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Why read brains?

) Law enforcement
—  Lie detection
— Interrogation
2) Marketing
— Consumer
—  Political
3) Brain-computer interface
—  Prosthetic devices
—  Googling with the mind
4) Communicating with patients
— Disorders of consciousness

5) Understanding how information is represented in the
brain



Building a Brain Reader

1) Train
— Learn to associate fMRI responses with specific
conditions

2) Test

— Validate brain reader and show generalization to
new data

Your Turn!




1) Training

Fusiform Face
Area (FFA)

Parahippocampal Place
Area (PPA)

Courtesy of Annie Chan



1) Testing

Courtesy of Annie Chan



Object representations in ventral temporal
cortex (Haxby et al, 2001)

* Participants viewed
blocks of images from
8 categories

e |-back task

* Split-half correlation
analysis




Object representations in ventral temporal
cortex (Haxby et al, 2001)
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Category Discrimination
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‘What about individual objects!? ‘




10 common objects

Sue-Hyun Lee

Lee et al (2012). Neuroimage.



Experimental Design
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Object-selective cortex
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Split B

Discrimination Index = W.ithin Correlation — Between Correlation
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Experimental Design

Perception trial
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Similar representations during imagery and

perception
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Decoding Dreams (Horikawa et al, 201 3)

A Yes, well, | saw a person. Yes. What it was... It was something like a scene that
| hid a key in a place between a chair and a bed and someone took it.

Awakening
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Varieties of brain reading

* Decoding models

— Uses voxel activity to predict stimulus information
— Linear classifiers

Naselaris et al (2011). Neuroimage.
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Euclidean Distance

Voxel 2

Voxel |



Support Vector Machine (SVM)

Voxel 2

Condition A

Voxel |



Linear Classifiers

* Euclidean distance

* Correlation

* Linear SVM

* Fisher Least Discriminant Analysis

* Neural networks (without hidden layer)

* Gaussian Naive Bayes Classifiers

Non-linear classifiers increase risk of overfitting




Varieties of brain reading

* Decoding models

— Uses voxel activity to predict stimulus information
— Linear classifiers

Naselaris et al (2011). Neuroimage.



Limitations of Decoding Studies

Kamitani and Tong (2005)
Haxby et al (2001)

— Small number of selected categories VY 59

e Restricted stimulus domains

— Oriented lines

* No decoding of novel stimuli or categories [pu
see Spiridon and Kanwisher(2002)]



Varieties of brain reading

* Decoding models

— Uses voxel activity to predict stimulus information
— Linear classifiers

* Encoding models

— Explicit description of how information is represented in activity of single
voxels

Naselaris et al (2011). Neuroimage.



Encoding model-based approach
(Kay et al, 2008)

|) Characterize relationship between visual stimuli and fMRI
activity (i.e. build a model)
—  Complex, natural visual images

—  Early retinotopic visual cortex
2) Measure fMRI activity to one of many possible novel
images

3) Compare actual activity to predicted activity for full set of
novel images to determine which image was viewed



Large gray-scale images




1) Build 2 Model

Stage 1: model estimation
Estimate a receptive-field model for each voxel
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RF model for one voxel
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Novel Image to be ldentified

Stage 2: image identification
(1) Measure brain activity for an image

-\/\/\—/

Response

Voxel number

Image Brain Measured voxel
activity pattern



Compare observed to predicted activity

(2) Predict brain activity for a set of images using receptive-field models

______________________________________

- 00E@0 » .\

VVoxel number

Set of Receptive-field models Predicted voxel
images for multiple voxels activity patterns

(3) Select the image (¥) whose predicted brain activity is most similar to
the measured brain activity



Predicted voxel activity pattern (image number)

Performance

Correlation (r)
-1 -0.5 0 0.5 1

120

90

30

30 60 90 120
Measured voxel activity pattern (image number)



Additional results

* Works on single trials
* Not just retinotopy

* Accurate even with long delay between model
fitting and testing



Limitations of Kay et al.

Still requires comparison with set of candidate images

Will likely fail with more homogeneous images (e.g. two
faces)

Whole image comparison

— What about same central object on different
backgrounds?

How sensitive to fixation differences!?
Novel subjects?
Visual perception is dynamic



Reconstructing dynamic movies

Nishimoto et al (2011). Current Biology.



Reconstructing dynamic movies

Clip reconstructed
from brain activity

Presented clip

Nishimoto et al (2011). Current Biology.



Reconstructing dynamic movies

Presented movie
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Nishimoto et al (2011). Current Biology.




Semantic space

« Huth et al (2012). A continuous semantic space
describes the representation of thousands of object and
action categories across the human brain. Neuron.

 http://gallantlab.org/brainviewer/



Training faces

Reconstructing Faces

Training

1. Perform PCA on all training faces to

generate component ‘eigenfaces’

1
I
I
v

2. Map component scores to patterns
of neural activity (PLSR algorithm)

Cowen et al (2014). Neuroimage.



Reconstructing Faces

Neural Reconstructions

All Non-
Regions

Original PCA Rec. Occipital Fusiform

Occipital

Cowen et al (2014). Neuroimage.



A Subjects memorized five artworks
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Voxel-wise
receptive field
models

Image Mental image
identification identification

f(s) = log(1 + |W's))

Example of a voxel-wise receptive field model

Thomas Naselaris, Cheryl A. Olman, Dustin E. Stansbury, Kamil Ugurbil, Jack L. Gallant

A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes
Neurolmage, Volume 105, 2015, 215-228

http://dx.doi.org/10.1016/j.neuroimage.2014.10.018
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Thomas Naselaris, Cheryl A. Olman, Dustin E. Stansbury, Kamil Ugurbil, Jack L. Gallant

A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes
Neurolmage, Volume 105, 2015, 215-228

http://dx.doi.org/10.1016/j.neuroimage.2014.10.018
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Thomas Naselaris, Cheryl A. Olman, Dustin E. Stansbury, Kamil Ugurbil, Jack L. Gallant

A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes
Neurolmage, Volume 105, 2015, 215-228

http://dx.doi.org/10.1016/j.neuroimage.2014.10.018



>

sorted galleries for each artist, perception B

best T

ons

|

populati

L; A
I EY
El Greco

3 voxel

H

L—A. .‘Gursky

Thomas Naselaris, Cheryl A. Olman, Dustin E. Stansbury, Kamil Ugurbil, Jack L. Gallant

A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes
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Disorders of consciousness

Vegetative state
Locked-in syndrome

Enabling communication in the absence
of overt motor behavior



Decoding Tasks

Motor Imagery Spatial Imagery
(playing tennis) (walking house)

Owen et al (2006); Monti et al (2010)



54 patients with severe brain injury

A Healthy Controls B Patient 54




B “Do you have any brothers?” “Yes” response with the use
of motor imagery

Control

D “Do you have any sisters?” “No” response with the use
of spatial imagery

Control




Real time fMRI spelling

TIMING

Onset delay
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Sorger et al (2012)



Real time fMRI spelling

initial question follow-up question
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Disorders of Consciousness
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Resources

* SVM toolbox

— http://www.csie.ntu.edu.tw/~cjlin/libsvm/
* Python MVPA toolbox

— http://www.pymvpa.org/

* Princeton MVPA toolbox

— http://code.google.com/p/princeton-mvpa-
toolbox/
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