Multimodal Neuroimaging Overview

Peter J. Molfese, Ph.D. Center for Multimodal Neuroimaging, NIMH

NIH Summer Neuroimaging Course July 18, 2024

- Equipment
- Experiment Design
- Analysis
- Interpretation / Writeup

Multi-Modal

Workshops

- 2019 Multimodal Neuroimaging
- 2021 Naturalistic Stimuli & Individual Differences
- 2022 Simultaneous PET-MRI
- 2024 Eye Tracking
- 202X Layer fMRI & Other Modalities

- Combine Data from multiple modalities
 - EEG, fMRI, DTI, EyeTracking, Behavior
- Refer folks to expert cores
 - AFNI, MEG, PET

Why This Talk?

13	Thursday	7/18/24	2:00PM	FAES B1C207	Multimodal Neuroimaging Overview	PDF	Pete Molfese
14	Tuesday	7/23/24	2:00PM	FAES B1C209	Electroencephalography (EEG) with and without simultaneous fMRI	PDF	Pete Molfese

- Two talks with potentially overlap
- Today: Mostly Theory
- Next week: More applications / Video Demos
 - How to do EEG/EEG-MRI at the NIH

Overview

- What is Multimodal Neuroimaging?
 - Definition
 - Motivation
- Doing this well is hard
- Doing this well is important

Multimodal Neuroimaging

- Any neuroimaging that uses multiple (complimentary) methods
- fMRI + EEG*
- MEG + EEG*

- fMRI + MRI
- fMRI + DTI

- fMRI + MEG
- tDCS/tACS/TMS + EEG*
- TMS + fMRI*
- Etc...

Temporal-Spatial Tradeoffs

Sejnowski et al. (2014)

Multimodal Possibilities

	EEG	MEG	sMRI	fMRI	DTI	MRS	PET	TMS/ tXCS
EEG								
MEG								
sMRI								
fMRI								
DTI								
MRS								
PET								
TMS/ tXCS								
Possible Not Currently Possible								

Doesn't Have To Be Simultaneous

	EEG	MEG	sMRI	fMRI	DTI	MRS	PET	TMS/ tXCS
EEG								
MEG								
sMRI								
fMRI								
DTI								
MRS								
PET								
TMS/ tXCS								

Possible As Separate To Combine Data

Tradeoffs

Information Tradeoffs

• "When in the brain"

• "Where in the brain"

- "What happens to a process when X area is disrupted?"
 - Is there a fallback network?
- "What happens to a process when disrupted at Y time?"
 - How does the brain compensate?

EEG-fMRI Example

С

-2.56 -3.86 z

Debener et al. (2005)

EEG-MEG

- EEG & MEG have different sensitivity profiles
 - EEG picks up on "all" sources (including radial), lower SNR, source "smearing"
 - MEG <u>most</u> sensitive to tangential sources, higher SNR
 - These complimentary profiles allow improved source localization accuracy (Sharon, et al. 2007; Aydin et al. 2015)

Flanker Task

Courtesy Lucrezia Liuzzi (SDAN)

fMRI + Diffusion

- Can use fMRI activation (resting state or task) as seeds for diffusion tensor imaging
- Memory scores correlated with global and local "efficiency" in DMN
 - Anxiety negatively correlated

Figure 1

Total workflow before the statistical analysis. (A) The DMN mask was extracted from fMRI data using group ICA, with a threshold of z = 2. (B) A probabilistic fiber tractography method was used to track the fibers from each ROI and the connectivity probability between any two ROIs was calculated to get the matrix (C). (D) A graph theory method, in which the nodes represented the ROIs and the weighted edges reflected the connectivity probabilities between any two nodes, was used to analyze the DMN structural network.

fMRI + MRS

The age-corrected neurotransmitter concentrations for both typical and struggling reader groups. (A) Though not significant, the struggling readers have lower GABA+/Cr and GLX/Cr concentrations in the frontal regions. (B) The typical readers show a strong relationship between GABA+/Cr and GLX/Cr, whereas struggling readers may have a neurotransmitter imbalance in their frontal system.

Figure 3

Functional connectivity maps in typical and struggling readers (p=0.001, cluster size 100, FWE corrected) when seeded from L-FG. Color bar indicates the Z(CC). Note: L=left, R=right.

- Typical and struggling adult readers
- GABA in L IFG predicts real word reading behavior, but only if there is significant rsFC between fusiform and higher-order reading areas
- rsFC between L Fusiform and other language systems predicts oral reading of real words, irrespective of GABA

Technique Tradeoffs

	Pro	Con	
EEG	High Temporal Resolution Comparable Across Lifespan Inexpensive	Low (Source) Spatial Resolution Source Analysis Difficult	
MEG	High Temporal Resolution Less Difficult Source Analysis	Expensive Difficult to use with Children Limited Signal from Deep Tissue	
fMRI	Excellent Spatial Resolution	Expensive Difficult to use with Children Low Temporal Resolution (HRF)	

Design

- Knowledge of the domain or topic
- Knowledge of component parts (e.g. MRI + EEG)
- Technical Knowledge to carry out some portion of the experiment

<image>

More Design Questions

- Do you have the equipment?
- Do you have the expertise to operate the equipment?
- Is it worthwhile?
 - More data isn't <u>always</u> better.
- Can you do this well?

Design

- Knowledge of the domain or topic
- Knowledge of component parts (e.g. MRI + EEG)
- Technical Knowledge to carry out some portion of the experiment

Design

- Knowledge of the domain or topic
- Knowledge of component parts (e.g. MRI + EEG)
- Technical Knowledge to carry out some portion of the experiment
- What's the value added?
- Does it have to be simultaneous?

Simultaneous? Really?

- Quite a bit of information can be gathered from separate sessions of EEG and MRI
- The benefits of simultaneous are:
 - Same environment in both cases (inside an MRI)
 - Looking at individual trial modulation of either ERP/ BOLD
 - Looking at coherence and resting state relationship at the same time

Design

- Knowledge of the domain or topic
- Knowledge of component parts (e.g. MRI + EEG)
- Technical Knowledge to carry out some portion of the experiment
- Important choice points: Simultaneous vs. Separate
- What's the value added?

Data Analysis

- Are there artifacts from multimodal imaging?
 - Can you fix them?

Interpretation

Artifacts

- MR Artifacts
 - Caused by the gradients
- Ballistocardiogram (BCG)
 - Caused by movement of the electrode within the magnetic field

Artifact Removal

- Gradient Artifacts
 - Fairly straightforward to remove
 - Template subtraction
- BCG Artifacts
 - More prominent on the facial electrodes
 - Follows the heartbeat by ~250 ms
 - PCA to model the artifact, remove, reconstruct

Design

- Knowledge of the domain or topic
- Knowledge of component parts (e.g. MRI + EEG)
- Technical Knowledge to carry out some portion of the experiment
- Important choice points: Simultaneous vs. Separate
- What's the value added?

Data Analysis

- Are there artifacts from multimodal imaging?
 - Can you fix them?

Interpretation

Design

- Knowledge of the domain or topic
- Knowledge of component parts (e.g. MRI + EEG)
- Technical Knowledge to carry out some portion of the experiment
- Important choice points: Simultaneous vs. Separate
- What's the value added?

Data Analysis

- Are there artifacts from multimodal imaging?
 - Can you fix them?
- If applicable, how will you combine the data?
 - Co-register data across modalities
 - Head Models / Single Subject vs. Group
 - EEG Sources

Interpretation

Electrode Coordinates

Head Models

Shell Models

Finite Difference/Element Models

Difficulty Combining Very Different Measures

Design

- Knowledge of the domain or topic
- Knowledge of component parts (e.g. MRI + EEG)
- Technical Knowledge to carry out some portion of the experiment
- Important choice points: Simultaneous vs. Separate
- What's the value added?

Data Analysis

- Are there artifacts from multimodal imaging?
 - Can you fix them?
- If applicable, how will you combine the data?
 - Co-register data across modalities
 - Head Models / Single Subject vs. Group
 - EEG Sources

Interpretation

- How to interpret findings?
 - Do the analyses of you data let you make certain generalizations?
- What does it really mean?

Good News

- We're making great progress on integrating Multi-modal techniques
 - Simultaneous methods have improved noise and artifact reduction
 - Non-concurrent methods continue to improve integration and comparison of results

Multimodal is Important

- Provides (hopefully) complimentary and (possibly) overlapping information
- May facilitate better studies of individual differences
 - May be used as a control within subject!
 - Allow for creation of multi-measure latent variable models
- Improve reliability/replication

Open Questions

• Design: What Questions best lend themselves to multi-modal imaging?

 Analysis: How should analyses be standardized to best make use of multimodal imaging?

 Interpretation: What will be the scientific/statistical level of rigor to support multimodal imaging conclusions

Questions?

Peter.Molfese@nih.gov

