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What makes us think this is neural?

…

5 cycles of a block 
design task



What makes us think this is neural?

ICA component from a  resting state run

161M.G. Bright, K. Murphy / NeuroImage 114 (2015) 158–169

Bright & Murphy, NeuroImage 2015



What makes us think this is neural?



Just because it’s published 
doesn’t mean it’s neural

Glamour, March 2004



We don’t know any fMRI 
results are neural

… but, for a well designed and reported 
study, we can be reasonably confident

Where does this confidence come from?
Confidence for neuroscience as a field

Confidence for an individual study



Where does confidence in fMRI come from?
• Confidence for neuroscience as a field

(See also Peter Bandettini’s 5/31 talk)

–A plausible mechanism
–Results match our understanding of brain 

function
–Complementary studies with other measures

• Confidence for an individual study
– Task based fMRI
–Resting state fMRI
–A task based case study



S. Ogawa, T.-M. Lee, A. S. Nayak, P. Glynn, Magn. Reson. Med, 14, 68-78 (1990) 
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Plausibility: The mechanism behind fMRI
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CBF goes up more than CMRO2. This uncoupling produces a highly 
significant decrease in the local OEF (-19% of mean), indicating that 
tissue PO2 rose during stimulation.
Fox & Raichle, PNAS, Feb, 1986
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Less deoxyhemoglobin in a voxel (volume) results in a larger Blood 
Oxygen Level Dependent (BOLD) MRI measurement

Neural Activity

BOLD MRI
(primarily veins)Cerebral 
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Metabolism

Cerebral 
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Volume

Cerebral 
Blood 
Flow
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ASL MRI
(primarily arterial)

VASO MRI
(primarily capillaries)

Stuff that uses energy
Local Field Potentials

Action potentials
Ion transport

Vasodilation
Vasoconstriction



The fMRI BOLD time course

Cerebral Blood   Flow

Cerebral    Oxygen   Metabolism

Cerebral   Blood Volume

BOLD

Neural Activity

0       ~2                           ~4             ~7                      ~20-40
Seconds

+ - ?

DeoxyHb Concentration

This shows what happens, not why it happens



What types of neural activity use energy?

Howarth, Gleeson, & Attwell, JCBFM 2012

Cerebral Cortex Cerebellar Cortex

Housekeeping: non-signaling tasks, such as turnover of 
macromolecules, axoplasmic transport and mitochondrial proton leak 
 

300% excess sodium entry, which was measured in
squid giant axon (Hodgkin, 1975) and was assumed
in previous calculations of cerebral cortical energy
use (Attwell and Laughlin, 2001). As described
previously (Attwell and Laughlin, 2001), we assume
for simplicity that all neurons in the cortex are
glutamatergic, as 90% of cells and synapses are
glutamatergic (Abeles, 1991; Braitenberg and Schüz,
1998). Neurons are assumed to fire at an average
firing rate of 4 Hz (Attwell and Laughlin, 2001) and
have an Na + entry overlap factor of 1.24 (Carter and
Bean, 2009).

Energy Consumption by Subcellular Processes in the
Cerebral Cortex

Incorporating the discovery that action potentials in
cortical pyramidal cells are more energetically
efficient (Carter and Bean, 2009) than was suggested
by work on squid giant axon (Hodgkin, 1975), the
fraction of cerebral cortical signaling energy used on
action potentials is predicted to be less than
previously calculated (21% versus 47% in Attwell
and Laughlin, 2001), with an increased fraction of
the energy usage now going on postsynaptic recep-
tors (50% versus 34%). The percentage energy
use on resting potentials (20% versus 13%) is also
increased as a consequence of the lower percen-
tage energy use on action potentials (Figure 1A).
Only a small fraction of energy use goes on
neurotransmitter recycling and presynaptic effects
of Ca2 + (4% and 5%, respectively; Figure 1A). Thus,
the majority of energy use is now predicted to be
on postsynaptic receptors, which account for 50% of
the energy use.

Housekeeping energy use on non-signaling tasks,
such as turnover of macromolecules, axoplasmic
transport and mitochondrial proton leak (Attwell
and Laughlin, 2001; Nawroth et al, 2007), which are
not included in these calculations, has previously
been shown to account for between 25% (rodent
cortical grey matter: Attwell and Laughlin, 2001) and
50% (whole brain: Kety, 1957; Sokoloff, 1960; Siesjo,
1978; Astrup et al, 1981; Ames et al, 1992; Ames and
Li, 1992; Rolfe and Brown, 1997) of total energy use.
Figure 1B shows the predicted distribution of total
cortical energy expenditure if one assumes that the
energy use on housekeeping tasks is equivalent to
B1/3 of the signaling energy use (i.e., 25% of the
total use, and equivalent to 6.79 mmol ATP/g/min).
The estimated total energy use including house-
keeping energy is then 27.2 mmol ATP/g/min, which
is similar to the total rate of energy use measured in
the grey matter of rat (33 to 50 mmol ATP/g/min:
Sokoloff et al, 1977). Uncertainty in the energy used
on housekeeping tasks is the most likely cause of the
difference between the predicted and measured
values for energy use (Kety, 1957; Sokoloff, 1960;
Siesjo, 1978; Astrup et al, 1981; Ames et al, 1992;
Ames and Li, 1992; Rolfe and Brown, 1997).

Cerebellar Cortex

Previously, the signaling energy used on each cell
type in the cerebellar cortex was analyzed, with all
the cells firing action potentials at their measured
physiological rates (except for the granule cell for
which an estimated mean firing rate of 3 Hz was used
(Howarth et al, 2010)). Here, we present an updated
version of these calculations, incorporating recently
published data (Alle et al, 2009; Carter and Bean,
2009; Sengupta et al, 2010) suggesting that action
potentials are more energetically efficient than was
previously assumed.

Energy Consumption by Cerebellar Cell Type

In agreement with both our previous findings, and
those of Niven et al (2007), larger cells were found to
use significantly more ATP/s per cell than small cells

Synaptic
transmission Action

potential

Resting
potential

Housekeeping
Action 

potential

Resting
potential

Synaptic 
transmission

B

A Cerebral cortex

Figure 1 Predicted signaling energy use for cerebral cortex.
(A) Energy distribution among subcellular processes for the
cerebral cortex. Resting potentials account for B20% of the total
energy use, action potentials 21%, and synaptic processes 59%
(including postsynaptic receptors (50%), neurotransmitter re-
cycling (4%), and presynaptic Ca2 + entry and vesicle cycling
(5%)). (B) As panel A, but including non-signaling energy use,
assumed to be 6.81!1022 ATP/s/m3, that is, 1/3 of the
neuronal signaling energy, so that housekeeping tasks are
assumed to account for 25% of the total energy use. On this
basis, resting potentials use 15%, action potentials 16%, and
synaptic processes 44% of the total energy use.

Cerebral cortical and cerebellar energy use
C Howarth et al

1224

Journal of Cerebral Blood Flow & Metabolism (2012) 32, 1222–1232

(Figure 2A). This reflects the fact that larger areas of
membrane mediate larger ion fluxes, which require
more ATP to be pumped back. Thus, each of the
largest cerebellar neurons, the Purkinje cells, uses
8.19! 109 molecules of ATP/s, which is far greater
than the 1.32! 108 molecules of ATP/s used by each
of the smallest, granule, neurons (Figure 2A). How-
ever, when multiplied by the number of neurons
present, the 274-fold higher density of granule cells
results in them dominating the energy use of the
whole cerebellar cortex (Figure 2B), consuming 67%
of the total signaling energy, while the principal
Purkinje neurons use only 15% of the total.

The predicted total signaling energy consumption
for the cerebellar cortex is 12.8 mmol ATP/g/min,
reduced by 22% from the value of 16.5 mmol ATP/g/
min derived using the less efficient assumption for
action potential energy consumption (Howarth et al,
2010), but still similar in magnitude to the value for
total energy consumption measured in conscious rats
of 20.5 mmol ATP/g/min (Sokoloff et al, 1977).
Housekeeping energy use on non-signaling tasks,
which are not included in these calculations, may
account for the B40% difference between the
predicted and measured energy use since previous

studies have estimated housekeeping energy to
account for between 25% (rodent cortical grey
matter: Attwell and Laughlin, 2001)) and 50%
(whole brain: Kety, 1957; Sokoloff, 1960; Siesjo,
1978; Astrup et al, 1981; Ames et al, 1992; Ames and
Li, 1992; Rolfe and Brown, 1997) of total energy use.

Energy Consumption by Subcellular Processes in the
Cerebellum

The subcellular distribution of energy use varies
dramatically between different neuron types in the
cerebellar cortex (Figure 3). Even after incorporating
a more energy efficient action potential into the
calculations, the principal output neurons of the
cerebellum, the Purkinje cells, still use the majority
(90%) of their signaling energy on action potentials
(52%) and postsynaptic receptors (38%), and only a
small fraction (9%) on maintenance of the resting
potential (Figure 3A). This reflects the fact that these
cells receive a large number of synaptic inputs
(B26,000 active inputs: Howarth et al, 2010) and
fire action potentials at a high rate. With the
discovery that action potentials in Purkinje cells
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Figure 2 Predicted signaling energy use for cerebellar cortex. (A) Cellular distribution of predicted energy use (ATP used per cell).
a, astrocyte; b, basket cell; Bg, Bergmann glia; cf, climbing fiber; g, granule cell; Go, Golgi cell; mf, mossy fiber; P, Purkinje cell;
s, stellate cell. (B) Cellular distribution of energy use, taking density of cells into account (ATP use per class of cell). (C) Energy
distribution among subcellular processes (summed over all cell types, weighted by cell densities). Resting potentials account
for B54% of the total energy use, action potentials 17%, postsynaptic receptors 22%, neurotransmitter recycling (ATP used in glia
and on packaging transmitter into vesicles in the releasing cell) 3%, and presynaptic Ca2 + entry and vesicle cycling 4%. (D) As
panel C, but including non-signaling energy use, assumed to be 7.7 mmol ATP/g/min (20.5–12.8 mmol ATP/g/min, see text).
Housekeeping tasks then account for 38% of the energy use, resting potentials 34%, action potentials 10%, postsynaptic receptors
14%, neurotransmitter recycling (ATP used in glia and on packaging transmitter into vesicles in the releasing cell) 2%, and
presynaptic Ca2 + entry and vesicle cycling 2%.

Cerebral cortical and cerebellar energy use
C Howarth et al

1225

Journal of Cerebral Blood Flow & Metabolism (2012) 32, 1222–1232
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We know a lot about neurovascular coupling
It’s not directly driven by oxygen or energy needs
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There’s still a lot we don’t know about 
neurovascular coupling
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One example of neurovascular coupling complexity

To evaluate the vascular and metabolic contribu-
tions to the undershoot, simulations were performed
to predict BOLD signal changes from CBF, CBV,
CBVa, and CMRO2 dynamics in the visual task,
assuming that one of the two origins is absent. The
amplitude of BOLD undershoot was defined as the
absolute value of mean signal changes between 10
and 25 seconds (inclusive, four time points) after
the visual stimulus was turned off. The results in

Figure 4 show that the simulated total BOLD signal
changes matched well with the measured BOLD time
course (undershoot amplitude 1.26±0.31%), verify-
ing the accuracy of the calculation. When calculating
the BOLD signal changes under the assumption that
total CBV is at baseline (DCBV = 0) during BOLD
undershoot, the amplitude of the undershoot de-
creased to 0.89±0.25% (Lu model) and 1.07±0.33%
(Davis model), respectively, 19.7±15.9% and

Figure 1 Average time courses of cerebral blood flow (CBF, square), cerebral blood volume (CBV; circle), arterial CBV (CBVa;
triangle), and blood oxygenation level-dependent (BOLD; cross) evolution during breath-hold (A, B) and visual (C, D) experiments.
Time courses were first averaged over all blocks (n = 4) and subsequently over all subjects (n = 10). Error bars represent intersubject
standard deviation. The relative signal changes (DS/Sbase) were displayed in A and C. For easier comparison, each time course was
normalized by their individual maximum change and the shaded poststimulus periods in A and C were then zoomed in and displayed
in B and D, respectively. The vertical dotted line in A denotes the beginning of exhaling before breath hold. The vertical dashed lines
in A and C describe the start and end of the stimulus period. In A and C, the scale of CBF, CBV, and CBVa change is labeled on the left
and BOLD on the right. In B and D, the scale of the normalized signal (0 to 1) is labeled on the right.

Table 2 Mean time to reach baseline following cessation of breath hold and visual stimulation

CBF (TILT) CBV (VASO) CBVa (iVASO) BOLD

Method I
Breath –hold, seconds 20.7±8.3 21.0±8.7 18.3±5.9 20.3±8.6
Visual, seconds 13.9±3.3 15.2±6.3 7.2±3.2 6.0±6.2a

Method II
Breath hold, seconds 20.5±7.5 21.5±9.7 17.9±3.6s 21.0±7.8
Visual, seconds 14.2±4.1 15.1±4.2 7.1±3.9 6.4±5.9a

BOLD, blood oxygenation level dependent; CBF, cerebral blood flow; CBV, cerebral blood volume; iVASO, inflow vascular space occupancy; TILT, transfer-
insensitive-labeling technique.
aThis is the first time for the BOLD time course to cross baseline after stimulus cessation. After the undershoot, the BOLD time course returned to baseline at
28.1±5.5 seconds.
The mean time was calculated using the two approaches described in Materials and methods.
The standard deviation represents intersubject variation (n = 10, mean±s.d.).

Vascular and metabolic origins of BOLD undershoot
J Hua et al

1605

Journal of Cerebral Blood Flow & Metabolism (2011) 31, 1599–1611
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The mean time was calculated using the two approaches described in Materials and methods.
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Vascular and metabolic origins of BOLD undershoot
J Hua et al
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Journal of Cerebral Blood Flow & Metabolism (2011) 31, 1599–1611

Breath Hold Visual Stimulation

Hua et al “Physiological origin for the BOLD poststimulus undershoot in human brain: vascular 
compliance versus oxygen metabolism” JCBFM 2011

Is the BOLD undershoot after stimulation from continued oxygen 
metabolism or vascular changes?



J. Illes, M. P. Kirschen, J. D. E. Gabrielli, Nature Neuroscience, 2003

Motor (black)
Primary Sensory (red)
Integrative Sensory (violet)
Basic Cognition (green)
High-Order Cognition (yellow)
Emotion (blue)

Why believe fMRI is neural?
fMRI results match our understanding of brain function



fMRI can show 
retinotopy in primary 

visual cortex

180 E.A. DeYoe et al. /Journal of Neuroscience Methods 54 (1994) 171-187 

DeYoe, E.A., et al., 1994. Functional magnetic 
resonance imaging (FMRI) of the human 
brain. Journal of Neuroscience Methods 54, 
171–187.



fMRI can have very predictable 
retinotopic mapping

on a graybackground. ConditionB consisted of thenegative image of the
same inverse-warped figure filled with background gray superimposed
on a flickering spatial noise background (see Fig. 1B). Before each scan,
we randomly generated 10 independent spatial noise patterns, and
during the stimulus presentation the ensemble of these patterns was
presented in sequence, while counterphase flickering at 8 Hz (imple-
mented by presenting each generated pattern for 125 ms, followed
immediately by its contrast-reversed version for the same amount of
time) to strongly drive V1 neurons. The random spatial noise pattern is
advantageous since each pattern contains energy within small range of
spatial scales at each point in the visual field, and the ensemble of
patterns contains energy at all spatial orientations at each point in the
visual field (Polimeni et al., 2008), thus this stimulus provides a band of
spatial scales and all orientations todrive the neuronswithin each voxel.
The luminance of the stimulus ranged from 1.6 to 445 cd/m2 such that
the luminance contrast modulation of the noise pattern was approxi-
mately 99%, and the background gray luminance was approximately
135 cd/m2. The stimulus presentation followed a block design schedule
where each stimulus condition was presented alternately for 15 s
separated by 10 s of background gray. Each functional run consisted of
three full stimulus blocks,where oneblock consisted of the progression:
condition A (15 s)–rest (10 s)–condition B (15 s)–rest (10 s). Therefore,
BOLD data was acquired for 150 s per run.

The stimulus was rear-projected on a screenmounted at the end of
the patient table, and the subjects viewed the stimulus through a
mirror mounted on the receive coil array. The confined space within
the head gradient coil limited the available field-of-view, and the tight
clearance between the receive coil array and the transmit coil in
addition to the receive coil interface electronics and housing blocked
the bottom circular segment of the lower visual field (less than 1°
measured along the vertical meridian). For each subject we could not
detect any clipping of the activation pattern in either the single-
condition or differential responses, thus no evidence of a reduced field
of stimulation was apparent in the data. The stimulated area
(projection screen) subtended approximately 24° of visual angle
along the horizontal meridian and 14° along the vertical meridian (i.e.,
extended to 12° horizontal eccentricity and 7° vertical eccentricity).
The stimulated area of the “M” pattern subtended approximately 8° of
visual angle (i.e., 4° eccentricity). The subtended angles depend
slightly on the head size, since this altered the distance from the eye to
the mirror, however the variability of the distance of the subject's eye
to the projector screen was minor (the maximum difference across
subjects was approximately 7%).

A simple fixation task was provided to aid and evaluate subject
fixation performance, and to maintain subject vigilance throughout the
experiment. The task consisted of a small red dot (approximately 10′ in
diameter) located at the center of the visual field that changed
luminance randomly over timewith amean interval of 2 s. The subjects
were instructed to press a button when the fixation point changed
luminance. The subject response was recorded as correct if they
responded within 700 ms of the luminance change. During the

anatomical scan at the beginning of each session, the subjects practiced
the task while performance was continuously monitored. The task
difficultywas adjusted by resizing the radius of the fixation dot until the
subjects achieved 80% performance. At the end of each scan session the
performance score was displayed on the stimulus screen to provide
feedback to the subject. In the fMRI analysis, runs with performance
below60% percentwere discarded. Timepermitting, any discarded runs
were repeated at the end of the session after allowing the subjects a
short rest within the scanner. Each functional run was limited to 2 min
48 s to provide the subject with a small rest period to aid in subject
fixation performance as well as to limit the lost scan timewhen a given
runwas discarded due to either poor fixation performance or excessive
head motion.

Anatomical MRI data acquisition

T1-weighted volumetric anatomical data were acquired during
each functional (7 T) session for accurate positioning of the fMRI slices
using a 1 mm isotropic multi-echo MPRAGE (MEMPRAGE) pulse
sequence to limit the susceptibility distortionswhile maintaining high
image SNR (van der Kouwe et al., 2008), and a similar acquisition was
collected for each subjected on a separate anatomical session on a 3 T
scanner for cortical surface reconstructions. The acquisition para-
meters for the 3 T data set were as follows: TR=2510 ms; four echoes
with TE=1.64 ms, 3.5 ms, 5.36 ms, and 7.22 ms; TI=1200 ms; flip
angle=7°; FOV=256×256×176 mm3, 256×256×176 matrix;
bandwidth=651 Hz/pixel; and R=3 acceleration with online GRAP-
PA reconstruction using 32 reference lines.

Functional MRI data acquisition

All fMRI data was acquired on a 7 T Siemens whole-body
system (Siemens Healthcare, Erlangen, Germany) equipped with
AC84 head gradients (80 mT/m maximum gradient strength and
400 T/m/s maximum slew rate). A custom-built 32-channel RF
loop coil head array was used (Wiggins et al., 2006) for reception,
and a custom-built detunable band-pass birdcage coil for transmit.
For the BOLD acquisition we used a standard single-shot gradient-
echo interleaved multi-slice EPI protocol: TR/TE/flip=2500 ms/
24 ms/90°, fat saturation, FOV=192 mm×192 mm, a 192×192
matrix, bandwidth=2005 Hz/pixel, trapezoidal readout gradients
with 26% ramp sampling, nominal echo spacing of 0.69 ms, and 3-fold
acceleration yielding an effective EPI echo spacing (with the GRAPPA
acceleration) of 0.23 ms. For each slicewe acquired 128 reference lines
for parallel imaging reconstruction. The images were reconstructed
with the standard online Siemens EPI and GRAPPA reconstruction.
Including the initial 10 s block “dummy scans” at the beginning of each
scan to allow T1 steady state to be achieved, and the 3 TRs of (three-
shot) reference lines acquired immediately following the dummy
scans for the GRAPPA reconstruction, the wall-time for each run was
exactly 2 min and 47.5 s (or 167.5 s). The 1 mm in-plane resolution

Fig. 1. The resolution stimulus. (A) The letter “M”was warped by the inverse of the known complex-logarithm transformation that describes the topographic mapping of the visual
field onto the cortical surface in order to evoke the desired activity pattern on the cortical surface. (B) The visual stimulus as seen by the subjects, consisting of two orthogonal
conditions. The inset shows a magnified view of the center of the stimulus, demonstrating the fine spatial noise pattern presented in the center of the visual field.
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pattern (given that the response strength is more spatially inhomoge-
neous–and therefore more erratic–near the pial surface). Thus both the
strength and spatial variability of the signal changes are maximal at the
pial surface, consistentwith a situation inwhich large signal changes are

presentnear surface vessels andmoderate changes are present between
vessels, which may contribute to the high spatial variability in BOLD
signal strength at the pial surface.

Partial volume effects as a function of cortical depth

For each subject, a partial volume map was generated to quantify
the relative contribution of gray and white matter tissues and CSF in
each laminar analysis group. The average contributions of graymatter,
white matter, and CSF to the voxels included in the functional analysis
over all subjects are presented in Fig. 7 as functions of cortical depth.
This analysis demonstrates that, for our 1 mm isotropic voxel
acquisition, only about 35% of the EPI voxels are contained entirely
within the cortical gray matter. This indicates that both the
breakdown of the spatial fidelity of the activity pattern and the
steady decrease in percent signal changewith cortical depthmay be in
part attributable to partial volume effects and the contributions of
signals from outside of the gray matter tissue.

To explore the relationship between functional activation signifi-
cance and the tissue mixture in the voxel, we computed the average
functional CNR (in the formof the z-statistic) as a functionof the relative
contribution of each tissue type to the EPI voxels. The results are given in
Fig. 8, which indicate that the functional CNR increases with increasing
contributions of gray matter to the voxel composition, but only the
largest z-statistic values were found in voxels containing a combination
of gray matter and CSF, consistent with strong pial vessel contributions
for these voxels. However, in both the individual subject and across the
population, only slightly smaller z-statistic values are found in voxels
that are entirely within the gray matter—voxels where the measured
z-statistic was 80% of the maximum contained more than 90% gray
matter. Limiting analysis to voxels exclusively containing gray matter
therefore results in only a small penalty in effect size, but can improve
spatial specificity.

Single-condition vs. differential imaging maps across layers

The activationpatternpresented in Fig. 4 is implicitly generated from
the contrast between two stimulus conditions that ideally activate
spatially distinct regions of cortex, and is therefore a form of differential
imaging. Differential imaging is often employed to enhance the
localization of fine-scale spatial features relative to what is achievable
with standard single-condition imaging. The two single-condition
activation patterns are presented in Fig. 9A in the same format as in
Fig. 4 and correspond to the same subject. While the desired pattern of
the resolution stimulus can be detected in the single-condition maps,
several artifacts common between these two maps are removed when
the two single-condition maps are subtracted.

Fig. 4. The activity pattern of the “M” stimulus calculated from two 2.5 min acquisitions (i.e., 5 min total acquisition time) resulting from differential imaging of the two stimulus
conditions, and displayed on the inflated cortical surface. (A) Activity at the lowest depth (near white matter). (B–D) Activity at intermediate depths. (E) Activity at shallow depth
(near pial surface). Color scale provided on the bottom right for z-statistic values, which correspond to contrasting the responses from stimulus condition A with responses from
stimulus condition B. Activity becomes stronger from the white matter surface to the central surfaces, and then deteriorates near the pial surface—consistent with a dominance of the
macrovasculature at the pial surface.

Fig. 5. Estimation of spatial spread of activity across cortical depths. (A) Example near-
isometric flattening of a patch of the cortical surface with the above-threshold activated
vertices labeled, and (B) the corresponding flattening error map. The metric distortion
within the activation pattern was on average 3.5% (±0.7% std.) and everywhere less than
6.8%. (C) The normalized correlation between the desired activity pattern (see Fig. 1) and
the measured activity pattern (resulting from contrasting the two stimulus conditions)
calculatedon theflattened cortical surface across all depths, averagedacross all six subjects
(i.e., 12 hemispheres). The correlation between the template and the activation pattern
decreased consistently with depth, with a 35% increase from the pial surface to the white
matter. (D) The standard deviation of the normalized correlation across the population of
subjects.
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BOLD magnitude scales with 
auditory stimulus rate
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Fig. 6. Location of strongest signal changes and sample rate-response functions from subject 3. See Fig. 3 legend for derails 

feet of increasing rate [5,6,10]. The more restricted 
range of rates available using CV stimuli may have 
precluded observation of such a negative effect in our 
study. Our results also share features with those of 
Price et al. [16], who examined superior temporal audi- 
tory responses at different word presentation rates 
using PET. The positive, monotonic rate-response 
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Fig. 7. Averaged rate-response functions for left and right temporal 
lobes generated by combining normalized data from all subjects. 
Each point represents the mean of some 1500 normalized percent 
change measurements (approximately 300 measurements in each rate 
condition in each hemisphere of each subject). Error bars indicate 
YS’% confidence intervals for each rate condition. 

functions observed by Price et al. appeared to be linear 
in most instances, although the fastest rate used was 
1.5 Hz. 

Like PET, FMRI presumably reflects activity intc- 
grated over time within a large ncuronal pool. If each 
presentation of a stimulus results in a similar set of 
ncuronal events, then the integrated neuronal rc- 
sponse, and the resulting blood flow response, will bc a 
linear function of the number of stimuli presented per 
unit time [S]. Non-linear characteristics of the response 
function, such as those observed in this study, presum- 
ably reflect such factors as neuronal refractory periods. 
sense organ limitations, or non-linearities in the mech- 
anism of blood flow regulation. Substantial electro- 
physiologic data regarding brainstem auditory evoked 
potentials [15,21] confirm that response magnitude in 
the lower auditory system is negatively affected by very 
high rates of stimulation. The auditory late response is 
a focal electrophysiologic phenomenon believed to re- 
flect activity in neuronal populations of the superior 
temporal and parietal perisylvian cortex [20,26], and as 
such may represent an approximate electrical analogue 
of the oxygenation changes observed with FMRI in the 
present study. The magnitude of the auditory late 

Average responses of 5 subjects’ voxels in Heschl’s Gyrus

Binder et al 1994 Cognitive Brain Research



Language dominance compared to the WADA test1416 J. E. Desmond et al.

Fig. 2 Functional activation maps for each individual patient. Functional maps are normalized, and the colour scale represents correlation
magnitudes that range from 0.152 (the threshold for statistical significance and appearing in dark red) to the maximum value for the
slice (which, across the seven slices depicted in the figure, had a mean value of 0.43, SD = 0.12, and appears as bright yellow/white).
The left side of the brain is depicted on the left side of the figure and the right side of the brain on the right of the figure.

across patients. Patient SL3 exhibited considerable activation
in the right inferior frontal gyrus as well as on the left, but
the magnitude of the activation was stronger on the left. For
the three patients who were found to be right-hemisphere
dominant for language (Patients SR1-SR3, right side of
Fig. 2), a similar distribution of inferior frontal and orbital
activation was observed, but the activity was concentrated
on the right side. Patient SR3 exhibited bilateral activation
in the inferior frontal gyms, with greater magnitudes of
activation on the right side. Interestingly, this patient did not
exhibit a clear speech arrest when sodium amytal was
administered to either hemisphere, although the presence
of dysarthria and receptive aphasia after right-hemisphere
administration resulted in his right-dominant classification.
Compared with other patients, Patients SR 1 and SR2 exhibited
fewer significant pixels in their fMRI activation maps;
however, consistent with their Wada test results, the pixels
that were significant were largely distributed in the right
inferior frontal regions.

Discussion
The results of this study suggest that hemispheric asymmetry
in inferior frontal lobe activation observed when words are
processed at a semantic rather than perceptual level depends
on the side of language dominance. The laterality of language
dominance, as assessed by fMRI activation, was consistent
with that determined by Wada testing in each of the seven
patients who participated in the study. The pattern of frontal
lobe activation may therefore provide useful clinical
information for patients requiring assessment of hemispheric
language dominance. The measurements of functional
activation were obtained using conventional magnetic reso-
nance equipment available in most hospital settings and,
thus, fMRI has the potential for offering a widely available
and noninvasive alternative or supplement to Wada testing.

To date, the few studies investigating language lateral-
ization in Wada-tested patients have reported successful
language lateralization using a semantic monitoring task of
aurally presented nouns (deciding whether animal names

Desmond, et al 1995. Functional MRI measurement of language lateralization in 
Wada-tested patients. Brain



Agenesis of the corpus callosum
Activation from a 
text listening task

Right and left auditory 
seeds in resting data Connectivity map 

from a healthy 
volunteer

Quigley et al AJNR  2003

An acallosal patient was first 
presented by Lowe et al 
Neuroimage 9:S422 1999

Vasculature is still symmetric, but bilateral neurons are not connected
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Logothetis also 
showed that the 
LFP time courses 

have a slightly 
better linear fit 
than multi-unit 
spiking activity



Optical measures

Elizabeth Hillman, Annual Review of Neuroscience 2014. 37:161–81 
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plateau phase is more localized to the central parenchyma (Berwick et al. 2008) and can be more
variable in amplitude than the initial peak (Drew et al. 2011, Martindale et al. 2005). Often in
fMRI, the plateau is higher than the initial peak (Mandeville et al. 1999).

Cessation of stimulus. As blood flow decreases, there is some evidence for residual high HbT
in the capillary beds, which combined with frequently observed post-stimulus arterial vasocon-
striction (Devor et al. 2008) could play a role in the poststimulus undershoot observed in fMRI
(Buxton 2012, Hillman et al. 2007).

t < 1 s
Capillary HbT increases
How? Dilation? (passive
or active?)

t < 2 s
Penetrating arterioles
dilate retrograde from
active region. Dilation
extends >1 mm to pial
arteries. Venous flow 
speed increases.

2 s < t < 6 s
Venous outflow is
observed as an increase
in HbO and a decrease
in HbR. Veins do not
notably dilate/balloon.

t > 6 s
For prolonged stimulation,
pial arteries return to
baseline (sometimes
constrict below baseline).
Parenchymal hyperemia
remains. 

t > 10 s
Response returns to
baseline. Some evidence
of residual elevated
hematocrit in parenchyma
and venous outflow.

b

t = 2.50 s t = 5.50 s t = 7.50 s (4 s stim) t = 11.00 s (4 s stim) ΔµMt = 0.70 sΔµM
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fMRI relationship to EEG

Laufs et al PNAS 2003

Activation and deactivation maps of EEG signals convolved with a hemodynamic response



The EEG/fMRI rest relationship isn’t simple

Yuan, Zotev, Phillips, Bodurka Neuroimage, 2013

EEG alpha (GFP) also correlates with breathing (RVT)

analysis. Based on cross-correlation analysis results (see below) sep-
arate regression models were built only for alpha GFP and RVT (in-
cluding eyes-closed and eyes-open conditions), but not for cardiac
pulse rate changes.

In order to compare the alpha GFP or RVT fluctuations to the BOLD
signal, we temporally low-pass filtered the alpha/RVT time series
using a moving average and shifted the filtered time series at differ-
ent time lags. This procedure is of similar temporal blurring effect
by convolving with an impulse response function to BOLD (i.e. hemo-
dynamic response function, or respiratory response function) that is
at a fixed delay, while also allowing us to evaluate the correlations
at various time lags. Specifically, the regressors of alpha GFP and
RVT were created by downsampling the GFP time course to the
fMRI acquisition rate (i.e. 0.5 Hz) and shifted by a set of delays
(from −10× TR to 10× TR). Especially, we examined the alpha GFP
regressor with 4× TR delay, which corresponds to the 8-s delay of
peak in the hemodynamic response function for EEG alpha activity
(de Munck et al., 2007). All the models included nuisance regressors
including the six motion parameters and a set of Legendre polyno-
mials (up to three-order polynomials per session) to remove
nonspecific temporal drifts in the BOLD signal. In the individual
subject's data, the regression model was fitted at each voxel with re-
gard to one regressor of interest (alpha GFP or RVT at a certain delay).
The regression model was also fitted over the data of all subjects to
assess the correlation between BOLD and alpha GFP/RVT. To deter-
mine whether the correlation was significant at the group level across
subjects, group maps of pooled t statistics were calculated from indi-
vidual beta values of correlation between BOLD and GFP/RVT using a
one-sample t test.

In a secondary analysis, in order to see how the procedure of remov-
ing physiological noise affects the correlation between BOLD and alpha
GFP, we removed respiration and cardiac related signals from the fMRI
data in a preceding step to the above preprocessing analysis and
assessed the partial correlation between BOLD and alpha GFP. Specifi-
cally, the preprocessed fluctuation of RVT was shifted at the time lag
of maximum cross-correlation with alpha GFP power and removed
from the BOLD time series (Birn et al., 2006). In addition, fMRI time

series that are time-locked to the cardiac and respiratory phase wave-
forms were removed using the RETROICOR method (Glover et al.,
2000) as implemented in AFNI's “RetroTS.m”. The shifted fluctuation
of RVTwas also removed from the alpha GFP time series. The regression
model with regard to RVT-removed GFP was again assessed at each
voxel. To facilitate comparison, all group statistic maps were
thresholded at p b 0.01 (uncorrected) and at cluster size threshold of
p b 0.001 (Forman et al., 1995).

Results

Examples of a single-session EEG alpha power fluctuation at the O1
electrode, respiratory fluctuation, and pulse rate fluctuation from a rep-
resentative subject (subject #7) are illustrated in Figs. 1B, D and F, re-
spectively. The power spectrum of the alpha GFP, RVT, and pulse rate
fluctuations (without smoothing) averaged over all sessions and sub-
jects is shown in Figs. 1G, H, and I, respectively. The power spectra reveal
that the major energy of all the fluctuations is in the low-frequency
range (b0.1 Hz). It is alsoworthwhile to note that the profile of the fluc-
tuation spectrum appears similar between the eyes-open and eyes-
closed conditions. Meanwhile, the spectrum of the alpha GFP and cardi-
ac fluctuations shows a slightly stronger activity in the upper range of
the frequency band (>0.05 Hz) than that of the RVT.

The scalp topology of alpha power from all electrodes is shown in
Fig. 2B, indicating that the dominating contributor of alpha power
originates from electrodes at the visual/posterior area. For compari-
son, the alpha topology from EEG recordings outside of the scanner
in the same subject is shown in Fig. 2D, which demonstrates a consis-
tent pattern of visual/posterior alpha dominance. Thus, in the follow-
ing correlation analysis, instead of choosing a subset of electrodes, the
EEG fluctuation was characterized as the fluctuation of global field
power in the alpha band.

Results of cross-correlation analysis

The single-session traces of detrended, smoothed, and z-score
normalized RVT and alpha GFP fluctuations at eyes-closed condition

Fig. 2. Time courses of RVT and alpha GFP fluctuation and their cross-correlation. (A, C) Single-session RVT and alpha GFP fluctuation from recordings inside (A) and outside scanner
(C). (B, D) Scalp topology of alpha EEG power in 9–11 Hz at all electrodes from recordings inside (B) and outside scanner (D). Note that the alpha power at the visual/posterior
region dominates the whole brain alpha activity. (E) Temporal cross-correlation between alpha GFP and RVT (blue solid line). Black dashed lines indicate the threshold of p = 0.05
determined using surrogate signals. The alpha GFP leads RVT by 5.20 s with global peak correlation values. A, B, and E are from the same single-session data as in Figs. 1A–F.

85H. Yuan et al. / NeuroImage 79 (2013) 81–93



Relationships similar to resting 
state in electrical recordings

There is a high power signal and a coherence across 
electrodes in multiple LFP frequency bands.

Leopold et al Cerebral Cortex 2003 Based on a slide from M Lowe



Why believe that a specific fMRI study 
represents neural activity?



Where does confidence in fMRI come from?
• Confidence for neuroscience as a field

(See also Peter Bandettini’s 5/31 talk)

–A plausible mechanism
–Results match our understanding of brain 

function
–Complementary studies with other measures

• Confidence for an individual study
– Task based fMRI
–Resting state fMRI
–A task based case study



How do we know this is neural?

…

5 cycles of a block 
design task



How do we know this is neural?

5 cycles of a block design 
breath holding task

BOLD changes primarily because 
of a global blood flow change

This probably isn’t neural



How do we know that this is neural?

ICA component from a  resting state run

161M.G. Bright, K. Murphy / NeuroImage 114 (2015) 158–169

Bright & Murphy, NeuroImage 2015



The map is from the motion-correlated noise
variance removed by the regression of 24 head motion parameters can
be decomposed into networks typically associated with functional con-
nectivity. Several of these network structures can be observed in the
variance extracted by as few as 3 headmotion regressors or 2 physiolog-
ic regressors. Next, we consider simulated nuisance regressors, unrelat-
ed to the fMRI data: these simulated regressors also remove data with
network structure, suggesting that any regressors may remove highly
structured “signal” as well as “noise.” To directly address this, we
show that sampling a small percentage of volumes at random from
the original resting state data continues to produce robust network
maps using ICA. Finally, we compare the variance explained by different
numbers and combinations of true and simulated nuisance regressors
within functional networks. The implications of these observations on
our analysis and understanding of resting state fMRI are discussed.

Methods

Data acquisition

Twelve healthy subjects (aged 32±6 years, 5 female)were scanned
using a 3T GE HDx scanner (Milwaukee, WI, USA) equipped with an 8-
channel receive head coil. An eyes-open resting state scan lasting
5.5 min was acquired using a BOLD-weighted gradient-echo echo-
planar imaging sequence (TR/TE = 2000/35 ms; FOV = 22.4 cm; 35
slices, slice thickness = 4 mm; resolution = 3.5 × 3.5 × 4.0 mm3, 165
volume acquisitions). These data were collected as part of a larger
study (Bright and Murphy, 2013b). A whole-brain high-resolution T1-
weighted structural image was acquired (resolution = 1.0 × 1.0 ×
1.0 mm3), for the purpose of image registration. Cardiac pulsations
were recorded using the scanner finger plethysmograph. Expired gas
content was continuously monitored via a nasal cannula, and O2 and
CO2 datawere recorded (AEI Technologies, PA, USA). This studywas ap-
proved by the Cardiff University School of Psychology Ethics Commit-
tee, and all volunteers gave written informed consent.

Data pre-processing

The resting-state functional data were volume registered, motion
corrected, time-shifted to a common temporal origin, and brain extract-
ed (AFNI, http://afni.nimh.nih.gov/afni (Cox, 1996)). The first five vol-
umes, during which steady-state magnetisation was not yet achieved,
were removed from the data. End-tidal CO2 and heart rate values
were extracted from the physiological data (MATLAB, MathWorks, Na-
tick, MA, USA) and convolved with an HRF and CRF (Chang et al.,
2009), respectively. Derivatives of the 6 head motion regressors deter-
mined during motion correction were calculated, and the quadratic
terms of these 12 regressors were derived.

The mean functional volume for each subject was registered to the
corresponding high-resolution T1-weighted image, which was then
normalised to the MNI-152 brain template (MNI152, nonlinearly de-
rived, McConnell Brain Imaging Centre, Montreal Neurological Institute,
McGill University, Montreal, Quebec, Canada). The combined transfor-
mation matrices were saved for later use.

Construction of “noise” datasets

Three types of “noise” datasets were created using the original BOLD
fMRI data and processed as shown schematically in Fig. 1.

Variance removed by true noise regressors
The head motion and physiologic noise for each resting state scan

were used as regressors in a general linear model (GLM) using AFNI.
The 4-dimensional dataset comprising the fit of the original data to
these nuisance regressors was extracted, spatially smoothed (FWHM =
5 mm), and registered to MNI space using the transformations obtained
earlier. This process was performed for motion-related noise, using 3

(x-, y-, z-translations), 6 (and three rotations), 12 (and their derivatives),
or 24 (and their quadratic terms) head motion regressors (denoted Mo-
tion3, Motion6, Motion12, and Motion24 respectively), and for 2 physio-
logic regressors (end-tidal CO2 and heart rate). The use of 24 (or more)
headmotion regressors has been implemented indifferentways through-
out the literature (Friston et al., 1996; Satterthwaite et al., 2013; Yan et al.,
2013a); in this paper, we adopt the method of Satterthwaite and col-
leagues (Satterthwaite et al., 2013). In all cases, linear and quadratic
trends were included in the model to optimise fitting. The resulting
datasets, which reflect variance typically removed during fMRI pre-

Fig. 1. Schematic representing the construction of noise datasets and independent compo-
nent analysis. Resting state BOLD fMRI data are input to a generalised linearmodel (GLM)
where noise confounds are modelled by nuisance regressors. Typically, the residuals from
this fitting procedure are considered to be “de-noised” and used for further connectivity
analysis. Here we study the fit of the data to the nuisance regressors, and decompose
this “noise dataset” using independent component analysis (ICA). We examined 3, 6, 12,
or 24 head motion regressors (translations, rotations, their derivatives, and quadratic
terms) or 2 physiologic regressors (end-tidal CO2 and cardiac rate), in addition to linear
and quadratic detrending for signal drift removal, and fixed the dimensionality of the
ICA output to be 20.

159M.G. Bright, K. Murphy / NeuroImage 114 (2015) 158–169

161M.G. Bright, K. Murphy / NeuroImage 114 (2015) 158–169

161M.G. Bright, K. Murphy / NeuroImage 114 (2015) 158–169

This probably isn’t neural
Though some true signal will be modeled in 

any set of “noise” regressors

Bright & Murphy, NeuroImage 2015



Isolating the neural signal



Challenges

• Non-neural partially BOLD fluctuations: Respiration, 
Cardiac pulsation

• Head Motion
• Bad Task Design
• Understanding the effects of data collection choices
• Understanding the effects of data processing choices



Respiration can bias fMRI task results

comparison between the size of the positive and negative
DM effects, the values of the negative DM effects were
plotted upwards for both the breath-holding and normal-
breathing conditions. Thus, positive and negative DM
effects in Figure 4 are both pointing upwards.

Given the link between respiratory artifacts and resting-
state fMRI signal in PMR but not VLPFC, we predicted that
the negative DM effect in PMR but not the positive DM effect
in VLPFC would be reduced by the breath-hold manipula-
tion. Confirming this prediction and as shown in Figure 4A,
we found no significant difference in the size of the DM effect
between breath-holding and normal-breathing conditions
within left VLPFC (P 5 0.41) but a considerable reduction of
about 65% of the negative DM effect in PMR during breath-
holding (P< 0.001; Fig. 4B). A repeated measures ANOVA of
region (PMR/VLPFC) by breathing-condition (HOLD/
NORM) confirmed the region-specific effect, via the interac-
tion (P 5 0.0009). Thus, the findings indicate a considerable
respiratory contribution to the negative DM effect in PMR.
Yet, it is important to note that a significant negative DM
effect remained during the breath-holding condition
(P 5 0.0005), which suggests a respiratory-independent com-
ponent of the negative DM effect in PMR to occur as well.

Individual subject correlations between respiratory
fluctuations and fMRI

The foregoing fMRI results indicate a respiratory contri-
bution to memory-related fMRI differences in PMR. How-
ever, there are two important issues that need to be
addressed. First, as noted, we found some behavioral dif-
ferences between the breath-holding and normal-breathing
conditions. In particular, participants were overall faster to
respond in the breath-holding condition. As will be out-
lined in the discussion section, this difference might relate
to dual-task or stress factors occurring during the breath-
holding condition. Second, because of our hypercapnic
design (breath-hold vs. normal breathing), our data
required a correction for global signal differences across
the scans to obtain sensible GLM results (see Materials
and Methods). An example of a dataset with and without
global scaling is shown in Supporting Information Figure
S1. It has been argued that scaling can sometimes result in
artifactual increases or decreases in fMRI signal [Aguirre
et al., 1998; Murphy et al., 2009]. Thus, even though we
are comparing R- and F-items trials within the breath-hold
and normal-breathing blocks respectively, the point could
be made that our results are somewhat affected by this
data processing step.

To address these possible confounders, we performed an
additional fMRI analysis focusing only on the normal-
breathing condition, which eliminates any issues associated
with the breath-hold blocks. In this analysis, we focused on
individual differences in the respiratory effects. If respiration
is a factor in the negative DM effect in PMR, one would
expect that the participants that show the greatest respiratory

Figure 4.
Task-related fMRI and respiration. Panel A shows the positive
memory effect in the left ventrolateral prefrontal cortex
(VLPFC; orange color; R-items> F-items: P< 0.001, uncor-
rected). Panel B shows the negative memory effect in the PMR
(blue color; for F-items>R-items: P< 0.001, uncorrected). Bars
show the average signal differences in memory (R-items 2 F
items) for the normal (NORM) and the breath-hold (HOLD)
conditions. Vertical lines indicate the SEM.

Figure 5.
Correlation between normal respiration and memory effect:
Scatter plot showing the average difference in respiratory ampli-
tude between R-and F-items (x-axis) and the average activity dif-
ference in memory (DM) between R-and F-items. Each point
represents the data from a single subject. The blue diamonds
are derived from the PMR ROI and the orange squares from the
VLPFC ROI.

r The Interplay Between Cognition, Respiration, and fMRI Signal r
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measured with a respiratory belt around the abdomen.
The rationale for the study was that, during short periods
of breath-holding, participants can continue to perform an
encoding task with ensuing neural activity. Because there
are no respiratory fluctuations during the breath-holding
condition, any difference in fMRI signal between R- and F-
items cannot be attributed to respiratory artifacts. Thus, by
contrasting R- and F-items during breath-holding and
normal-breathing conditions, we can assess the contribu-
tion of respiratory fluctuations to the encoding-related
fMRI signal in PMR. As we will address in the Discussion
section, some caution with this line of reasoning is appro-
priate given the dominant effect of breath-holding on over-
all CO2 levels as compared to the much smaller task-
induced changes.

We tested four main predictions. First, in view of previ-
ous studies suggesting attentional orienting effects on respi-
ration [Boiten et al., 1994], we predicted that the respiratory
cycle would phase-lock to the stimulus presentations (respi-
ratory phase-locking hypothesis). Second, given the strong
link between attention and successful encoding [Chun and
Turk-Browne, 2007], we expected that this phase-locking
effect would be stronger for R- than F-items. Third, based
on resting-state fMRI studies [Birn et al., 2006, 2008a], we
expected that the negative DM effect in PMR would be sen-
sitive to our respiratory manipulation. Finally, given that
resting-state fMRI studies have not identified left VLPFC as
a region particularly prone to respiratory artifacts, we pre-

dicted that the breath-hold manipulation would not affect
the positive DM effect in VLPFC.

MATERIALS AND METHODS

Participants

Twenty-six subjects (20 females, mean age 22) recruited
from the University of Amsterdam community partici-
pated in the experiment. All subjects were in good health,
and right-handed. Their native language was Dutch and
they were paid 35 euro for participation. All subjects gave
their informed consent and the study met all criteria for
approval of the Academic Medical Center Medical Ethical
Committee. The data of one subject were excluded due to
excessive motion inside the fMRI scanner and another sub-
ject was excluded because of very poor performance on
the memory task. Also, because of equipment malfunction,
the respiratory data from two subjects were lost. The fMRI
data of these subjects were included in the fMRI analysis,
but not in the respiratory analysis (see analysis).

Stimuli

Stimuli consisted of 840 words (nouns), selected from the
MRC Psycholinguistic database (www.psy.uwa.eda.au/
mrcdatabase/uwa_mrc.htm), and subsequently translated

Figure 1.
Task design: Experiment consisted of 20 s blocks of (1) a rest period with during normal-
breathing, (2) encoding during breath-holding, (3) encoding during normal-breathing. During each
encoding block, six items were randomly presented. Breath-hold blocks were flanked by 5 s of
preparation and 15 s of normalization. Lower panel illustrates an individual time course of the
respiratory signal in arbitrary units (a.u.).

r The Interplay Between Cognition, Respiration, and fMRI Signal r
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Connectivity differences based on head motion

across independent scanning sessions in 42 subjects. Mean Motion
was significantly correlated between the two sessions (r=0.57,
pb0.001 in the total sample; r=0.66, pb0.001 when excluding four
outliers) (Fig. 5), indicating that certain aspects of head motion may
behave as a trait and present a potential confound when exploring
individual differences within a population.

Discussion

The present study examined the influence of head motion on
functional connectivity MRI. The primary result is that head motion
has systematic effects on functional connectivity estimates that could
easily be misinterpreted as neuronal effects. High levels of head

Fig. 3. Headmotion is significantly correlatedwith functional connectivity but in opposing directions for distinctmeasures. Plot format parallels Fig. 2. (A) Functional correlation among regions
within the default network shows a significant linear (r=−0.18, pb0.001) decreasewith increasingMeanMotion. (B) Functional correlation among regions in the frontoparietal network also
shows a significant linear decreasewith increasingMeanMotion (r=−0.16, pb0.001). Non-linear regressionswere not different from the linearfit. (C) Functional correlation between left and
right motor regions shows a significant linear (r=0.07, p=0.026) and non-linear (r=0.11, p=0.003) increase with increasing Mean Motion. (D) Local functional coupling, a measure of
functional connectivity tonearbyvoxels, also showsa significant linear (r=0.09,p=0.005) andnon-linear (r=0.15,pb0.001) increasewith increasingMeanMotion. Themost extrememovers
appear to show a decrease. The possibility of non-linear effects of head motion will be important to analysis strategies.

Fig. 4. Maps reveal functional connectivity network differences based solely on head motion. Group functional connectivity difference maps are presented to illustrate how head
motion might confound an analysis. Each map represents the functional connectivity difference for one group of 100 subjects with lesser motion as compared to a second group with
greater motion. Eachmap displays the surface projection for the difference for a seed region placed in the posterior cingulate. The leftmost image shows the contrast between the two
most extreme groups (Group 1 is the stillest 10% of the subjects and Group 10 is the liveliest 10% of the subjects). Functional connectivity differences are observed throughout the
default network including medial prefrontal cortex, lateral temporal cortex, and the inferior parietal lobule. The middle image shows a more moderate contrast between Groups 3
and 8. The rightmost image shows the contrast between Groups 5 and 6 that have MeanMotion estimates of 0.044 and 0.048 mm— an extremely subtle difference. Even in this tight
range of motion, differences in head motion yield difference maps that could easily be mistaken for neuronal effects.

435K.R.A. Van Dijk et al. / NeuroImage 59 (2012) 431–438

Each group is 100 Subjects
Group 1 had the least motion and group 10 had the most motion

Van Dijk et al, Neuroimage 2012



Stelzer et al. Deficient approaches to human neuroimaging

FIGURE 3 |The effects of spatial smoothing illustrated on an ultra-high
field fMRI data set at a field strength of 7Tesla and an isotropic
resolution of 0.65 mm. The scanning paradigm comprised a visual
checkerboard stimulation (see appendix) and the analysis was based on a
simple general linear model. In the left column, the results are displayed in
terms of a t -statistic (i.e., significance of activations). In the right column,
the corresponding effect sizes are shown (i.e., amplitude of activations). We
depicted the original results and four levels of spatial smoothing. When
smoothing is omitted, fine-grained activation patterns are visible on the
cortical surface (i.e., within gray matter regions). While spatial smoothing
increases the statistical significance of the results, both the effect size and
spatial accuracy of the results are drastically reduced. Noteworthy, the
intrinsic SNR would be increased if a larger voxel size was used or more
repetitions were carried out. As result, a larger number of voxels would be
labeled active.

apparent “activations” in anatomically impossible regions. Thus,
spatial smoothing increases the numbers of false positive voxels,
since spatial smoothing is likely to produce spurious activity in
voxels that never originally contained relevant signal. The appar-
ent spatial extent is driven mostly by the somewhat arbitrary

choice of the smoothing kernel, so that cluster size and voxel
counts, quite often used in data analysis, have very little biological
meaning.

However, the opposite case (namely many false negatives) can
also result from smoothing, particularly when there are:

(i) isolated signals of a limited spatial extent
(ii) low-intensity signals (possibly of larger spatial extent) near the

non-active tissue.

In each situation, spatial smoothing will decrease the original
signal from the voxels considered. At the same time, neighboring
non-activated voxels will contribute perturbing noise. All in all,
this decreased effective SNR results in false negativity for either of
the above situations, a failure in the detection of true effects and
signals. This has far-reaching consequences: spatial smoothing can
make it practically impossible to detect activations of small extent
or small amplitude, even when these deviate enough from some
baseline to be considered significant if analyzed using more pow-
erful statistical methods. Arguably, spatial smoothing can provide
strikingly misleading interpretations of human brain function, as
the results are strongly biased towards the appearance of large-scale
activations which may be biologically implausible.

As we have discussed previously, after spatial smoothing, the
signal of a voxel is effectively a mix between the original signal
of that voxel and the weighted signal of the neighborhood. The
ratio of this mix depends on the smoothing kernel. For another
example of the smoothing’s drastic influence on localizability, we
depicted the ratio of the mix between local and neighborhood sig-
nal in Figure 4 for multiple levels of smoothing. Evidently, even for
rather small values for the FWHM (one voxel, e.g., FWHM= 3 mm
for a voxel size of 3 mm) the contribution of the voxel’s neighbor-
hood is twice as big as the contribution from the (original) signal
at this location. Traditionally the size of the smoothing kernel is set
between 8 and 10 mm for whole-brain studies, which returns the
most favorable results from a pragmatic point of view (Mikl et al.,
2008). More recently, however, kernel sizes of 6 mm have become
more customary. For imaging certain structures (e.g., subcortical
nuclei), it is normal to use even smaller smoothing kernels. How-
ever, it should be stressed that the theory of Gaussian random
fields provides reliable estimates of statistical significance only
when smoothing kernels have at least twice the voxel size (Worsley
and Friston, 1995). Given smoothing kernels of such dimensions,
more than 90% of the post-smoothing signal at any given loca-
tion does not stem from the original location but from voxels in
its neighborhood. Notably, this calculation holds for the overall
smoothness, which should not be equated with the size of the
smoothing kernel applied within the preprocessing: in fact fMRI
images may already exhibit an intrinsic smoothness, additive to the
smoothing procedure. The intrinsic smoothness may originate
both from biophysical properties of the BOLD signal (Malonek
and Grinvald, 1996; Kriegeskorte et al., 2010) and image interpo-
lations that take place in previous preprocessing steps (Kamitani
and Sawahata, 2010), such as motion correction or spatial nor-
malization to the standard space. Hence our depiction in Figure 4
is rather conservative, as the effective3 smoothness generally is

3The effective smoothness consists of the intrinsic (biophysical) smoothness and
the explicit smoothing applied as preprocessing step.

Frontiers in Human Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 462 | 4
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Data collection 
matters 

Spatial resolution



Data processing matters:
A common preprocessing step will always result in anti-correlated networks
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Removing the global signal was supposed to remove non-neural 
fluctuations, but it also induces anti-correlations

Murphy et al Neuroimage 2009

Removing uncharacterized signals can cause 
uncharacterized population differences



Modeling response shape can matter
Fig. 3. Variation of HRFs across regions within each subject. The subjects are sorted from the top left to the bottom right from lowest to highest variance

across regions. The canonical HRF is included in all plots for comparison. All HRFs in this figure are normalized to start at 0 and have a peak magnitude

of 1.

Fig. 4. Variation of HRFs from M1 across subjects. Panel A shows the peak normalized HRF. Panel B shows the HRFs scaled by percent change so that

amplitude variability is observable. Although M1 HRFs exhibited the lowest variance across subjects, there is still high variability across subjects.
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HRF with its first derivative would be sufficient for all GLMs. We
tested this with three groups of regressors: (1) the canonical HRF,
(2) the canonical HRF and its first derivative, and (3) the
canonical HRF and its orthogonalized derivative (with respect to
the canonical HRF). Fig. 10A illustrates that when the orthogo-
nalized derivative is used, the magnitude estimates are almost
identical to those derived with the canonical HRF without the first
derivative. They are not identical because, although the basis
functions in the regressor are orthogonal, the regressors are not
orthogonal. A GLM with a nonorthogonalized derivative derives a
magnitude estimate closer to one for a range of 0–1.25 s time-to-
onset differences, but is less accurate for negative time-to-onset
differences. Fig. 10B illustrates that GLMs with the derivative or
the orthogonalized derivative get similar t values compared to a
model without the first derivative. For models with the orthogo-
nalized and actual first derivative, the latency estimates are similar
for time-to-onset differences from !1 to 1 s, but the nonortho-
gonalized derivative is more accurate for larger latencies (Fig.
10C).

Empirically derived HRF with and without a poststimulus
undershoot

Because there is more variation in the poststimulus undershoot
than in the peak of the HRF, the effect of removing the undershoot
from the HRF in the GLM was investigated. For the HRF in the
GLM, all values in the undershoot that were less than zero were
changed to zero. When results were averaged across subjects,
removal of the undershoot had minimal effects on the t values
and magnitude estimates. For example, with the widely spaced

designs, the mean t value across subjects for no time-to-onset
difference was 25.9 with the undershoot and 25.6 without it. For a
time-to-onset difference of F2 s, the mean t value was 13.9 with
the undershoot and 13.6 without it. For a rapid event-related
design, the t values were 28.1, 27.5, 16.0, and 15.7, respectively.
The mean t value always decreases when the undershoot is
removed, so statistical results will be better if it is kept in HRF
models. However, analysis of individual subjects’ empirically
derived HRFs with larger poststimulus undershoots showed larger
changes in t values when the undershoot was removed. For
example, for a time-to-onset difference of 2 s, the differences in
the t values between the models with and without the poststimulus
undershoot ranged from !2.6 to +2.9.

Discussion

In this study, we found correlated variation of HRFs across
subjects and regions. The simulations demonstrated that the
empirically observed HRF variations can affect the results of
statistical analyses by causing magnitude misestimates, decreased
t values, and false negatives when testing for significance. Several
methods were tested to decrease the effects of HRF variation,
including empirically estimating one HRF for each subject, collect-
ing additional data, using a first derivative of the HRF in the
model, decreasing the TR, and removing the poststimulus under-
shoot from the model. None of these methods was completely
successful, but they offered several possible means for improving
sensitivity of fMRI data analysis.

Fig. 10. Plots of response magnitude estimates, t values, and latency estimates vs. time-to-onset difference using the canonical HRF in a jittered rapid event-

related design. Values are calculated for every 0.25-s time-to-onset shift and each comparison is repeated 30 times with different noise. Simulations for three

model HRFs are plotted: the SPM canonical model, the SPM canonical model with its temporal derivative, and the SPM canonical model with its

orthogonalized temporal derivative.
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Fig. 3. Variation of HRFs across regions within each subject. The subjects are sorted from the top left to the bottom right from lowest to highest variance

across regions. The canonical HRF is included in all plots for comparison. All HRFs in this figure are normalized to start at 0 and have a peak magnitude

of 1.

Fig. 4. Variation of HRFs from M1 across subjects. Panel A shows the peak normalized HRF. Panel B shows the HRFs scaled by percent change so that

amplitude variability is observable. Although M1 HRFs exhibited the lowest variance across subjects, there is still high variability across subjects.
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Modeling the order of neural events with 
fMRI is dicey

Handwerker et al NeuroImage 2012
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hemodynamic response function shape (Fig. 2A), convolved it with an
event-related time series of neural events (Fig. 2B), and scaled and
added it to noise (Figs. 2C and D). The HR was constant in node 1.
The HR in node 2 was identical to node 1, had a 1 s delayed peak or
onset, or a larger relative post-stimulus undershoot. For the event-
related design, there was a 50% chance of an event appearing at
each time point (sampling rate=2 s). The identical event pattern
with no time lag was used in both nodes. While a 1 s HR onset
delay is equivalent to a 1 s shift in event timing, all other cases should
be null results (i.e. neither node significantly predicts the other).
To get realistic fMRI noise with minimal causality and correlation,
each of the two nodes contained spontaneous fluctuations from a
single voxel taken from a different subject and brain region
(Fig. 2C). These data had 300 time points and were collected as part
of Murphy et al. (2009). The noise time series had a correlation

magnitude of r=−0.08. Simulated data were created by adding
these noise time series to the scaled synthetic responses (Fig. 2B).
The data were scaled so that the correlations between the nodes
when the HRs were identical would represent a higher (r=0.78)
and lower (r=0.46) temporal signal-to-noise ratio (TSNR). A DCM
analysis in the SPM8 software package was run on both of the net-
works in Fig. 2E at both TNSR levels and all 4 pairings of HR shapes
(Fig. 2D). The DCM analysis was also run on the noise time series
(Fig. 2C). The underlying noise time series in nodes 1 and 2 were
also switched to confirm that the presented results were a function
of HR variation and not noise characteristics.

Fig. 2F shows the results comparing posterior probabilities from
each model. If one model is higher than the other, it is more likely to
represent the data. A typical significance cutoff is a posterior probabil-
ity greater than 0.9. As expected, neither model is significantly better
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Fig. 2. The left column shows the inputs to node 1 of the dynamic casual modeling (DCM) simulation and the right column shows the inputs to node 2. (A) Node 1 always includes a
single HR shape. Node 2 includes the same HR shape or HR shapes that have delayed onsets, peak times, or undershoot magnitudes. (B) The HRs are convolved with an event-
related design of neural event times (black dots). This shows a 150 s window of the 300 s time series (C) Each node has a noise time series from different subjects' scans of spon-
taneous fluctuations. (D). The HR time series in B are scaled and added to the noise in C. This figure shows how the time series look for the lower TSNR condition. (E) Schematics of
the two models that were compared using DCM. (F) Comparisons of the two models in E. For each HR shape tested, if the blue or green lines are higher, that means node 1 is more
likely to predict node 2. If the red or yellow bars are higher, node 2 is more likely to predict node 1. The dashed line at 0.9 is a typical significance threshold.
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Population differences can occur from 
non-neural variation

jects were 8.4% in FEF, 10.4% in M1, 8.7% in SEF, and
8.7% in V1. M1 was significantly different from the other
ROIs (P < 0.023).
Figure 2A,B shows the mean signal percent change for

the peak magnitude during the saccade and hypercapnia
tasks for each population in each ROI and collapsed across
ROIs. Collapsed across ROIs, a significant decrease in mag-
nitude was found from younger to older subjects during
the saccade task but not during the hypercapnia task.
Within individual ROIs, there were significant differences
across populations in FEF, SEF, and V1 during the saccade
task. Figure 3A–D shows that the distributions of the mean
signal percent change values across groups are almost
identical.
In addition to comparing percent change in younger vs.

older subjects, we used regression analyses to examine
percent change vs. age. Since each TR had a different num-
ber of trials and slices, TR was also included in the regres-
sions as a dummy variable. Percent change during the sac-
cade task was significantly correlated with age in FEF (P ¼
0.01), SEF (P ¼ 0.042), V1 (P ¼ 0.002), and across all
regions (P ¼ 0.005). Percent change during the hypercap-
nia task was not significantly correlated with age.
Although there were a different number of trials and slices
for each TR, neither the percent change during the saccade
task nor the percent change during the hypercapnia task
significantly changed with TR. This was true for the young
and old subjects grouped together and for each group ana-
lyzed separately. This demonstrates that the results were
not biased by the data from one sampling rate.

BOLD Signal Relationships for
Saccade vs. Hypercapnia Tasks

Linear regression analysis was used to compare the per-
cent signal change by voxel of the saccade task vs. the
hypercapnia task. The selected voxels were significantly
active during the saccade task and all comparisons across
tasks used the same voxels for each task.

Collapsed across ROIs

There was a significant linear regression between activ-
ity in the saccade task vs. hypercapnia with voxels from
all ROIs and clustered by subject (P < 10"26, R2 ¼ 0.566,
slope ¼ 0.0959, and the intercept ¼ 0.843). When subjects
were divided into younger and older populations, the
slope of the regression for younger subjects was 0.100 and
0.087 for older subjects. Neither the slope nor intercept dif-
ferences across the populations were significant. There was
also a significant linear regression in most individual sub-
jects. Figure 4 shows examples of these regressions from
four younger and four older subjects. Forty-eight of the 50
subjects showed significant linear regressions of signal

Figure 2.
Bar graphs of regions and populations. A,B: Mean percent change
across voxels in all subjects during the saccade task and the hyper-
capnia task, respectively. C: Mean of the percent change during
the saccade task divided by the percent change during the hyper-

capnia task in each voxel. The error bars show the robust stand-
ard error clustered by subject. The P-values are shown above sig-
nificant differences and were calculated from regressions that com-
pared across populations and included a dummy variable for TR.

Figure 3.
A,B: Histograms of percent signal change during the saccade task.
C,D: Percent signal change during the hypercapnia task. E,F: The
ratio, by voxel of the percent signal changes of the saccade task di-
vided by the hypercapnia task. This includes data from all subjects
and all anatomical masks. Histograms A,C,E use a 1.1-s TR and
B,D,F use a 2-s TR. Since each population had a different number
of subjects and a different raw number of significantly active voxels,
the y-axis was scaled to percent of voxels in that population.
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Response magnitudes in several brain regions vary during a cognitive 
task and a primarily vascular breath holding task. 

Handwerker et al, Human Brain Mapping 2007



Using multi-echo fMRI to increase 
confidence that responses are BOLD

In addition, inflow effects may lead to a high signal
change3–6 so that activation is found in large vessels
which may be located distant from initial neuronal
activity (in the range of several millimeters up to
centimeters, e.g. the sagittal sinus). Due to additional
influences, which can be physiological and anatomical in
nature, functional activation shows a large intra- and an
even larger inter-subject variability. As a consequence, a
simple threshold strategy is not reasonable and additional
information is needed for characterization of the under-
lying source of activation.

Multi-echo experiments can provide a valuable tool to
quantify inflow related effects by calculating T2* and I0-
maps and thus enabling separation of inflow and BOLD
effects.12,13 Fortunately, besides enhanced sensitivity14

multi-echo experiments also provide information about
the signal change !S vs echo time. This signal change can
be specific for a particular vascular environment (e.g.
single big vessel vs vessel network) as suggested by
theoretical models15,16 and confirmed by multi-echo
experiments.2,8,17–22

We have shown already that exploratory data analysis
(EDA) methods such as fuzzy clustering23 (FCA) can
help to differentiate activation based on the amplitude of
functional signal changes as no explicit knowledge about
the amplitude of !S is necessary.18,21 FCA can help to
extract unknown signal changes for validation of vascular
models as, according to the BOLD models mentioned
above, the signal evolution during increasing TE might be

quite complex as it is depending on vessel size and
orientation, blood oxygenation, and intra- and extra-
vascular components. In this study we want to demon-
strate that this is possible without increasing
measurement time using a fast single-shot multi-echo
protocol and by statistical verification of the resulting
separation of activated regions. In addition, the compari-
son with a single-exponential model provides further
information for characterizing the underlying vascular
sources.

!"#$%&"'( ")* !$#+,*(

Data sets of eight healthy subjects were examined in this
study. Images were acquired with a multiple gradient-
echo, single-shot spiral imaging sequence implemented
on a 3 T Medspec S300 scanner (Bruker Medical,
Ettlingen, Germany). Five adjacent axial slices covering
the primary motor cortex were sampled at echo times
ranging from 5 to 180 ms with an echo spacing of 25 ms,
a repetition time (TR) of 3 s and a nominal spatial
resolution of 4 ! 4 ! 4 mm3. One task period for
functional imaging consisted of right-hand self-paced
finger-to-thumb movements performed for 30 s. Three
task periods were each preceded by a resting period
without a task. This block was followed by an additional
resting period at the end resulting in a total of 70 time
instances (see Fig. 1). Further technical details about data
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Average across active voxels in a figure tapping task at 3T
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A case study

cerebellum. Parcellations were created for different clustering
levels (k) ranging from k= 2 to k= 70 (see SI Methods for details).
Fig. 4 shows the k-means decomposition for subject 3 and k=20

(Fig. S1 shows equivalent results for hierarchical clustering). In
both cases, the resulting topography is symmetrical across hemi-
spheres, anatomically meaningful, and reproducible across sub-
jects (see Figs. S2–S4 for k-means results for all subjects, and
Figs. S5–S7 for hierarchical clustering). Hemispheric symmetry is
evident in the occipital cortex, superior temporal cortex, anterior
insula, hippocampus, and in subcortical structures, such as the
thalamus and the putamen. Moreover, clusters resemble well-
known principles about the functional organization of the brain.
Primary visual and primary hand motor cortices correspond to
different clusters (see axial slices 21S and 49S in Fig. 4 and Fig. S1).
The visual cortex is segmented into several regions both in the
anterior-posterior (A-P) and medial-lateral (M-L) directions. For
example, in theM-L direction V1 and V5 are segregated (see axial
slice 1S in Fig. 4 and Fig. S1). In the A-P direction, V1 and higher
visual processing areas closer to the parieto-occipital junction are
also part of different clusters (see axial slice 9S in Fig. 4 and
Fig. S1). In most cases, clusters did not appear in the form of
a single contiguous agglomeration of voxels but as distributed sets

of nodes. Grouping patterns go beyond hemispheric symmetry,
and in some cases resemble connectivity patterns similar to those
present in resting-state data. For example, CL03 in Fig. 4 (CL04 in
Fig. S1) resembles a motor control network with nodes in the left
primary motor hand cortex, medial supplementary motor cortex,
and postero-lateral thalamus. Another example is cluster CL02 in
Fig. 4 (CL05 in Fig. S1), with nodes in the bilateral infero-lateral
parietal cortex, posterior cingulate, and ventro-medial frontal
cortex, which resembles the default-mode network. Finally, Fig.
4C and Fig. S1C shows cluster-averaged responses. All clusters
display responses time-locked with the experimental paradigm.
Some clusters show positively correlated sustained responses (e.g.,
CL03, CL04 andCL06 in Fig. 4); others shownegatively correlated
sustained responses (e.g., CL01, CL02, and CL05 in Fig. 4); still
others seem to respond primarily at transitions (e.g., CL09, CL11,
and CL16 in Fig. 4). The average cophenetic correlation distance
(CCPC) associated with the hierarchical clusters was 0.81
(CCPCSubj1 = 0.85; CCPCSubj2 = 0.84; CCPCSubj3 = 0.73), sug-
gesting the clusters represent truly underlying structure in the data
and are not artificially imposed by the clustering algorithm.
To evaluate if the clustering breaks at higher clustering orders

we generated parcellations at different k levels up to a maximum
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and are not artificially imposed by the clustering algorithm.
To evaluate if the clustering breaks at higher clustering orders

we generated parcellations at different k levels up to a maximum
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cerebellum. Parcellations were created for different clustering
levels (k) ranging from k= 2 to k= 70 (see SI Methods for details).
Fig. 4 shows the k-means decomposition for subject 3 and k=20

(Fig. S1 shows equivalent results for hierarchical clustering). In
both cases, the resulting topography is symmetrical across hemi-
spheres, anatomically meaningful, and reproducible across sub-
jects (see Figs. S2–S4 for k-means results for all subjects, and
Figs. S5–S7 for hierarchical clustering). Hemispheric symmetry is
evident in the occipital cortex, superior temporal cortex, anterior
insula, hippocampus, and in subcortical structures, such as the
thalamus and the putamen. Moreover, clusters resemble well-
known principles about the functional organization of the brain.
Primary visual and primary hand motor cortices correspond to
different clusters (see axial slices 21S and 49S in Fig. 4 and Fig. S1).
The visual cortex is segmented into several regions both in the
anterior-posterior (A-P) and medial-lateral (M-L) directions. For
example, in theM-L direction V1 and V5 are segregated (see axial
slice 1S in Fig. 4 and Fig. S1). In the A-P direction, V1 and higher
visual processing areas closer to the parieto-occipital junction are
also part of different clusters (see axial slice 9S in Fig. 4 and
Fig. S1). In most cases, clusters did not appear in the form of
a single contiguous agglomeration of voxels but as distributed sets

of nodes. Grouping patterns go beyond hemispheric symmetry,
and in some cases resemble connectivity patterns similar to those
present in resting-state data. For example, CL03 in Fig. 4 (CL04 in
Fig. S1) resembles a motor control network with nodes in the left
primary motor hand cortex, medial supplementary motor cortex,
and postero-lateral thalamus. Another example is cluster CL02 in
Fig. 4 (CL05 in Fig. S1), with nodes in the bilateral infero-lateral
parietal cortex, posterior cingulate, and ventro-medial frontal
cortex, which resembles the default-mode network. Finally, Fig.
4C and Fig. S1C shows cluster-averaged responses. All clusters
display responses time-locked with the experimental paradigm.
Some clusters show positively correlated sustained responses (e.g.,
CL03, CL04 andCL06 in Fig. 4); others shownegatively correlated
sustained responses (e.g., CL01, CL02, and CL05 in Fig. 4); still
others seem to respond primarily at transitions (e.g., CL09, CL11,
and CL16 in Fig. 4). The average cophenetic correlation distance
(CCPC) associated with the hierarchical clusters was 0.81
(CCPCSubj1 = 0.85; CCPCSubj2 = 0.84; CCPCSubj3 = 0.73), sug-
gesting the clusters represent truly underlying structure in the data
and are not artificially imposed by the clustering algorithm.
To evaluate if the clustering breaks at higher clustering orders

we generated parcellations at different k levels up to a maximum
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result in a sparse pattern of activation reflecting regions strongly
responding with subtle variants on the gamma-variate hemody-
namic-response function model (12). This finite number of
regions facilitates the interpretation of brain function and par-
ticularly effective network modeling. What is one to make then
of our current interpretation of BOLD data if this sparseness is
an artifact of noise levels and constrained predictive-response
models? We do not argue that whole-brain activation is critical
for the processing of a certain task. However, if a task-driven
BOLD response is triggered across the whole brain, how does
one differentiate between BOLD responses from regions critical
for handling the task, versus regions that are not? Relying on
high contrast-to-noise ratio, gamma-like hemodynamic responses
might not necessarily be the optimal solution. For example,
language tasks generate bilateral responses reliably in fMRI (34,
35); still, a unilateral lesion can cause aphasic symptoms (36, 37).
In that sense, one region is critical for the performance of the
task, but the BOLD response does not indicate which.
One first step toward addressing the above-mentioned issue is to

avoid the use of a simple dichotomy (e.g., active or inactive) when
classifying voxels with respect to a task. If, as our data suggests,
most intracranial imaged voxels should be assigned the active label
under optimal experimental conditions, then such a simple di-
chotomy is no longer informative. Conversely, classification of
voxels based on data-mining techniques, which exploit subtle

differences in temporal dynamics across voxels to allow greater-
order categorizations, has the potential to be more explanatory.
One limitation in many of these data-mining techniques is the
need to set a priori the number of output levels (e.g., clusters or
components) based on hypotheses about the underlying organi-
zation of the system under study. Our data suggest, in agreement
with previous resting-state studies (2, 38), that the brain “in action”
shows meaningful organizational principles at many different
scales, and no single number is a priori more correct than another.
Nevertheless, it can be expected that some parcellations will be
more informative than others. For example, although low k par-
cellations are more reliable across subjects, they do not neces-
sarily reflect regions of homogenous response to the task. Con-
versely, excessively high k parcellations may enforce artifactual
subdivisions. Algorithms that try to determine optimal parcella-
tions by maximizing some information criteria about the data (see
ref. 39 for additional details) may help address this question.
The diversity of responses observed in this work also poses in-

teresting questions for results from univariate analyses conducted
using the classic sustained-response model. In addition to un-
derestimation of area of activation, fitting an incomplete model
can be misleading because voxels with completely different shapes
can produce similar fit coefficients (Fig. S8). This finding can have
important implications for subtraction paradigms. Let us imagine
a study in which activity for task A (listen to intelligible sentences)
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Fig. 4. Color-coded (A) axial and (B) sagittal views of k-means clusters (k = 20) for subject 3. (C) Color-coded hemodynamic responses for each cluster.
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• More data -> more 
significant activation

• Response shapes 
vary across the brain

What non-neural things 
can explain these 

findings?



What non-neural things can explain 
these findings?

• Luck
• Specific Analysis Decisions
• Head motion
• Voxel size (Partial voluming)
• Global blood flow dynamics (blood steal)



What non-neural things can explain 
these findings?

Luck & specific analysis decisions
• Replication
– Same results in 3 volunteers
– Follow-up study showed same results in 3 more 

volunteers

• Several variants of the analyses (i.e. different 
models and different clustering methods) 
were done & either didn’t affect the results or 
altered them in predicted ways



What non-neural things can explain 
these findings?

• Head motion
– There was minimal head motion across these data and 

the head motion causes some predictable activation 
artifacts that we didn’t see

• Global blood flow dynamics (blood steal)
– The spatial variation of response shapes doesn’t match 

what we’d expect blood steal to look like
– A follow-up study showed widespread activation with 

the response shapes changing depending on task



What non-neural things can explain 
these findings?

Voxel-size (partial voluming)
Global blood flow dynamics (blood steal)

Figure 2. Evolution of activation extent in GM as a function of runs entering the analysis (Nruns) for both the 3T and 7T data for pFDR < 0.05. Each panel shows results for a different
response model. Markers track expansion of GM activation as Nruns increases for averages of all 3T subjects (red), the same fFOV + Task condition at 7T (dark blue), “fFOV Only”
(blue), and “hFOV Only” (light blue). Error bars for 3T data show standard deviation across subjects, while error bars for 7T data represent standard deviation across permutations
within a single subject.

Table 2
Activation extent for pFDR < 0.05 in GM compartment for all 3 models when: 1) only 1 run enters the analysis; and 2) 100 runs enter the analysis

Bo Task Nruns = 1 Nruns = 100

SUS OSO UNC SUS OSO UNC

3T fFOV + Task 20.5 ± 8.0% 21.0 ± 8.2% 11.0 ± 5.9% 87.5 ± 1.5% 96.4 ± 0.5% 98.2 ± 0.3%
7T fFOV + Task 9.6 ± 3.8% 9.1 ± 3.4% 5.3 ± 1.6% 79.5% 85.6% 82.4%

fFOV Only 6.9 ± 3.8% 7.0 ± 4.1% 3.8 ± 2.0% 71.4% 76.8% 67.0%
hFOV Only 2.2 ± 0.4% 1.8 ± 0.4% 1.1 ± 0.2% 43.7% 43.9% 35.8%

Standard deviations were calculated across permutations within each subject for 7T data at Nruns = 1 and across permutations for all subjects for 3T data at both Nruns levels.

Figure 3. Maps of activation (pFDR < 0.05) for Nruns = 1 (top 3 rows) and 100 (bottom 3 rows) across subjects and response models. Columns correspond to single subjects, and
rows show results from different response models. The “SUS,” “OSO,” and “UNC” rows show significantly active F statistics for those models with yellow indicating stronger
activation. Activation extent increases from Nruns = 1 to 100 and decreases from left to right due to differences in quality between 3T and 7T data and lower task demands in “fFOV
Only” and “hFOV Only” conditions.
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What non-neural things can explain 
these findings?

• Luck: No
• Specific Analysis Decisions: Very unlikely
• Head motion: Very unlikely
• Voxel size (Partial voluming): Probably not
• Global blood flow dynamics (blood steal): 

Might be a factor that does affect the specific 
results, but probably doesn’t explain the big-
picture finding



Summary

• fMRI helps us understand the brain!
• Even though we measure an indirect signal, it 

can be quite specific
• There are many ways to confuse artifacts with 

neural signals if you’re not careful
• Think about choices from data collection 

through analysis
• Look carefully at your data


