fMRI methods and applications at high field and high resolution fMRI (methods \lor applications) \otimes (high field \land high resolution)

Renzo (Laurentius) Huber

high field and high resolution fMRI educational talks

ISMRM

http://www.ismrm.org/14/14program.htm

	PROGRAM Moderators: Jonathan R. Polimeni, Ph.D. & Kamil Uludag, Ph.D.		
08:30	T	Neurovascular Coupling, Revisited	Anna Devor, Ph.D.
09:00	T 🕨	fMRI Analysis Methods: Classics & New Trends	Robert W. Cox, Ph.D.
09:25	T 🕨	fMRI Acquisition Strategies	David A. Feinberg, M.D., Ph.D.
09:50		Break - Meet the Teachers	
10:15	T 📘	Basic Neuroscience: fMRI Studies of Sensory Systems	Federico De Martino, Ph.D.
10:40	TI 🕨	High-Resolution fMRI in Humans: What is the Limit?	Robert Turner, Ph.D.
11:05	1	Clinical Applications of fMRI: From Presurgical Planning to Functional Connectivity	Natalie L. Voets, Ph.D.

study group workshops

http://www.ismrm.org/workshops/UHF16/

SIEMENS

https://www.healthcare.siemens.com/magneticresonance-imaging/magnetom-world/clinicalcorner/clinical-talks

"layer fMRI" YouTube channel

Layer fMRI

19.12

4 months ago + 26 views

/WK03.htm Sorry about the sound quality.

https://www.youtube.com/channel/UCMjtQ3FD41pAh1VJz-UZGJQ

Alan Koretzky shows how layer fMRI reveals feed-forward vs. feedback input in plasticity ... Layer fMRI 3 months ago · 14 views This talk was given in June 2014 in Charleston, NC. source:

http://www.ismrm.org/workshops/fMRI14/program.htm.

Lars Muckli Predictive encoding using layerdependent fMRI Laver fMRI

Robert Turner: layer-dependent fMRI in Leipzig

Source from ISMRM 2014: http://www.ismrm.org/14/program_files

4 months ago + 52 views source: https://www.dartmouth.edu/~ccn/workshops/workshop_2016.html

3D Gradient and Spin Echo - GRASE 41 41 48 49

Benedikt Poser Talking about his 3D-EPI with CAIPI

Layer fMRI 4 months ago · 16 views source: http://www.ismrm.org/workshops/MultiSlice15/

Sriranga Kashyap talks about IR-EPI with TI permutating over slices Layer fMRI 2 months ago • 11 views

source from http://www.ismrm.org/16/program_files/033.htm.

Amir Shmuel: resting state laminar activity Layer fMRI 4 months ago · 6 views

7T scanner worldwide

high field fMRI: prospects and challenges

Prospects:

Challenges:

- distortions
- blurring •

Pohmann, 2016 MRM

fMRI contrast •

neural specificity •

acquisition speed •

high-resolution, high-field fMRI publications

visual cortex

Kemper et al., 2017

Polimeni et al., 2017

Subject 2

b

Subject 1

layer fMRI in visual cortex

Kok, Curr Biol, 2015

sensory motor cortex

Besle et al., 2010 Sanchez-Panchuelo et al., 2012

van der Zwaag et al., 2013

AVER-Robert

tapping imaginary Trampel et al., 2010

auditory cortex

the "number sense"

Challenges of high-res/high-field fMRI and methods to account for them

signal to noise ratio (SNR)~ Δx^3

- going from 3 mm voxels
- to 0.75 mm voxels,
- reduces volume 64 fold.

higher fields allow higher resolution

7T

9.4T

[Huber et al., ISMRM, 2017]

local specificity - highway metaphor

specific contrast candidates

graphical depiction of review articles [Uludaĝ and Blinder 2017] and [Huber et al., 2017] drawn based on Duvernoy, 1981 Brain Res

[Huber et al., ISMRM, 2017]

- Visual task (block design)
- Motor task (event related)

Pinar Özbay

BOLD - fMRI

fQSM, Z<-1.2

7T Philips (ETH Zurich), 2D Gradient-Echo-EPI (TE=25ms, TR=3s, FA=85⁰, voxel-dimensions=1.25 x 1.25 x 1.3mm³, SENSE=3.5)

gradient-echo, TR=8.2ms, TE=3.79ms, FA=8^o, voxel-dimensions=0.94x0.94x1mm

simultaneous multi-slice (aka multi band)

z-accelerated 3D-EPI

Poser, 2010 Poser, 2013 Stirnberg, 2017

z-accelerated SMS & MB

Feinberg, 2010 Moeller, 2010 Setsompop, 2012

[Huber et al., NeuroImage, 2016b]

3D-EPI vs. SMS

[Huber et al., NeuroImage, 2016]

3D-EPI vs. SMS

High-res EPI-artifacts: ghosts

GRAPPA calibration data

higher SNR

corrupted ACS lines due to eye motion

fixation task helps

inverting phase encoding direction helps

FLASH GRAPPA for fMRI: Talagala et al., 20015 MRM FLEET GRAPPA for fMRI: Polimeni et al., 2016 MRM dual polarity GRAPPA for fMRI: Hoge et al., 2016 MRM

Huber et al., 2014 ISMRM

distortion-matched anatomical reference

$\ensuremath{\mathsf{EPI}}\xspace{-}\ensuremath{\mathsf{T}}\xspace_1$ and $\ensuremath{\mathsf{MP2RAGE}}\xspace{-}\ensuremath{\mathsf{T}}\xspace_1$

Huber et al., ISMRM 2016: Kashyap et al., 2017: Renvall NeuroImage 2016: van der Zwaag ISMRM 2016

Huber et al., ISMRM 2016

T₁-Map

MP2RAGE-recon

Conclusions

High resolutions provides new information on directionality and circuitry

Many challenges need to be accounted for simultaneously

SNR

speed

blurring

ghosting

distortion

Thank you

comments and questions are appreciated: Laurentius.Huber@nih.gov

NIMH:

- Daniel Handwerker
- Dave Jangraw
- Harry Hall
- Sean Marrett
- Vinai Roopchansingh
- Andy Derbyshire
- Kenny Chung
- Javier Gonzales
- Natasha Topolski
- Adam Thomas
- Peter Bandettini

MPI CBS Leipzig:

- Harald Möller
- Bob Turner
- Robert Trampel
- Maria Guidi University of Glasgow:
- Jozien Goense

University of Sheffield:

- Aneurin Kennerley
 Cornell University Hospital
- Carsten Stüber
 University of Maastricht:
- Benedikt Poser
- Dimo Ivanov

F

fim.nimh.nih.gov

I M

