Statistics of FMRI

Gang Chen

Scientific and Statistical Computing Core

NIMH/NIH

August 15, 2017

Overview of FMRI Statistics

- □ What is statistics? What is statistical inference?
- Designed experiment (vs observational study)
 - How to efficiently squeeze the signal of interest into the data
- Typical statistical models involved in FMRI
 - Regression: individual level
 - General linear model (GLM): group level
 - Student's t-tests: one-, two-sample, or paired
 - Multiple regression
 - AN(C)OVA
 - □ Linear mixed-effects (LME) model

Miscellaneous

What is statistics?

- □ In God we trust. All others must bring **data**!
 - Related to *state* and *status*: science of state
 - ♦ German *statistik* by Gottfried Achenwall (1749)
- □ Statistics is about dealing with variation and noise
 - Variation: the world is not uniform
 - Noise is annoying, but contains a lot of useful information
 - Art of noise handling
- □ Science of data analysis based on variation
 - Experimental design and data collection
 - Model building, comparison, selection and analysis
 - Inference and interpretation
 - Presentation and prediction

Is our brain statistically wired?

- Example 1
 - Should we buy lottery tickets and insurances?
- Example 2
 - Average deaths due to snakebites in the USA and Canada per year? 15
 - Average deaths in air transport per year in the USA? 200
 - > Average number of people killed by cars annually in the USA? 40,000
- Example 3
 - Suppose I flip a coin 5 times, and get all heads. What is the chance of getting a head in the next toss?
- Example 4
 - HIV prevalence = 0.1%, false + of HIV test = 5%, power of HIV test ~ 100%. P(HIV+ | test+) = ?

 $P(HIV + | test +) = \frac{P(test +, HIV +)}{P(test +)} = \frac{P(test + | HIV +)P(HIV +)}{P(test + | HIV +)P(HIV +) + P(test + | HIV -)P(HIV -)} = \frac{1.0 \times 10^{-3}}{1.0 \times 10^{-3} + 0.05 \times (1 - 10^{-3})} \approx 0.02$

Statistics in daily life

- **Census in Bible**
- Stereotype: economical thinking
- Miss a step when walking downstairs
- Lottery and gambling
 - Dream of a huge gain out of an unlikely occurrence by paying
 > expected value
- □ Insurance
 - Risk management: hedge the risk of contingency losses
 - Opposite of lottery: Avoid a huge incidental loss by paying > expected cost
 - Airbags, ABS, alarm systems, security monitoring system...
- □ Surveys, clinical trials, ...

Experiment Designs

□ FMRI experiment types

- ♦ Task-based
 - Block design
 - Event-related
 - Mixed type
- ♦ Resting state

- ♦ Naturalistic FMRI
 - Movie watching, music/speech listening

Experiment Design

Principle: Jam all possible information into the design before data acquisition

- Factors for an efficient design at the individual level
 - Number of time points (TRs)
 - Important for individual analysis, but may affect group level implicitly
 - Power: proportional to \sqrt{DF}
 - Limited by subject's tolerance in scanner: 30-90 min per session
 - ♦ TR length: mostly 2 sec
 - Shorter TR yields more time points (and potentially more power), but
 - Power improvement limited by weaker MR signal (SNR)
 - Shorter TR → shorter ISI → higher event freq → higher correlation
 → less power
 - Usually limited by hardware considerations

Experiment Design: individual level

- □ Factors for an efficient design at the individual level
 - Complexity of the experiment: number of conditions/tasks (regressors)
 - Limited by scanning time and confounded by low frequencies
 - Sample size: number of trials per condition/task
 - The more the better, but no magic number: block or event-related?
 - ♦ Event arrangement
 - How to design? How to define the **best** design?
 - Efficiency: achieve highest statistical power within fixed scanning time
 - Programs for randomizing trials

Experiment Design: individual level

- □ Factors for an efficient design at the individual level
 - ♦ HDR modeling
 - Fixed-Shape Method (FSM): assuming an empirical response curve; economical but high risk of inaccuracy
 - Adjusted-Shape Method (ASM): more wiggle room for shape variability; focus on the major shape
 - Estimated-Shape Method (ESM): capable of achieve accurate shape characterization and power; challenging on group analysis

 $h(t) = t^{8.6} \exp(-t/0.547)$

Experiment Design: group level

- □ Factors for an efficient design at the group level
 - Number of subjects (n)
 - Important for group analysis: inter-subject vs. intra-subject variation
 - Power (success to detect signal if present) roughly proportional to \sqrt{n}
 - Design type: block vs. event-related
 - Recommended: 20+
 - Design of the study
 - Complexity: factors, levels, covariate, contrasts of interest, ...
 - With multiple groups, counterbalance, if possible, potential confounding effects such as age, gender, IQ, education background, socioeconomic status, etc.
- □ At the end of the day
 - Group level matters the most!

Modeling

- Data visualization: trust your eyes more than software
 - Any excessive head motion? Spikes? Abnormalities?
- Modeling building/selection
 - Individual level: time series regression
 - Regressors of interest
 - Regressors of no interest
 - Noise
 - ♦ Group level
 - *t*-tests, Regression, ANOVA, ANCOVA, GLM, LME, ...
 - Nonparametric methods
 - Ranking methods
 - Permutations
 - Bootstrapping

Overview: Individual subject analysis

- Basics of linear regression model
- FMRI experiment types
 - Block design; Event related experiment; Mixed
- **FMRI** data decomposition: three components
 - Effects of no interest: baseline, slow drift, others; Effects of interest; Noise
 - Effects of interest understanding BOLD vs. stimulus: IRF
- 3 modeling strategies
 - Model-based: presumed or fixed-shape IRF (FSM)
 - Data-driven: no assumption about IRF shape (ESM)
 - Intermediate: one major IRF plus shape adjustment (ASM)

Basics of Regression

- Statistical modeling (information extraction)
 - Two goals
 - Prediction: machine learning support vector machine (SVM)
 - Inferences: activation detection
- Regression: relationship between a response/outcome (dependent) variable and one or more explanatory (independent) variables (regressors)
 - Simple regression fit data with a straight line: Sir Francis
 Galton's original meaning regression to mean
 - When 2 variables are not perfectly correlated, regression to mean exists
 - Psychology (Daniel Kahneman): Rewards for good performance vs. punishment of mistakes (correlation vs. causation)
 - Lost in most cases including FMRI
 - Some statisticians call it (general) linear model

Basics of Regression

- Mathematical formulation
 - $\Rightarrow \quad y_i = \alpha + \beta_1 x_{1i} + \ldots + \beta_k x_{ki} + \varepsilon_i, \text{ i: time index}$
 - ↔ **y** = **X**β + ε, **X** = [1, *x*₁, *x*₂, ..., *x_k*]
 - Assumptions
 - linearity
 - white noise (independence) and
 Gaussianity ε ~ N(0, σ²I)

Basics of Regression

- □ Solution for regression $y = X\beta + \varepsilon$
 - Project data **y** onto the space of explanatory variables (**X**) OLC \hat{a} $(\mathbf{W}^T \mathbf{W})^{-1} \mathbf{W}^T$

$$\diamond \text{ OLS } \beta = (X^T X)^{-1} X^T y$$

- Interpreting β values: slope, marginal effect, or effect estimate associated with a regressor (explanatory variable)
- Various statistical tests
 - ↔ *t*-test for each β (*H*₀: β_{sad} = 0)
 - *t*-test for linear combination of β values general linear test
 (GLT), *e.g.*, H₀: β_{hap} −β_{sad} = 0, or H₀: 0.5*(β_{hap}+β_{sad}) −β_{neu} = 0
 - ◊ *F*-test for composite null hypothesis, *e.g.*, *H*₀: $β_{hap} = β_{sad} = β_{neu}$ or *H*₀: $β_{hap} = β_{sad} = β_{neu} = 0$
 - ♦ Omnibus or overall *F*-test for the whole model, *e.g*, *H*₀: all β's = 0, or for a partial model *H*₀: all β's of interest = 0

Regression with FMRI

- □ Time series regression: data *y* is time series
 - Regressors: idealized responses or basis functions
 - ♦ Special handling: noise not white ε ~ N(0, σ²Σ), but with temporal or serial correlation
 - Banded variance-covariance matrix Σ
 - ♦ AKA general linear model (GLM) in other FMRI packages
 - General vs. generalized
- Same model for all voxels in the brain
 - Simultaneously solve the models: voxel-wise analysis, massively univariate method
 - ↔ *y* = Xβ + ε: same design matrix X across the brain

FMRI Data

Data partition: Data = Signal + Noise

- \Rightarrow **<u>Data</u>** = acquisition from scanner (voxel-wise time series)
- ♦ <u>Signal</u> = BOLD response to stimulus; effects of interest + no interest
 - We don't fully know the real signal!
 - Look for idealized components, or search for signal via repeated trials
 - Of interest: effect estimate (response amplitude) for each condition
 - Of no interest: baseline, slow drift, head motion effects, ...
- \therefore <u>Noise</u> = components in data that interfere with signal
 - Practically the part we have don't know and/or we don't care about, or the part we can't explain in the model
 - Will have to make some assumptions about its distribution

Data = baseline + slow drift + other effects of no interest + response₁ + ... + response_k + noise

- How to handle the effects of no interest?
- How to construct the regressors of interest (responses)?
- Assumptions about the noise?

Effects of interest

- □ data = effects of no interest+response₁+...+response_k + noise
- 3 components: baseline + drift + other effects of no interest
 - Baseline (and drift) can be modeled as an additive effect (AFNI), or an effect of interest (*cf.* SPM and FSL)
 - Drift: psychological/physiological effect + thermal fluctuation; modeled with polynomials
 - $\Rightarrow y_i = \alpha_0 + \alpha_1 t_i + \alpha_1 t_i^2 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \dots + \varepsilon_i$
 - ↔ **y** = **X**β + ε, **X** = [1, t, t², x₁, x₂, ..., x_k, ...]
 - Other effects of no interest: head motion effects, censored time points, ...

Constructing Regressors: FSM

- Assuming a <u>fixed-shape</u> h(t) for HDR to an instantaneous stimulus: impulse response function (IRF)
 - ↔**GAM(p,q): h(t) = [t/(p^*q)]^p * exp(p-t/q)**
 - DA variation: SPM (undershoot) canonical
 - Default IRF: $h(t) = t^{8.6} \exp(-t / 0.547)$ [MS Cohen, 1997]
 - Build HDF based on presumed IRF through convolution
 - Roll IRF h(t) with stimulus timing S(t): $x(t) = h(t) \otimes S(t)$

FSM for Block Design

- Presuming a <u>fixed shape</u> IRF *h*(*t*) for each instantaneous stimulus 3 parameters: onset, duration, peak
 - For each block, *h*(*t*) is convolved with stimulus timing and duration (*d*) to get idealized response (temporal pattern) as an explanatory variable (regressor): BLOCK(*d*,*p*)
 - Equivalent to convolving a series of consecutive events
 - Linearity assumed within each block: plateau-like response
 - p: scale HDF to 1 for easy interpretation of β

FSM for Event-Related Design

- Fixed shape IRF h(t) for an instantaneous stimulus 2 parameters: timing and peak
 - For multiple trials of a condition/task, *h(t)* is convolved with stimulus timing to get idealized response (temporal pattern) as an explanatory variable (regressor): GAM(*p*,*q*) or BLOCK(0)

Assessing FSM

Used 99% of time, but not necessarily the optimal

- Assumes brain responds with same shape across 4 levels: subjects, activated regions, stimulus conditions/tasks, trials
 - Difference in magnitude β and its significance
 - Strong assumption about 4 levels regarding shape
- ♦ Easy to handle: one value per effect
- \diamond Works relatively well
 - Block design: shape usually not important due to accumulating effects (modeled via convolution) of consecutive events
 - Really plateau? Same magnitude across blocks?
 - Event-related experiment
 - Linearity when two responses overlap? Same effect across events?
- Not desirable if you
 - care about subtle shape difference across subjects, across regions, across conditions, and across trials
 - improve modeling

ESM: No Constraint on IRF Shape

□ Yardstick (or TENT) perspective

- Set multiple yardsticks (or tents) at various equally-spaced locations to cover the potential BOLD response period
 - Each yardstick or TENT is a basis function
- BOLD response measured by yardstick heights at all locations
 - Condition effect is reflected by as many as number of yardsticks
- □ Yardsticks (percent signal change sticks): TENT functions
 - Also known as 'piecewise linear splines'

Tent parameters are easily interpreted as function values (e.g., *L*: tent radius; β_2 = response (tent height) at time *t* = 2*L* after stimulus onset)

Relationship of tent spacing L and TR ($L \ge$ TR), *e.g.*, with TR=2s, L=2, 4s

Assessing ESM

] Pros

- Usually for event-related experiments, but can be used for BLOCK
 - Multiple basis functions for blocks: within-block attenuation
 - Cross-block attenuation?
- Likely to have more accurate estimate on HDR shape across subjects, conditions/tasks, brain regions
- Likely to have better model fit
- Likely to be statistically more powerful

Cons

- Difficult to summarize at group level: group analysis capability
- A few times more regressors than alternatives: DF's
- Risk of highly correlated regressors: multicollinearity
 - Try changing the number of basis functions
- Over-fitting: picking up something (head motion) unrelated to HDR

Why Group Analysis?

- Reproducibility and generalization
 - Science strives for generality: summarizing subject results
 - Typically 10 or more subjects per group
 - ♦ Exceptions: pre-surgical planning, lie detection, ...
- Why not one analysis with a mega model for all subjects?
 - Computationally unmanageable
 - Heterogeneity in data or experiment design across subjects
 - Model quality check at individual subject level

Toy example of group analysis: FSM

- Responses from a group of subjects under one condition
 - ♦ What we have: $(\beta_1, \beta_2, ..., \beta_{10}) = (1.13, 0.87, ..., 0.72)$
- Centroid: average $(\beta_1 + \beta_2 + \ldots + \beta_{10})/10 = 0.92$ is not enough
 - Variation / reliability measure: diversity, spread, deviation
- Model building
 - Subject *i*'s response = group average + deviation of subject *i*: simple model GLM (one-sample *t*-test)

$$\hat{\beta}_i = b + \epsilon_i, \epsilon_i \sim N(0, \sigma^2)$$

- ♦ If individual responses are consistent, ϵ_i should be small
 - *t*-test: significance measure = $\frac{b}{\hat{\sigma}/n}$
 - 2 measures: *b* (dimensional) and t (dimensionless)

Models at Group Level: FSM

- Conventional approach: taking β (or linear combination of multiple β 's) only for group analysis
 - Assumption: all subjects have same precision (reliability, standard error, confidence interval) about
 - All subjects are treated equally
 - Student's *t*-test: paired, one- and two-sample: not random-effects models in strict sense as usually claimed
 - AN(C)OVA, GLM, LME
- Alternative: taking both effect estimates and *t*-statistics
 - *t*-statistic contains precision information about effect estimates
 - Each subject is weighted based on precision of effect estimate

Classical ANOVA: 2×3 Mixed ANCOVA

- ♦ Factor A (Group): 2 levels (patient and control)
- ♦ Factor B (Condition): 3 levels (pos, neg, neu)
- ♦ Factor S (Subject): 15 ASD children and 15 healthy controls
- ♦ Covariate (Age): cannot be modeled; no correction for sphericity violation

$$F_{(a-1,a(n-1))}(A) = \frac{MSA}{MSS(A)},$$

$$F_{(b-1,a(b-1)(n-1))}(B) = \frac{MSB}{MSE},$$

$$F_{((a-1)(b-1),a(b-1)(n-1))}(AB) = \frac{MSAB}{MSE},$$

where

$$\begin{split} MSA &= \frac{SSA}{a-1} = \frac{1}{a-1} \left(\frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{abn} Y_{...}^{2} \right), \\ MSB &= \frac{SSB}{b-1} = \frac{1}{b-1} \left(\frac{1}{an} \sum_{k=1}^{b} Y_{..k}^{2} - \frac{1}{abn} Y_{...}^{2} \right), \\ MSAB &= \frac{SSAB}{(a-1)(b-1)} = \frac{1}{(a-1)(b-1)} \left(\frac{1}{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{an} \sum_{k=1}^{b} Y_{..k}^{2} + \frac{1}{abn} Y_{...}^{2} \right), \\ MSS(A) &= \frac{SSS(A)}{a(n-1)} = \frac{1}{a(n-1)} \left(\frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{an} \sum_{k=1}^{b} Y_{..k}^{2} + \frac{1}{abn} Y_{...}^{2} \right), \\ MSE &= \frac{1}{a(b-1)(n-1)} \left(\sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{ijk}^{2} - \frac{1}{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} + \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} + \frac{1}{abn} Y_{...}^{2} \right) \end{split}$$

Univariate GLM: 2 x 3 mixed ANOVA

- **Group: 2** levels (patient and control)
- Condition: 3 levels (pos, neg, neu)
- Subject: 3 ASD children and 3 healthy controls

Difficult to incorporate covariates

Broken orthogonality

No correction for sphericity violation

Flexible Approach: Multivariate GLM

- Group: 2 levels (patient and control)
- Condition: 3 levels (pos, neg, neu)
- Subject: 3 ASD children and 3 healthy controls

Inter-Subject Correlation (ISC)

- Analysis methodology
 - Regression with task-related regressors won't work 0
 - Voxel-wise correlation between any subject pair 0
 - n = 4 subjects \Rightarrow 6 ISC; n = 5 subjects \Rightarrow 10 ISC
 - *n* subjects => n(n-1)/2 ISC which are not all independent!
 - How to go about group analysis? 0

Inter-Subject Correlation (ISC)

- Analysis methodology
 - How to go about group analysis?
 - Difficulty: The ISCs are not independent with each other
 - The correlations are correlated themselves!
 - Solutions
 - Permutations
 - Bootstrapping
 - LME

	Z_{21}	Z_{31}	Z_{41}	Z_{51}	Z_{32}	Z_{42}	Z_{52}	Z_{43}	Z_{53}	Z_{54}
Z_{21}	(1	ρ	ρ	ρ	ρ	ρ	ρ	0	0	0)
Z_{31}	ρ	1	ρ	ρ	ρ	0	0	ρ	ρ	0
Z_{41}	ρ	ρ	1	ρ	0	ρ	0	ρ	0	ρ
Z_{51}	ρ	ρ	ρ	1	0	0	ρ	0	ρ	ρ
Z_{32}	ρ	ρ	0	0	1	ρ	ρ	ρ	ρ	0
Z_{42}	ρ	0	ρ	0	ρ	1	ρ	ρ	0	ρ
Z_{52}	ρ	0	0	ρ	ρ	ρ	1	0	ρ	ρ
Z_{43}	0	ρ	ρ	0	ρ	ρ	0	1	ρ	ρ
Z_{53}	0	ρ	0	ρ	ρ	0	ρ	ρ	1	ρ
Z_{54}	0 /	0	ρ	ρ	0	ρ	ρ	ρ	ρ	1)

Multiple Testing Correction

Two types of errors

- What is H_0 in FMRI studies? H_0 = no effect (activation, difference, ...) at a voxel
- <u>Type I error</u> = Prob(reject H_0 when H_0 is true) = false positive = p value
 - <u>Type II error</u> = Prob(accept H_0 when H_1 is true) = false negative = β
 - **power** = $1-\beta$ = probability of detecting true activation
- Goal: control type I error rate while increasing power (decreasing type II errors)
- Significance level α (magic number 0.05) : p < α
 Justice System: Trial
 Statistics: Hypothesis Test

Hidden Truth

Hidden Truth

	Defendant Innocent	Defendant Guilty		H ₀ True Not Activated	H ₀ False Activated
Reject Presumption of Innocence (Guilty Verdict)	Type I Error (defendant very unhappy)	Correct	Reject H ₀ (decide voxel is activated)	Type I Error (false positive)	Correct
Fail to Reject Presumption of Innocence (Not Guilty Verdict)	Correct	Type II Error (defendant very happy)	Don't Reject H ₀ (decide voxel isn't activated)	Correct	Type II Error (false negative)

Multiple Testing Correction

Multiple Testing Correction

Two types of correction

- Same test repeated many times (number of voxels)
 - Family-wise error (FWE)
 - Counterbalance between cluster size and voxel-wise significance
 - Difficulties: do not want to over-penalize due to spatial correlation, but spatial structure is neither Gaussian nor homogeneous!
 - Correction via permutations with quantifying the counterbalance
- Multiple tests in a study: six pairwise comparisons among four levels of a factor
 - Little attention in neuroimaging community

Miscellaneous

- □ Science is about reproducibility
 - Widespread obsession with *p*-values in FMRI
 - Colored blobs of *t*-values
 - Peak voxel selected based on peak *t*-value
 - ♦ Unacceptable in some fields if only *p*-value is reported
 - Basic and Applied Social Psychology bans p-value
 - Neuroimaging: an exception currently!
- □ 2-tier approach
 - ♦ Start with a liberal thresholding of p: 0.05 or even 0.1
 - Report rigorous results (multiple testing correction)
 - Also report the clusters under voxel-wise *p* of 0.05 but still have some spatial extent with some cautionary words

Problems of conventional statistics

- □ *p*-value problem (obsession) under NHST
 - ♦ Strawman: null hypothesis H_0 (e.g., no activation)
 - - Extent or evidence of discrepancy of model with H_0
 - **Not** updated probability about the truth of H_0
 - Disconnected with the investigator: usually not a measure of interest
- Damaging effects of *p*-value obsession
 - Dichotomization: statistically significant vs insignificant
 - Vulnerable to misinterpretation; activated vs inactivated
 - Difference between a statistically significant result and an insignificant one is **not** necessarily statistically significant
 - ◊ *p*-hacking (data massage, small volume correction, etc.)

Problems of conventional statistics

- Many branching points in FMRI data processing
 - Different smoothing: 4-10mm
 - Different calibration/scaling strategy: voxel-wise, whole brain
 - Handling head motion effect
- Segmented modeling
 - Splitting into individual and group levels
 - Voxel-wise modeling: multiple testing problem

Miscellaneous

- Correlation vs. causation
 - Incidence of childhood leukemia: several times greater in certain Denver suburbs than in other parts of the country
 - High-voltage power lines?
 - ♦ Lots of correlation analysis in FMRI

Lastly

- Essentially all models are wrong, but some are useful. (George E. P. Box)
- Statistics are like a bikini. What they reveal is suggestive, but what they conceal is vital. (Aaron Levenstein)