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Today's Talk

 What's the best way to remove noise in resting-state fMRI?
* Test-retest reliability as a guide?

* Validity vs. test-retest reliability
* our recent efforts to evaluate these issues experimentally



Why are artifacts so problematic ?



Why are artifacts so problematic ?

Task-based fMRI:

Improved Estimates of BOLD response with Trial Averaging
(e.g. Bandettini et al., 1993; Friston et al., 1995)



Huettel & McCarthy (2001). Neuroreport.
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Why are artifacts so problematic ?

Task-based fMRI:

Improved Estimates of BOLD response with Trial Averaging
(e.g. Bandettini et al., 1993; Friston et al., 1995)

Resting-state fMRI:

No averaging!

Anything that causes temporal variation in the BOLD response
can influence estimates of covariation
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Common Noise Sources in fMRI

Time-varying artifacts affecting the BOLD signal:
* Head motion

* Non-neural physiological artifacts (e.g. cardiac/respiration cycles,
end-tidal CO,, blood pressure fluctuations)

 Hardware instabilities

For good overview:
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Basic Methods: Multiple Regression vs. ICA

Regression:
Model Nuisance Variables and Subtract from Original Timeseries

Common Nuisance Regressors (varies by lab):

* Motion Parameters

Ventricles

White Matter

Bandpass Filtering < 0.1 Hz (??? Sampling Rate)
"Global Signal
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Methods to detect, characterize, and remove motion artifact in
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Transient head motions lead to corresponding changes

in the BOLD signal
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RMS movement: 0.154 mm
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How do we know if any of this stuff
is working?

We have some measures of certain artifacts (e.g.):
* transient head motion (Framewise Displacement, or FD)
* independent respiration and cardiac traces

Compare pre- and post-cleaning to see if artifact is gone

A distinct approach is to use reliability as a guide: take two scans
and pick the pipeline that gives best test-retest reliability

Underlying assumption is that when noise is removed,
“real” patterns should repeat
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Test-retest reliability: agreement across repeated measurements
taken by a single person or instrument on the same item, under
the same conditions, and in a short period of time

A test or measure cannot be more correlated with a different
measure than it is with itself.

Therefore, reliability of fMRI BOLD fluctuations and behavioral
measures serves as an upper limit on our ability to measure any
brain-behavior relationships.
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Prediction

If test-retest reliability is a good indicator of
which cleaning procedures best remove noise
and spare “neurogenic” signals of interest,
measures of validity should follow the same

pattern

Validity in this context refers to the extent to
which we can use fMRI fluctuations/covariation
to predict an independent behavioral measure
that indexes the ability of interest
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Previous Examples of Validity

Use task-based localizer for faces versus other classes of
objects and show that resting-state correlations among face-

selective regions predict face processing abilities behaviorally
(Zhu et al., 2011)

Use lateralized brain regions to predict related lateralized
behavioral abilities (e.g. language and visuospatial
processing) (Gotts et al., 2013)

Comparing clinical versus control group in resting-state
correlations and predicting independent measures of clinical
symptoms using the same regions (Gotts et al., 2012)
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A Recognition B Faceinversion C Whole-part

Study Test stimuli
stimuli

Whole

-
2

Chrysanthemum (Pigeon, Jeep) Inverted Part

D Global form E Global motion F Global-local

Consistent

Inconsistent

Glass iy 2




Resting-state Correlations Among Face-Selective Regions
Predict Face Processing Ability Behaviorally

Zhu et al. (2011). J Neurosci
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doi:10.1093/brain/aws160 Brain 2012: 135; 2711-2725 | 2711

BRAIN

A JOURNAL OF NEUROLOGY

Fractionation of social brain circuits in autism

spectrum disorders

Stephen J. Gotts,” W. Kyle Simmons,? Lydia A. Milbury,” Gregory L. Wallace,’
Robert W. Cox® and Alex Martin’



Whole-brain Differences in Functional Connectivity: TD > ASD

A ; B TD > ASD (t-val)
£
T:S. - = P <005 (Bonferroni-corrected)
E . 80+ —— P<0.05 (uncorrected)
© ASD ROI g ®
S 20
e TD ROI Cluster2 =
. e x® g & & A W
- .‘: Number of Clusters (K) %
N at e =
° =
e of - ® S
£ - e “ N
£ s s
ol Cluster 1 " &
Cluster 3
R T T EE R + 100

Dimension 1

C ’
TO-M5D  ses

1 =4
EE.-. 4]

m EEEEE U

- —

@ 5 o

4 t“ 301

- »—.-EIAE;EH.‘& - =

= = gN B E -

v ; w - BE
- B
vy W=

I
~N ~ I“=I

] o nex

— ﬁ “et

“ rr

S S I

o -]
b EES

- — -

— -

(7] o

- R

" w

3 3

o (=]

Cluster1 Cluster2 Cluster3 Cluster 1 Cluster2 Cluster 3 Cluster 1 Cluster2 Cluster 3



Agreement with Social Symptom Correlations (ASD only)
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frontiers in ORIGINAL RESEARCH ARTICLE %
blished: 12 July 2013
HUMAN NEUROSCIENCE doi: 10.3389/inhum. 201360358

The perils of global signal regression for group
comparisons: a case study of Autism Spectrum Disorders

Stephen J. Gotts'*, Ziad S. Saad?, Hang Joon Jo?, Gregory L. Wallace', Robert W. Cox? and
Alex Martin’

" Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesds, MD, USA
? Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
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Examining Reliability and Validity Simultaneously:
Current Study

Utilizing a well-established task-based phenomenon of trial-to-
trial BOLD correlates of response time (uses fluctuations as
signal, just like resting-state fMRI): larger BOLD => slower RT
(e.g. Yarkoni et al., 2009; Rao, Motes, & Rypma, 2014)

* slow-event-related fMRI design using overt picture naming
(and rest)

e 20 subjects named 100 pictures in two runs (50 per run),
with pictures presented every 6.6 to 13.2 seconds

e response time and accuracy were recorded using a noise-
cancelling MRI-compatible microphone

e used a multi-echo fMRI design, with 3 readouts per TR (TR =
2.2sec, TEs=12.5ms, 27.7 ms, 42.9 ms), allowing multi-
echo ICA (me-ICA) cleaning
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Examining Reliability and Validity Simultaneously:
Current Study

Test-retest reliability:
1) whole-brain beta weights on run 1 vs run 2
2) voxelwise task-based FC matrix in run 1 vs run 2

Validity:

* Select voxels based on beta weights (t-map of mean trial
response vs 0): top 1000, top 2000, etc., to top 10000 voxels

* Within these voxels, calculate average voxelwise correlation
of peak BOLD magnitude per trial (averaging TRs 3 and 4
post-stimulus) and response time (RT) on that trial

Main questions:

Which preprocessing pipeline gives the best validity ?
Does this agree with best test-retest reliability?
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Multi-echo pipelines (all first had 3dTcat, 3dDespike, 3dTshift, 3dvolreg):
1) me-ICA (Kundu et al., 2012)

2) optimally combined (OC) ME data (no nuisance regression)

3) OC + Motion params + Ventricles + local White Matter + GS

4) OC + Motion params + Ventricles + local White Matter

5) OC + ANATICOR (Jo et al., 2010): adding Retroicor and RVT to #4

Single-echo pipelines (echo 2):

1) no blurring

2) blur emm FWHM

3) blur 6mm + Motion params + Ventricles + local White Matter + GS
4) blur 6mm + Motion params + Ventricles + local White Matter

5) blur 6mm + ANATICOR



Multi-echo EPI data

TE=12.5ms TE=27.7 ms TE=42.9 ms
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Results: Validity

mmm \]ean

OC+ANATICOR e2+blurémm

OC-GS e2+ANATICOR
echo?
e2-GS

1) some significant validity for all pipelines except OC+GS
2) me-ICA significantly greater than all (P<.02 for all)

3) GSR pipelines (OC+GS, e2+GS) perform the worst

4) nuisance regression is typically worse than no regression
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Results: Reliability
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1) Most reliable are echo2 with blurring, not me-ICA

2) The two reliability measures are intercorrelated (r = 0.417, p<.0005)

3) Neither reliability measure is related to the best validity (top 1000 voxels): r =.023, .096
4) Only task-based FC reliability is related to validity at lower thresholds (r = 0.270, p<.02)
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Summary

Thus far, me-ICA appears to perform the best for validity

While test-retest reliability provides an upper bound on the
levels of validity, certain procedures have a pronounced affect
on validity that do not appear to be reflected in reliability

These preliminary results indicate that most of the nuisance
regression approaches are removing signal of interest in
addition to noise, with a slightly detrimental effect overall

We plan on repeating these analyses using rest data for the
same participants, correlating average overall response time
with resting-state FC (significant correlations exist in me-ICA
cleaned data)
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Do the hemispheres differ in their within- vs between-hemisphere
interactions ?

Does lateralization magnitude predict goodness of function?



Qualitatively Different Forms of Lateralization on Left vs Right

Left Hemisphere Right Hemisphere "Integration"
Lateralization Lateralization

"Segregation

il

Left-lateralized Effects (P<.005):  Right-lateralized Effects (P<.005):

. LL+LR > RR+RL ("Integration") . RR+RL > LL+LR ("Integration")
. LL-LR > RR-RL ("Segregation") ~ RR-RL>LL-LR ("Segregation")

. Both
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