenia
(vs. Typ. Developing)

Collaboration (SG, AM) with:
Becky Berman
Harrison McAdams
Nitin Gogtay

Judy Rapoport

Berman et al. (2016). Brain 139, 276-91
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Applying the same
method to Childhood
Onset Schizophrenia
(vs. Typ. Developing)

Collaboration (SG, AM) with:
Becky Berman

Harrison McAdams

Nitin Gogtay

Judy Rapoport

Berman et al. (2016). Brain 139, 276-91

2 Clusters of Regions with
reduced correlation in
COS relative to TD:

VS.
Somatosensory/Motor
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Increased Resting Correlations in Primary Lateral Sclerosis (PLS)
Collaboration with Mary Kay Floeter (NINDS) and Avner Meoded (Johns Hopkins):



Increased Resting Correlations in Primary Lateral Sclerosis (PLS)

Collaboration with Mary Kay Floeter (NINDS) and Avner Meoded (Johns Hopkins):
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5 Patients with Left Hemisphere Lesions due to left CVA

Collaboration with Laurel Buxbaum and Christine Watson (Moss Rehab Research Institute):



5 Patients with Left Hemisphere Lesions due to left CVA

Collaboration with Laurel Buxbaum and Christine Watson (Moss Rehab Research Institute):
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Example Patient

MPRAGE
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Example Patient
MPRAGE Tissue Masks

Lesion
Reconstruc



Example Patient (After Data Cleaning)

R Postcentral Gyrus Seed
(r > +0.35):

6mm-Radius Sphere

R Intraparietal Sulcus Seed
(r > +0.35):




Example Patient (After Data Cleaning)

Seed in Lesion
(r > +0.35):




Example Patient (After Data Cleaning)

Seed in Lesion
(r > +0.35):
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How do we find unusual correlation levels
over the entire brain? (more systematically)



Mask of Right Hemisphere Gray Matter Voxels (X>+10mm)
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1) Find the correlation of every voxel with the RH voxels



Mask of Right Hemisphere Gray Matter Voxels (X>+10mm)

1) Find the correlation of every voxel with the RH voxels

2) then average OR threshold above a certain value
(e.g.> 0.2 or 0.3; as in Buckner et al., 2009, J Neurosci),



Mask of Right Hemisphere Gray Matter Voxels (X>+10mm)

1) Find the correlation of every voxel with the RH voxels

2) then average OR threshold above a certain value
(e.g.> 0.2 or 0.3; as in Buckner et al., 2009, J Neurosci),

3) store the average OR voxel counts (> thresh) back in each
voxel



Average r-value log(# RH voxels > threshold)
(-.15<r<.15)




Average r-value log(# RH voxels > threshold)
(-.15<r<.15) threshold = .2




Average r-value log(# RH voxels > threshold)
(-.15<r<.15) threshold = .2 threshold = .3




Average r-value log(# RH voxels > threshold)

(-.15<r<.15) threshold = .2 threshold = .3 threshold = .4
Z=+10




Example Patient < Penn Controls (p<.05, corrected)

t-value (df 12)




Example Patient < Penn Controls (p<.05, corrected)

t-value (df 12)
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* Individual variation in cognitive abilities (e.g. verbal, visual)
and in patient symptoms is also reflected in connectivity

Mmeasures



Summary

"Connectivity" reflects ongoing activity fluctuations and co-
fluctuations

fMRI Connectivity can be used to map large scale brain
organization

Individual variation in cognitive abilities (e.g. verbal, visual)
and in patient symptoms is also reflected in connectivity
measures

Each of these phenomena demonstrates not only reliability of
resting-state correlations, but validity - and they are most
likely based in real neural covariation






